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Estimating Site-Specific Nitrogen Crop Response Functions: 

A Conceptual Framework and Geostatistical Model 

 

 

Abstract 

Confirming the precision agriculture hypothesis for variable rate nitrogen applications (VRA) is 

challenging.  To confront this challenge, researchers have used increasingly sophisticated statistical models 

to estimate and compare site-specific crop response functions (SSCRFs).  While progress has been made, it 

has been hampered by the lack of a conceptual framework to guide the development of appropriate 

statistical models.  This paper provides such a framework and demonstrates its utility by developing a 

heteroscedastic, fixed and random effects, geostatistical model to test if VRA can increase nitrogen returns.  

The novelty of the model is the inclusion of site, spatial, treatment, and treatment strip heteroscedasticity 

and correlation.  Applied to data collected in 1995 from two corn nitrogen response experiments in South 

Central Minnesota, results demonstrate the importance of including site, spatial, treatment, and treatment 

strip effects in the estimation of SSCRFs.  Results also indicate a significant potential for VRA to increase 

nitrogen returns and that these potential returns increase as the area of the management unit decreases.  At 

one location, there was greater than a 95% chance that VRA could have increased profitability if the cost of 

implementing VRA was less than 14.5 $ ha-1.  At the other location, if implementation costs were less than 

48.3 $ ha-1, there was greater than a 95% chance of increased profitability. 
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Abbreviations and Notation 

FGLS   Feasible Generalized Least Squares 

LRS   Likelihood Ratio Statistic 

ML   Maximum Likelihood 

OLS   Ordinary Least Squares 

PA   Precision Agriculture 

SSCRF    Site-Specific Crop Response Function 

UMN   University of Minnesota 

URA    Uniform Rate Nitrogen Application 

VRA    Variable Rate Nitrogen Application 

*   Significant for p < 0.05 

**   Significant for p < 0.01 

***   Significant for p < 0.001 

x Units of Variable/Managed Input 

x* Optimal Units of Variable/Managed Input 

z Units of Fixed/Unmanaged Input 

y = f(x, z) Units of Crop Yield as a Function of Variable and Fixed Inputs 

py and px Price Per Unit of Crop Yield and Variable Input 

kx and kz Indexes for Units of Variable and Fixed Input 

( )
zx

zx

zx kk

kk

kk zx
zxf

∂∂
∂

=
+ ,

β  kx and kz Order Cross Partial Derivative of Crop Yield With Respect to the 

Variable and Fixed Input 

N Number of Observations 

i Observation Index 

ei Approximation and Measurement Error 

Kx and Kz Integer Constants 
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xkα  kxth Estimable Mean Parameter 

zkZ  kzth Unobserved Real Constant 

ξi Unobserved Error 

R and ri Number of Field Sites/Partitions and Site Assigned to the ith Observation 

rkx
α  kxth Estimable Mean Parameter for Site r 

rkz
Z  kzth Unobserved Real Constant for Site r 

E[⋅] Expectation Operator 

dij Spatial Distance Between Observations i and j 

C0 Estimable Spatial Nugget Semi-Variogram Parameter 

C1 Estimable Semi-Variogram Distance Correlation Parameter 

a Estimable Semi-Variogram Range/Shape Parameter 

g(dij, a) Semi-Variogram Distance Function 

Cx Estimable Variable Input Correlation Parameter 

xij Indicator Variable for Observations With the Same Variable Input 

Cs Estimable Treatment Strip Correlation Parameter 

sij Indicator Variable Equal for Observations from the Same Strip 

γ(dij) Semi-Variogram 

σrs  Covariance for Site r and Treatment Strip s 

σr and σs Estimable Covariance Parameters for Site r and Treatment Strip s 

π Returns to Nitrogen Above the Cost of Nitrogen 
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The precision agriculture (PA) hypothesis asserts that varying management activities between or within 

fields can benefit farmers or the environment.  A necessary condition for PA is that the productivity of 

management activities must vary between or within fields due to factors typically not managed by a farmer.  

Validating this necessary condition is challenging due to the inherent difficulties of collecting, analyzing, 

and interpreting appropriate data. 

 One approach that has emerged to test the PA hypothesis for variable rate nitrogen applications 

(VRA) is the estimation and comparison of site-specific crop response functions (SSCRFs) using multiple 

regression analysis (e.g. Davis et al., 1996; Malzer et al., 1996; Bongiovanni and Lowenberg-DeBoer, 2000 

and 2001; Lambert et al., 2002; Hurley et al. 2002a,b; and Mamo et al., 2003).  Early applications relied on 

ordinary least squares (OLS), which does not account for heteroscedastic or correlated errors.  While OLS 

estimates may remain unbiased even with heteroscedasticity and correlation, they are typically not efficient 

and can convey a false sense of precision (Schabenbeger and Pierce, 2002).  Having confirmed the 

presence of spatial correlation, recent applications have used more sophisticated statistical models to 

address this problem.  Still, the conceptual foundations used to justify these models are seldom explicit, 

making it difficult to judge the merit of the method. 

The purpose of this paper is to provide a conceptual framework to illuminate how SSCRFs can be 

used to test the PA hypothesis.  The framework is useful because it identifies an appropriate hypothesis and 

explains recent evidence of site and treatment dependent heteroscedasticity and spatial correlation 

(Hernandez and Mulla, 2002; Hurley et al., 2002a; and Lambert et al., 2002).  The framework is used to 

guide the development of a heteroscedastic, fixed and random effects, geostatistical model for estimating 

SSCRFs and testing the PA hypothesis using field data from a common experimental design.  The novelty 

of the model is the inclusion of site, spatial, treatment, and treatment strip dependent heteroscedasticity and 

correlation.  The model is applied to 1995 field data to demonstrate the importance of the conceptual 

results, test the PA hypothesis, and estimate the potential value of PA. 
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Conceptual Framework 

Implications of the PA Hypothesis 

 The precision agriculture (PA) hypothesis asserts that farmers or the environment can benefit from 

varying management within or between fields.  To understand this hypothesis from a farmer�s perspective 

(analogous arguments exist for the environment), suppose crop yield y (e.g. corn kg ha-1) depends on two 

types of inputs.  The first, denoted by x, are variable inputs or a farmer�s managed inputs (e.g. nitrogen).  

The second, denoted by z, are fixed inputs or a farmer�s unmanaged inputs (e.g. soil type, rainfall, and 

topography).  The general relationship between yield, and variable and fixed inputs is described as y = f(x, 

z), which is assumed continuously differentiable in x and z.  For convenience, y, x, and z are treated as 

scalars. 

If a farmer�s objective is to manage the variable input to optimize the net return, the classic rule 

from economic theory says to choose x* such that 
( )

xy p
x

zxfp =
∂

∂ *,
 where py and px are the price per 

unit of crop yield and variable input.  In economic parlance, the rule states that an input�s value of marginal 

product should equal its marginal cost.  The optimal amount of variable input depends on the crop price, 

variable input price, and most importantly for PA, amount of fixed input.  How the optimal amount of 

variable input depends on the amount of fixed input is found using the implicit function theorem:  

z
x
∂
∂ *

 = 
( )

( )zxf
x

zx
zxfpy *,

*,
2

22

∂
∂

∂∂
∂

− .  Note that the optimal amount of variable input does not 

change with the amount of fixed input if 
( ) 0*,2

=
∂∂

∂
zx

zxf
, which means there is no interaction between 

the variable and fixed input.  For example, if soil organic matter does not influence crop response to 

nitrogen, there is no value to varying nitrogen applications in response to variation in soil organic matter. 

Testing the PA Hypothesis with an Observable Fixed Input 

Observational and experimental field data provide an opportunity to test the PA hypothesis, but 

the development of appropriate statistical models has proven challenging.  To understand why, consider the 

Taylor series expansion, 
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0,0β  for all kx and kz are real constants that indicate how variable and fixed 

inputs combine to influence yield.  Equation (1) is a general decomposition of yield into the familiar 

constant, main, and interaction effects.  Equation (2) suggests the null hypothesis 0=
zx kkβ  for all kx > 0 

and kz > 0, which implies PA cannot be used to the benefit of a farmer or the environment because there is 

no interaction effect. 

Consider a set of data collected from a controlled field experiment: (yi, xi, zi) for i = 1, 2, �, N.  

An individual data point consists of yi, an observed yield; xi, an observed variable input; and zi, an observed 

fixed input.  To test the PA hypothesis with this data, the constant β coefficients in equation (1) must be 

estimated, a task that is generally not feasible. 

The first obstacle is the dimension of the problem.  Since the true relationship between yield and 

inputs is seldom (if ever) known, some approximation is necessary.  Additionally, there is the potential for 

measurement error.  Both problems are universal and the common solution (explicit or implicit) is to 

truncate the expansion in equation (1) and add an error: 
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     = Constant + Main Effect of x + Main Effect of z + Interaction Between x and z + Error 

where Kx and Kz are integers and ei includes the approximation error due to truncation and measurement 

error in yield and inputs.  Equation (3) is a generalized linear regression model, so the parameters for the 

constant, main, and interaction effects can be estimated using a variety of techniques.  For example, if it is 
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reasonable to assume ei is independently and identically distributed with zero mean for i = 1, 2, �, N, 

ordinary least squares (OLS) is appropriate.  If the variance of error differs between observations (i.e. there 

is heteroscedasticity) or errors are correlated (e.g. spatially), feasible generalized least squares (FGLS) or 

maximum likelihood (ML) with a heteroscedastic and correlated covariance matrix is appropriate.  

Depending on the method, the PA hypothesis can be tested using the F or likelihood ratio statistic (LRS). 

Testing the PA Hypothesis with an Unobservable Fixed Input 

Another obstacle more specific to PA is that zi is often unobserved.  A researcher or farmer may 

suspect some fixed input interacts with the variable input, but not know which fixed input is important.  

Confirming the PA hypothesis without knowledge of important fixed inputs is useful because it indicates 

whether searching for such inputs is worth an effort.  If the PA hypothesis cannot be confirmed generally or 

the value of discovering which fixed inputs are important is small, it makes sense to devote research effort 

elsewhere. 

When zi is unobserved, it can be treated as another source of error.  Equation (3) becomes 
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+= ∑ ∑
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0 ββξ  is the regression error.  Under the traditional 

assumption that the expected value of the regression error is zero, 
zkZ  is an average of zk

iz .  Two 

important implications emerge from equation (4).  First, the parameters associated with the constant and 

main effect of the variable input depend on the interaction between the variable and fixed inputs.  Second, 

there is another source of error attributable to the unobserved fixed input that is dependent on the variable 

input and interactions between the variable and fixed input. 
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Note that in a perfectly controlled experiment, the value of the fixed input is constant for all 

observations: 
z

z
k

k
i Zz −  = 0 for all i and kz.  Therefore, the only source of error is related to approximation 

and measurement.  Unfortunately, most field experiments are not perfectly controlled, so error attributable 

to variation in the unobserved fixed input can be important. 

Testing the null hypothesis for PA using equation (4) is complicated by the fact that the interaction 

parameters of interest are inextricably embedded in the parameter estimates for the main effect of the 

variable input and in the error.  This complication highlights the utility of estimating SSCRFs to test the PA 

hypothesis.  Suppose the data is partitioned by dividing the field into R distinct sites such that ri ∈ {1,�,R} 

denotes the ith observation�s assigned site.  Separate α parameters can be estimated for each site by 

rewriting equation (4) as  
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0 ββξ  is the regression error.  Under the assumption that the 

expected value of the regression error is zero, 
iz rkZ  is an average of zk

iz  for all observations falling in site 

ri. 

Equation (5) shows that the parameters for the main effect of the variable input at a site can be 

decomposed into a main effect of the variable input ( 0xkβ ) that does not vary by site and an interaction 
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β  that does vary by site.  Therefore, if the PA hypothesis is true and rkz
Z  vary by site, the 

parameters for the main effect of the variable input will vary by site.  This implies that if the null 
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hypothesis ( 0=
zx kkβ  for kx = 1,�Kx and kz = 1,�Kz) is correct, 

jxix rkrk αα =  for kx = 1,�Kx, and all ri 

and rj. 

SSCRFs allow the PA hypothesis to be tested by comparing parameter estimates for the main 

effect of the variable input in equation (5) across sites� parameters for which efficient and unbiased 

estimates can usually be obtained even in the presence of heteroscedastic and correlated errors.  It is 

important to note that this test does not imply the equality of site constants (
ir0α  for all ri).  When there is 

no interaction between the variable and fixed input, check plot yields (yields with no variable input) can 

vary across sites, even though crop response to the variable input does not.  Equation (5) shows this is 

possible because the main effect of the fixed input is absorbed into the site constants. 

Using equation (5) to test the PA hypothesis is still not trivial because of the covariance  
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Equation (6) provides an explanation for three phenomena reported in the literature.  The first and most 

common is spatial correlation where regression errors tend to be more correlated for observations that are 

closer in distance to each other.  If fixed inputs are spatially correlated, 
iz

z
rk

k
i Zz −  and 

jz

z
rk

k
j Zz '

' −  will 

be spatially correlated.  Hernandez and Mulla (2002) also reports semi-variogram estimates that vary by 

treatment, a result explained by the dependence of equation (6) on the variable input, xk
ix  and xk

jx , when 

the PA hypothesis is true.  Hurley et al. (2002a) and Lambert et al. (2002) report site-specific 
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heteroscedasticity, a result consistent with the dependence of equation (6) on 
iz rkZ  and 

jz rkZ .  Each of 

these phenomena implies estimates from equation (5) using OLS will be inefficient. 

 A variety of methods have been proposed to deal with the estimation problems posed by these 

phenomena.  Spatial econometric and geostatistical models have been estimated to address problems 

arising from spatial correlation.  Hernandez and Mulla (2002) estimate treatment specific semi-variograms 

to deal with treatment dependent spatial correlation.  Hurley et al. (2002a) and Lambert et al. (2002) 

incorporate site dependent heteroscedasticity using OLS, spatial econometric, and geostatistical models.  

None of these models or others we are aware of address site, spatial, and treatment dependent 

heteroscedasticity and correlation jointly. 

 The practical relevance of these problems is now explored using data from a common 

experimental design.  The experiment was constructed to test within field variation in corn response to 

nitrogen.  After discussing the design details, a new statistical model is proposed using insights gleaned 

from the experimental design and conceptual framework. 

Materials and Methods 

Experimental 

Data were collected in 1995 from two production fields near Hanska and Morgan (Brown and 

Redwood Co. in South Central Minnesota).  These sites are located on a higher elevation of glacial till 

lowland plain that comprises the majority of the Counties.  Most soils at these locations belong to the 

Clarion-Nicollet-Webster association or similar soil series/ associations.  The area is nearly level to gently 

sloping, and the soils range from poorly to moderately well drained.  All soils were mollisols, ranging from 

fine-loamy, mixed, mesic Typic Haplaquolls (the Webster clay loam) to fine-loamy, mixed, mesic typic 

Hapludolls (the Clarion loam).  The climate is interior continental with cold winters and moderately hot 

summers with occasional cool periods.  Total annual precipitation ranges from 635 to 711 mm, which is 

normally adequate for corn, since 80% falls during the growing season.  The 1994 crop was soybean and no 

manure applications had occurred in the last five growing seasons. 
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Each 4.5 ha experimental field plots was 164 by 274 m.  Within this area six 27.3 by 274 m 

replications of six 4.6 by 274 m treatment strips were established in a randomized complete block design 

(for an illustration of an analogous design see Mamo et al., 2003).  The strips in each replication included 

nitrogen rates of 0, 67, 101, 134, 168, and 202 kg ha-1 applied as anhydrous ammonia.  Treatments were 

applied on November 4, 1994 using a radar controlled variable rate applicator to ensure a constant 

application rate within each strip. 

 Corn (cv. Pioneer 3531) was planted during the first week of May in 0.76 m rows at 

approximately 76,500 seeds ha�1.  Grain yield was determined by harvesting the center two rows (six row 

strips) with a Massey Ferguson® plot combine equipped with a ground distance monitor and a 

computerized Harvestmaster® weigh cell.  Each of the 36 strips was divided into 17 4.6 by 15.2 m harvest 

segments.  Approximately 8 m was discarded from the end of each strip to eliminate border effects.  No 

headlands were harvested.  The experiment produced 612 yield observations at each location.  Sub-samples 

of grain were collected to adjust yields to reflect 15.5 percent moisture.  Dikici (2000) reports more details 

and a descriptive summary of the data. 

Empirical 

 Estimating equation (5) with these data provide an opportunity to test the PA hypothesis for VRA.  

One feature of these data is that they provide observations for each of the six treatments in 102 15.2 by 27.6 

m sites at each location.  Therefore, equation (5) can be used to estimate up to 102 SSCRFs with a full 

complement of treatments.  Another feature is that treatments were randomly assigned across, but not 

within, strips.  This lack of randomization within strips may introduce additional correlation. 

 The conceptual framework and experimental design suggest that estimation of equation (5) using 

OLS is not efficient.  OLS estimates of the standard errors for the α parameters can be either upward or 

downward biased.  The conceptual framework shows the covariance of regression errors will exhibit site 

and treatment spatial dependencies.  Lack of randomization within strips suggests the covariance of 

regression errors may also exhibit strip dependencies.  Therefore, estimates of equation (5) should 

incorporate an error structure that permits strip as well as site and treatment spatial dependencies. 
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 The proposed model is based on the geostatistical framework.  First, let Kx = 2, so equation (5) 

becomes 

(7) iirirri xxy
iii

ξααα +++= 2
210  

where yi is corn yield (t ha-1) and xi is applied nitrogen (kg ha-1) for the ith observation.  The covariance of 

ξi and ξj is assumed to be 

(8) ( )[ ] ( )( )[ ]





≠++−

=
=

jisCxCadgC

ji
ξξ

ijsijxijsrsr

sr
ji

jjii

ii

for,,1

for,
E

1

2

σσ

σ
 

where 2
ii srσ  > 0 and 2

jj srσ  > 0 are the site and strip specific variances for observations i and j; dij is the 

distance in meters between observations i and j; xij is an indicator variable equal to 1.0 if observations i and 

j had the same treatment applied and 0.0 otherwise; sij is an indicator variable equal to 1.0 if observations i 

and j came from the same strip and 0.0 otherwise; C1 ≥ 0, Cs ≥ 0, and Cx ≥ 0 are spatial, strip, and treatment 

correlation parameters that assume positive correlation; 1 ≥ g(dij, a) ≥ 0 is a permissible semi-variogram 

distance function (e.g. see McBratney and Webster, 1986); and a is a range or shape parameter for the 

semi-variogram distance function. 

 Dividing equation (8) by 
ii srσ  and 

jj srσ  results in the correlation coefficient.  When i ≠ j, this 

correlation coefficient is comprised of three elements: spatial correlation (C1(1 � g(dij,a)), strip correlation 

(Cssij), and treatment correlation (Cxxij).  Since the correlation coefficient must always lie between 1.0 and -

1.0, 1.0 ≥ C1 + Cs + Cx ≥ 0.0 assuming spatial, strip, and treatment correlation are positive to ensure the 

covariance matrix satisfies the necessary regularity conditions (i.e. is positive definite). 

 The classical geostatistical approach decomposes variation in the dependent variable into a trend, 

local variance (nugget), and distance effect.  Equations (7) and (8) accomplish a similar decomposition, but 

add heteroscedasticity, strip effects, and treatment effects.  The trend is captured by 

2
210 irirr xx

iii
ααα ++ , which is site specific.  The semi-variogram is  



 12 

(9) ( ) ( ) ( ) ( )( )





>−+−++

=
=

0for,11,

0for,0

10 ijijsijxijsrsr

ij
ij dsCxCadgCC

d
d

jjii
σσ

γ  

where 
jjii srsr σσ C0 = 

jjii srsr σσ (1 � C1 � Cs � Cx) can be interpreted as the nugget and 
jjii srsr σσ  as the 

sill.  Equation (9) shows precisely how the standard geostatistical model is modified by heteroscedasticity, 

and strip and treatment correlation. 

Estimation 

 Equations (7) and (8) can be estimated using a variety of methods after choosing how to divide the 

field and a distance function for spatial correlation (Schabenberger and Pierce, 2002).  The method 

employed uses FGLS for the α parameters.  Estimates of the covariance parameters (C1, Cs, Cx, a, and 2
srσ  

for all r ∈ R and s ∈ {1,�,36}) are obtained using maximum likelihood (ML) after substituting the FGLS 

estimator for the α parameters.  The α parameters are substituted or profiled in this manner because the 

FGLS estimator for α is the ML estimator given the covariance parameters.  The procedure also 

substantially speeds computation. 

 The data can be divided into 102 sites with a full complement of treatments, but with only a single 

observation per strip in each of these sites, it is not possible to identify strip correlation.  Therefore, fewer 

sites are necessary given these data.  To illustrate the benefit of estimating equations (7) and (8) for smaller 

management units, two site partitions are explored.  The first divides each location into six contiguous sites 

of about 0.75 ha; four sites with 108 observations and two sites with 90 (Figure 1). The second divides each 

location into 48 contiguous sites of about 0.094 ha; six sites with 18 observations and 42 sites with 12. 

 While these partitions are not the only possible choices and may not be the best choices for each 

field, refuting the null hypothesis with either is sufficient and can still be used to estimate a lower bound for 

the potential value of VRA.  Note that it is possible to use the model to determine the best way to divide the 

field by comparing model fit for alternative partitions.  This process is time consuming however and 

beyond the scope of the current paper. 
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 With these two partitions, the variance parameters for every possible site and strip combination 

( 2
srσ  for all r ∈ {1,�,R} and s ∈ {1,�,36}) cannot be identified without additional simplifying 

assumptions.  The identification problem is analogous to trying to use an independent variable in a multiple 

regression analysis that is a linear combination of other independent variables.  To identify the model, the 

site and strip variances were assumed to be multiplicatively separable (i.e. σrs
2 = σr

2σs
2) and σs

2 is set to 1 

for s ∈ {1, 19} for six sites and s ∈ {1, 7, 13, 19, 25, 31} for 48 sites.  Additively separable variances (i.e. 

σrs
2 = σr

2 + σs
2) were also explored, but did not fit the data as well. 

 There are a variety of possible distance functions.  However, the computational intensity of the 

model restricts the practicality of comparing lots of functions.  Since the primary purpose of the paper is to 

explore the value of incorporating site, treatment, and strip dependencies into a model with spatially 

correlated errors, attention is focused on a single distance function.  Comparing the fit of a standard 

geostatistical model at both locations based on the maximized log-likelihood using the exponential, 

Gaussian, and spherical distance functions suggested the Gaussian model fit best.  Therefore, the full model 

with site, treatment, and strip spatial dependencies was estimated with the Gaussian function: 
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Hypotheses 

 Eight models based on equations (7) and (8) were estimated for each location to test a variety of 

hypotheses.  Table 1 summarizes, while detailing the applicable model restrictions.  Model 1 used six sites 

in an ML analogy to OLS.  Model 2 used six sites in a standard geostatistical model.  Model 3 used six 

sites, while adding site and treatment heteroscedasticity and correlation to model 2.  Model 4 used six sites, 

while adding strip heteroscedasticity and correlation to model 3.  Model 5 is similar to model 4 except it 

assumed no interaction between nitrogen and fixed inputs.  Models 6, 7, and 8 used 48 sites, but were 

otherwise identical to models 1, 4, and 5. 

 Hypothesis testing was accomplished using the likelihood ratio statistic (LRS) since the models 

are nested.  The LRS is twice the difference in the maximized likelihood of the unrestricted and restricted 
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model.  The statistic is asymptotically distributed χ2 with the degrees of freedom equal to the number of 

parameter restrictions. 

 The benefit of incorporating site, spatial, treatment, and strip dependent heteroscedasticity and 

correlation was evaluated by comparing model 1 and 2, 2 and 3, 3 and 4, and 6 and 7.  The comparison of 1 

and 2 evaluates the importance of spatial correlation.  The comparison of 2 and 3 evaluates the importance 

of conditioning the variance and spatial correlation on the site and treatment.  The comparison of 3 and 4 

evaluates the importance of also conditioning on strips.  These three comparisons are all based on six sites.  

The comparison of 6 and 7, evaluates the importance of incorporating site, spatial, treatment, and strip 

effects with smaller management units (0.094 vs. 0.75 ha). 

 Comparing models 4 and 5, and 7 and 8 tests the PA hypothesis.  The comparison between 4 and 5 

evaluates whether there were significant differences in crop response to nitrogen between the six sites in 

the first partition.  The comparison between 7 and 8 evaluates whether there were significant differences in 

crop response to nitrogen between the 48 sites in the second partition.  If there is a significant difference in 

crop response to nitrogen within a field, VRA can potentially improve nitrogen returns. 

 Finally, comparing 4 and 7 evaluates variation in crop response functions within the six sites in the 

first partition.  The test determines if dividing a field into smaller management units significantly improves 

explanatory power. 

Potential Value of VRA 

 The potential value of the increased nitrogen return from VRA was calculated using coefficient 

estimates for the α parameters in equations (7) and (8).  The estimated nitrogen return above fertilizer costs 

was defined as 
( )
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π .  The optimal VRA was calculated by 

choosing xi for i = 1,..,612 to maximize π.  Alternatively, an optimal uniform rate (URA) was calculated by 

choosing x = xi for i = 1,..,612 to maximize π.  These optimal rates were constrained between 0 and 202 kg 

ha-1 to avoid predicting yields outside the range of available data.  Nitrogen returns for the optimal VRA 

and URA were compared to the University of Minnesota (UMN) recommendation (140 kg ha-1 for both 
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Hanska and Morgan) to determine the potential value of VRA within and between fields assuming the price 

of corn and nitrogen were 98.21 $ t-1 (2.50 $ bu-1) and 0.374 $ kg-1 (0.17 $ lbs-1). 

 Let πVRA, πURA, and πUMN be the estimated nitrogen return for the optimal VRA, optimal URA, and 

UMN rate.  The potential return to switching to the optimal VRA from the UMN rate was calculated as 

πVRA - πUMN, which represents the potential value of varying nitrogen applications within a field using VRA.  

This potential value is exclusive of the cost of implementing a VRA strategy (e.g. the cost of information 

acquisition and variable rate application equipment or services).  The standard deviation and 90 percent 

confidence interval were calculated using a Taylor series expansion (see Caselle and Berger, 1990, pp. 328-

331) and assuming normality. 

 The potential value to switching to the optimal VRA from the UMN rate was decomposed as πVRA 

- πUMN = πVRA - πURA + πURA - πUMN.  The potential value of VRA due to switching to the optimal URA from 

the UMN rate or of getting the right average rate for a field is πURA - πUMN.  The potential value of VRA due 

to switching to the optimal VRA from the optimal URA or to varying the right average rate optimally 

within a field is πVRA - πURA. 

Results 

Hypotheses Tests 

 The regression errors from the SSCRF estimates exhibited significant site, spatial, treatment, and 

strip dependent heteroscedasticity and correlation.  Table 2 reports the maximized log-likelihood for each 

model, and the LRS and degrees of freedom for each model comparison.  Model 1 was rejected in favor of 

2 at both locations confirming spatial correlation.  Model 2 was rejected in favor of 3 supporting the 

implications of the conceptual framework.  Model 3 was rejected in favor of 4 indicating significant strip 

dependent heteroscedasticity and correlation.  Model 1 was rejected in favor of 4 and 6 was rejected in 

favor of 7, so dividing fields into smaller management units did not change the importance of site, spatial, 

treatment, and strip dependent heteroscedasticity and correlation. 

 There was significant within field variation in corn response to nitrogen, so there was the potential 

for VRA to improve nitrogen returns.  Model 5 was rejected in favor of 4 indicating that nitrogen crop 
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response varied significantly between the six sites in the first partition at both locations.  Model 8 was 

rejected in favor of 7, indicating that nitrogen crop response varied significantly between the 48 sites in the 

second partition at both locations.  Model 4 was rejected in favor of 7, which means SSCRFs differed 

significantly within the six sites of the first partition at both locations.  Nitrogen returns could be improved 

by varying nitrogen applications across smaller management units. 

Error Structure 

 Table 3 reports the correlation parameters along with the shape parameter (a) and the average 

standard deviation for selected models. 

 Spatial and treatment strip correlation were substantial, but treatment correlation was not.  Spatial 

correlation is reduced but not eliminated by estimating SSCRFs for smaller management units, which 

implies that estimating SSCRFs for smaller management units captures more within field variation in 

unmanaged inputs.  The average standard deviation of error is also reduced when SSCRFs were estimated 

for smaller management units.  Spatial correlation explained between 51 and 63%, while strip correlation 

explained between 15 and 18% of the semi-variance sill depending on the model and location.  The 

magnitude of the spatial and treatment strip correlation was similar for Hanska and Morgan in models 4 and 

7.  Comparing model 4 and 7 shows the proportion of the semi-variance sill explained spatially and the 

shape parameter are lower with 48 rather than six sites.  Both factors imply correlation diminishes faster 

with distance, when smaller management units are used to estimate SSCRFs. 

Potential Value of VRA 

 Figure 2 reports estimates of the potential value of VRA and the decomposition of this value into 

the effect of switching to the optimal URA from the UMN rate, and to the optimal VRA from the optimal 

URA.  While the results of Table 1 show that model 7 is the best fitting model, results for other models are 

also reported in order to demonstrate the practical importance of using a model that incorporates site, 

treatment, and strip as well as spatial effects. 

 Model 7 indicates that the potential value of switching to the optimal VRA from the UMN rate 

was 27.54 $ ha-1 and 65.87 $ ha-1 for Hanska and Morgan, with a 95% chance this value exceeded 14.48 $ 

ha-1 and 48.31 $ ha-1.  For Hanska and Morgan, 10 and 69% of this value could have been achieved by 
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applying a better uniform rate, while the balance would have required varying applications optimally 

between the 48 sites within each field.  The UMN rate was close to the optimal rate on average for Hanska, 

but not Morgan.  Therefore, most of the VRA benefit for Hanska would have come from varying the 

application rate optimally within the field, while for Morgan most of the benefit would come from 

increasing the average application rate for the whole field. 

 The estimated potential value of VRA increases as the size of the management unit decreases, but 

the precision of the estimate (width of the confidence interval) may increase or decrease.  Estimating 

SSCRFs with 48 instead of six sites (model 7 vs. 4) increased the estimated potential value of VRA by 133 

and 88% for Hanska and Morgan.  For Hanska, smaller management units increased the width of the 

confidence interval for the estimate by about 2%, while for Morgan it decreased it by about 30%. 

 More of the spatial variability in corn yields and corn response to nitrogen was captured by 

estimating more SSCRFs for smaller sites within the field.  This allows nitrogen application rates to be 

better tailored to within field variability and increases the potential nitrogen return.  It also reduced the 

error in the estimated SSCRFs, which tended to reduce the width of the confidence intervals making the 

estimate more precise.  However, estimating more SSCRFs increased the number of estimated parameters 

reducing the model�s degrees of freedom, which tended to increase the width of the confidence intervals 

making the estimate less precise.  This result reflects the classic tradeoff between degrees of freedom and 

error reduction that comes from increasing the number of estimated parameters.  For Hanska, the loss of 

degrees of freedom dominates, so the confidence interval got wider and the estimate became less precise 

with smaller management units.  For Morgan, the reduction in error dominated, so the confidence interval 

shrank and the estimate became more precise with smaller management units. 

 Comparing model 4 to 1-3 and 7 to 6 provides insight into the practical importance of using a 

model with site, treatment, and strip as well as spatial effects.  Two features of this comparison are of 

particular interest. 

 First, for Hanska, models 1-4 produced similar estimates of the potential value of VRA.  Models 6 

and 7 also produced similar estimates.  These results are consistent with the findings of Lambert et al. 

(2002).  However, for Morgan, the estimate for model 4 is notably lower than the estimates for 1-3 and the 
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estimate for model 7 is notably lower than for 6.  These results are contrary to the findings of Lambert et al. 

(2002). 

 The notable reduction in the value of VRA for Morgan using models 4 and 7 can be explained by 

the increased precision of the estimates of the quadratic parameters in equation (7).  Figures 3 and 4 explain 

why by reporting and illustrating the estimated SSCRFs for models 1 and 4.  All the parameter estimates 

are significant (p < 0.05) for model 1 and 4 at Hanska and both models produced similar crop response 

functions for each site.  Both models indicated the response functions were concave (a positive linear and 

negative quadratic parameter) implying limited nitrogen returns at Hanska.  For Morgan, both models 

produced significant estimates for the constant and linear parameters, but not for the quadratic parameters.  

Only model 4 produced significant estimates for all quadratic parameters.  For sites 1-4, model 1 produced 

larger linear estimates, but smaller insignificant quadratic estimates implying linear response functions or 

unlimited nitrogen returns.  Model 4 produced smaller linear estimates, but larger significant quadratic 

estimates implying concave response functions or limited nitrogen returns.  The unlimited nitrogen returns 

implied by model 1 for sites 1-4 result in larger predicted yield increases and a higher estimated value for 

the optimal VRA. 

 Replacing model 1 with either 2 or 3 did not qualitatively change results reported in Figures 3 and 

4.  Ignoring the significant strip effects found in models 4 and 7 resulted in less precise estimates of the 

quadratic parameters for Morgan.  With imprecise quadratic estimates, returns to nitrogen appeared 

unlimited and the estimate of the potential value of VRA was biased upward.  For Hanska, relatively 

precise estimates were obtained without strip effects because there was a wide enough range of nitrogen 

treatments employed in the experimental design to clearly delineate when nitrogen returns became limited 

(e.g. there were many observations where higher treatment rates were associated with lower yields).  For 

Morgan, precise estimates were not obtained without the inclusion of strip effects because there was not a 

wide enough range of treatments employed to clearly delineate when nitrogen returns became limited (e.g. 

there were few observations where higher treatment rates were associated with lower yields). 

 Second, the confidence intervals for model 4 were wider than for 1, 2, and 3 as were the 

confidence intervals for model 7 when compared to 6.  While these results seem to suggest OLS produced 
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more precise estimates for the potential value of VRA, this is an erroneous conclusion.  OLS confidence 

intervals are reliable only if it is reasonable to assume errors are homoscedastic and uncorrelated.  Table 1 

rejected these assumptions, so the OLS confidence intervals are unreliable and even worse convey a false 

sense of precision.  For example, with 48 sites OLS can lead to the false conclusion that there was greater 

than a 95% chance that the potential value of VRA exceeds 15 $ ha-1 for Hanska (model 6 vs. 7 in Figure 

2).   

 Lambert et al. (2002) finds that including spatial correlation improved the precision of the 

estimated value of VRA.  Comparing models 1 and 2 supports this conclusion.  However, also including 

site, treatment, and strip effects reverses this conclusion.  Therefore, accounting for spatial correlation 

without considering site, treatment, and strip effects resulted in even narrower confidence intervals that 

exacerbate the false sense of precision obtained from OLS. 

 Figures 5 and 6 report more detailed spatial results for the best fitting model (Model 7).  The 

figures highlight the degree of within field variability at both locations.  For Hanska and Morgan, estimated 

check strip yields ranged from 2.7 to 8.2 t ha-1 and 3.6 to 9.8 t ha-1 with an average of 6.2 and 6.3 t ha-1.  

The optimal nitrogen rates ranged from 97 to 202 kg ha-1 for Hanska with an average of 154 kg ha-1.  These 

rates correspond to yields ranging from 6.5 to 11.2 t ha-1 with an average of 9.4 t ha-1.  For Morgan, the 

optimal application rates ranged from 109 to 202 kg ha-1 with an average of 184 kg ha-1.  Corresponding 

yields ranged from 8.3 to 12.9 t ha-1 with an average of 10.7 t ha-1.  The increase in return when compared 

to the UMN rate ranged from 0.0 to 176.1 $ ha-1 for Hanska and 0.0 to 274.2 $ ha-1 for Morgan.  The 

standard deviation of this increased return ranged from 0.3 to 76.3 $ ha-1 for Hanska and 0.2 to 78.5 $ ha-1 

for Morgan. 

 The results are concluded by discussing the sensitivity of the potential value of VRA to the price 

of corn and nitrogen for model 7.  Holding the price of nitrogen constant at 0.374 $ kg-1 (0.17 $ lbs-1) and 

letting the price of corn increase from 78.57 $ t-1 (2.00 $ bu-1) to 117.86 $ t-1 (3.00 $ bu-1), the potential 

value of VRA compared to the UMN recommended rate increases linearly from 20.75 to 34.54 $ ha-1 for 

Hanska and from 49.50 to 82.33 $ ha-1 for Morgan, the percentage of this value attributable to using the 
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optimal uniform rate increases from 5 to 13 for Hanska and 64 to 72 for Morgan.  Therefore, the 

importance of getting the right average rate for a field increases with an increase in the price of corn. 

 Holding the price of corn constant at 98.21 $ t-1 (2.50 $ bu-1) and letting the price of nitrogen 

increase from 0.15 $ kg-1 (0.07 $ lbs-1) to 0.59 $ kg-1 (0.27 $ lbs-1), the potential value of VRA compared to 

the UMN recommended rate decreases linearly from 32.52 to 24.27 $ ha-1 for Hanska and from 75.75 to 

57.09 $ ha-1 for Morgan, the percentage of this value attributable to using the optimal uniform rate 

decreases from 23 to 1 for Hanska and 78 to 56 for Morgan.  Therefore, the importance of varying the right 

average rate optimally within a field increases with an increase in the price of nitrogen. 

Summary and Conclusions 

 Confirming the PA hypothesis for VRA has proven challenging.  To confront this challenge, 

researchers are using increasingly sophisticated statistical models to estimate and compare SSCRFs.  While 

progress has been made, it has been hampered by the lack of a clear conceptual framework to guide and 

motivate the development of appropriate statistical models.  The purpose of this paper was to propose such 

a framework.  The framework was used to identify a testable hypothesis and develop a statistical model to 

evaluate that hypothesis.  The model was then applied to 1995 data from two fields in South Central 

Minnesota. 

 Effort to improve models for testing the PA hypothesis has focused on spatial correlation.  

Recently however, problems with site-specific and treatment dependent heteroscedasticity and correlation 

have been identified.  Our conceptual framework shows why this is not a surprise and our results show this 

is not the end of the story for data from a common experimental design.  We also find important strip 

heteroscedasticity and correlation.  Failing to account for strip effects resulted in estimates of the potential 

value of VRA that were too high and confidence intervals that convey a false sense of precision because 

they were too narrow. 

The conceptual and empirical models we developed are most applicable to a single year of data.  

Though, the models could be extended to multiple years.  An important consideration for a multi-year 

extension of the model is the need to differentiate between unmanaged inputs that are temporally stable 

(e.g. topography and soil type) and those that are not (e.g. rainfall and temperature) (Bullock et al., 2002).  
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Within the context of our conceptual model, one could include two rather than one vector of unmanaged 

inputs: one that varies with time and one that does not.  Empirically, additional parameters would have to 

be estimated for the fixed effect of time invariant unmanaged inputs and random effect of time variant 

unmanaged inputs. 

 The conceptual model points to the importance of site and treatment dependent heteroscedasticity 

and spatial correlation.  These results are generally applicable to any field experiment where soils, rainfall, 

and other important agronomic factors other than the treatment may vary substantially across the 

experimental plot.  The important strip effects found in our analysis are specific to complete randomized 

block design experiments that divide treatment strips within a block into multiple observations.  

Experimental designs that randomize more completely eliminate this complication. 

 Due to the computational intensity of the model and scope of our objectives, we did not 

systematically explore a wide variety of assumptions regarding the structure of spatial correlation and 

heteroscedasticity.  Specifically, we focused on a multiplicative form of heteroscedasticity and Guassian 

spatial correlation.  Alternatively, one could explore other forms of heteroscedasticity.  With increasing 

computer power and new experiments with more observations per site, estimating the most general form of 

heteroscedasticity in our empirical model may soon be practical.  There are also a wide variety of both 

isotropic and anisotropic models of spatial correlation that could be explored in future work. 

 The range of treatments employed in our experiments was well suited for the Hanska location, but 

not for the Morgan location, which is why we see a greater divergence between the estimated models using 

the Morgan data.  It is also why we had to constrain our estimates of the optimal nitrogen rates for many of 

the sites at Morgan; therefore, the estimated potential value of VRA is likely downward biased. 

 Finally, our analysis of the potential value of VRA does not include implementation costs.  These 

costs will vary depending on how this potential is tapped (e.g. the information used to guide applications 

and size of management units).  A farmer who uses soil nitrate testing to tap this potential may have lower 

implementation costs than a farmer who runs controlled field experiments; however, controlled field 

experiments may provide better information.  While demonstrating the potential of VRA under varied field 

conditions is important, more effort could be devoted to finding better ways to tap this potential. 



 22 

References 

Bongiovanni, R. and J. Lowenberg-DeBoer. 2000. Nitrogen Management In Corn Using Site-Specific Crop 

Response Estimates From a Spatial Regression Model. In P.C. Robert et al. (eds.) Precision 

Agriculture: Proc. Int. Conf. 5th, Minneapolis, MN. 16-19 July 2000. ASA, CSSA, and SSSA, 

Madison, WI. 

Bongiovanni, R. and J. Lowenberg-DeBoer. 2001. Precision Agriculture: Economics of Nitrogen 

Management in Corn Using Site-Specific Crop Response Estimates From a Spatial Regression Model.  

Selected Paper: AAEA Annual Meeting, Chicago, IL, August 6, 2001. http://agecon.lib.umn.edu/. 

Bullock, D.S., J. Lowenberg-Deboer, and S.M. Swinton. 2002. Adding Value to Spatially Managed Inputs 

by Understanding Site-Specific Yield Response. Agric. Econ. 27:233-245. 

Casella, G., and R. L. Berger. 1990.  Statistical Inference, Duxbury Press, Belmont, CA. 

Davis, J.G., G.L. Malzer, P.J. Copeland, J.A. Lamb, P.C. Robert, and T.W. Bruulsema. 1996. Using Yield 

Variability to Characterize Spatial Crop Response to Applied N.  In P.C. Robert et al. (eds.) Precision 

Agriculture: Proc. Int. Conf. 3rd, Minneapolis, MN. ASA, CSSA, and SSSA, Madison, WI, pp. 513-

519. 

Dikici, H. 2000. Seasonal Nitrogen Availability: A Site Specific Approach. Ph.D Thesis, University of 

Minnesota, St. Paul, MN. 

Hernandez, J.A. and D.J. Mulla. 2002. Comparing Statistical Analysis for Landscape Scale Experimental 

Designs. In P.C. Robert et al. (eds.) Precision Agriculture: Proc. 6th Int. Conf., Minneapolis, MN. 14-

17 July 2002. ASA, CSSA, and SSSA, Madison, WI. 

Hurley, T.M., G. Malzer, and B. Killian. 2002a. A test of within field variation of corn response to nitrogen 

in central Minnesota. In A. Werner and A. Jarfe (eds.) Precision Agriculture: Herausforderung an 

Integrative Forschung, Entwicklung und Anwendung in der Praxis. Bonn, Germany 16-17 March 

2002. Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL), Bartningstraße 49, 

64289 Darmstadt. pp. 413-421. 



 23 

Hurley, T.M., G. Malzer, and B. Killian. 2002b. A Test Of Within Field Variation For Corn Response To 

Nitrogen In Central Minnesota.  In P.C. Robert et al. (eds.) Precision Agriculture: Proc. 6th Int. Conf., 

Minneapolis, MN. 14-17 July 2002. ASA, CSSA, and SSSA, Madison, WI. 

Lambert, D., R. Bongiovanni, and J. Lowenberg-DeBoer. 2002. Spatial Regression, an Alternative 

Statistical Analysis for Landscape Scale On-Farm Trials: Case Study of Soil Density Trials in Central 

Illinois. In P.C. Robert et al. (eds.) Precision Agriculture: Proc. 6th Int. Conf., Minneapolis, MN. 14-17 

July 2002. ASA, CSSA, and SSSA, Madison, WI. 

Malzer, G.L., P.J. Copeland, J.G. Davis, J.A. Lamb, P.C. Robert, and T.W. Bruulsema. 1996. Spatial 

Variability of Profitability in Site-Specific N Management.  In P.C. Robert et al. (eds.) Precision 

Agriculture: Proc. Int. Conf. 3rd, Minneapolis, MN. ASA, CSSA, and SSSA, Madison, WI, pp. 967-

975. 

Mamo, M., G.L. Malzer, D.J. Mulla, D.R. Huggins, and J. Strock. 2003. Spatial and Temporal Variation in 

Economically Optimum Nitrogen Rate for Corn. Agron. J. 95:958-964. 

McBratney, A.B. and R. Webster. 1986. Choosing functions for semi-variograms of soil properties and 

fitting them to sampling estimates. J. Soil Sci. 37:617-639. 

Schabenberger, O. and F.J. Pierce. 2002. Contemporary Statistical Models for the Plant and Soil Sciences. 

CRC Press, Boca Raton, FL. 

 



Figure 1: Partition of experimental plot into 6 and 48 sites. 
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Figure 2: Estimates of the potential value of precision agriculture (exclusive of implementation costs) for switching from the 

University recommendation to the optimal uniform nitrogen application rate, the optimal uniform to the optimal variable 

rate, and the University recommendation to the optimal variable rate. 
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Figure 3: Hanska crop response function estimates, and University of Minnesota (UMN) 

recommended, optimal uniform, and optimal variable nitrogen rates for models 1 and 4. 
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Figure 4: Morgan crop response function estimates, and University of Minnesota (UMN) 

recommended, optimal uniform, and optimal variable nitrogen rates for models 1 and 4. 
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Figure 5: Check strip yield, yield at optimal nitrogen rate, optimal nitrogen rate, and potential 

value (exclusive of implementation costs) of switching to the optimal variable rate from 

the University of Minnesota recommended rated by site for Model 7 at Hanska. 
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Figure 6: Check strip yield, yield at optimal nitrogen rate, optimal nitrogen rate, and potential 

value (exclusive of implementation costs) of switching to the optimal variable rate from 

the University of Minnesota recommended rated by site for Model 7 at Morgan. 
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Table 2: Maximized log-likelihood and model comparisons. 
 

 Location 
Model Hanska Morgan 

 
Maximized Log-Likelihood 

(Estimated Parameters) 
1 -2653.71 -2825.80 
 (19) (19) 

2 -2493.95 -2672.83 
 (21) (21) 

3 -2432.59 -2639.95 
 (32) (32) 

4 -2322.91 -2527.79 
 (58) (58) 

5 -2336.55 -2548.26 
 (48) (48) 

6 -2408.05 -2590.80 
 (145) (145) 

7 -2145.04 -2340.72 
 (226) (226) 

8 -2240.18 -2478.64 
 (132) (132) 

Model Comparisons 
(Restricted vs. Unrestricted)  

 
Likelihood Ratio Statistic 

(Degrees of Freedom) 
1 vs. 2 319.5*** 305.9*** 

 (2) (2) 
2 vs. 3 122.7*** 65.8*** 

 (11) (11) 
3 vs. 4 219.3*** 224.3*** 

 (26) (26) 
1 vs. 4 661.6*** 596.0*** 

 (39) (39) 
6 vs. 7 526.0*** 500.2*** 

 (81) (81) 
5 vs. 4 27.3** 40.9*** 

 (10) (10) 
8 vs. 7 190.3*** 275.8*** 

 (94) (94) 
4 vs. 7 355.7*** 374.1*** 

 (168) (168) 
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