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1, Introduction

It is hoped

expected utility

that this paper will prove a useful start m developing

analysis of the choices faced by various participants

in futures markets and eventually some reconsideration of theories of

futures markets from this point of view.

The model analyzed represents circumstances as faced by a grain

farmer when hls harvest is known and he is making storage and hedging

decision~. The scope of the analysis is limited in several respects.

A one-period model 1s employed; only a limited number of options are

recognized; and interrelations between the grain enterprise and other

economic activities of the decision maker are neglected.

Within this limited framework an effort has been made to chooose

relevant options and to provide a reasonably comprehensive qualitative

analysis. This should aid in the development of needed extensions of

the present model. To furnish help with practical decisions, two im-

portant extensions would seem to be the incorporation of marketing and

hedging decisions made during the growing season, and consideration of

a variety of circumstances regarding the availability of credit to the

decision maker (see [83). In the present analysls receipts

at different dates are compared by simply applying a known interest

charge.

Resultsreported here are obtained using only very general assumptions

(e.g., risk aversion) about the decision makers preferences (utility

functiod and beliefs (personal probabilities). This seems a desirable
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way to start in order to know to what extent later conclusions based on

more specific assumptions depend on

A more complete description of

present model is given in Section 2

the more specific assumptions.

the circumstances envisaged in the

along with an informal statement of

the results. The results are established in Section 3 and discussed in

Section 4. The Appendix contains proofs of some propositions needed in

Section 3.

2. Circumstances and Main Results

A grain farmer has just harvested and

must decide how much to sell now, how much

for future delivery, and what position, if

market.

has n bushels on hand. He

to store, how much to constract

any, to take on the futures

Suppose that time T some months ahead is the time of

this grain usually attains its seasonal peak price and that

year when

his opportunity

to sell forward would involve delxvery at T .
1

Let a represent his

current cash price and c (known) the price at which he can contract for

T- delivery. Let m (O<m<n) be the amount he decides to store and

g (O < g $m) be the quantity he decides to sell forward.

,Hecan also take a hedging (short) position on the futures market.

Let b be the current price (per bushel) for futures contracts maturing

at T . Assume that any physical grain stored and not covered by a

forward contract will be sold at T and any short futures position will be

2
closed at T . His return will then be -

IT= r~a(n.m) - fs] + cg - dmi-A(m-g) + (b + f - q - B)s
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where:
,
I

r: cumulation factor converting current dollars to

dollars at time ~ ; equals 1 -t-(* times interest

rate) where j is number of months until time T .

f: margin requirement per bushel for futures transactions.

d: marginal cost of storage.

A: a random variable, unknown price

local cash grain at T .

B: a random variable, unknown price

contracts at time T .

q: commission on futures contracts.

to be realized for

of maturing futures

s: size (bushel) of short posf.tionin futures

(0ss).

m, g, s are the decision variables. Rewriting -

market

n=ran+ (A- ra-d)m -t-(b -(r-l)f - q - 13)s+ (c-A)g

= ko+ (A-kl)m+ (k2-B)s -t(k3 - A)g” . “-

The ki are known when m, s, g must be decided. In the formal

which follows in Section 3, it is assumed that the farmer acts as

analysis

though

he has a subjective probability distribution of unknown A and B and

acts to maximize expected utility of return or gain with respect to

that subjective distribution. It is also assumed that he is a risk
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averter (would demand favorable odds to participate in a pure game of

chance, has concave utility function) and that his utility function and

personal probabilities satisfy certain mathematical regularity conditions.

These assumptions are sufficient to determine a number of conclusions

that will be summarized after a little additional terminology is noted.

Call (A-kl), (k2-B), (k3-A) the respective returns t.ostoring,

“futuring,” and “forwarding.” Futuring will be a brief synonym for

“taking a short position on the futures market;” forwarding will mean

“contracting for delivery at time T of grain already stored.”

Let A-B=H, the farmer’s basis at tune T (see [13 for a

discussion of basis). (A-kl)+ (k2-B)=k2+A-. B-k1= k2+H-kl

will be called the return to futured storage, It represents the effect

on final return of simultaneously placing a bushel in storage and in-

creasing one’s short futures position by a bushel. (A-kl) + (k3-A)

=k= -k, represents the effect of simultaneously adding a bushel to
J A

storage and selling an additional bushel

called the return to forwarded storage.

If X is any quantity unknown when

forward, and will sometimes be

decisions are made, let EX be

the expected or mean value of X computed from the decision maker’s

subjective probability distribution. Thus EA zs his expec:tedcash

price at T , EA - kl is his expected return to storing, k2 + EH - kl

is his expected return to futured storage, etc. We shall say the farmer

is over, fully, or under hedged according to whether s + g >m, = m,

. or <m.
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The principal results of the next section are -

~: Some grain should be stored If and only if at least one

of the three returns: return to forwarded storage (k3-kl), expected

return to futured storage (k2 +EH - kl) , expected return to storing

(EA - kl) , is positive. If return to forwarded storage IS positive,

the entire supply should be stored.

Total Hedgi~: The farmer should overhedge if and only if expected

return to futuring (k9-EB) is positive. He should fully hedge If
L

‘2
-EB=O, or if (k2 - EB) < 0 and expected return

(k3 - EA) is nonnegative. He should underhedge if some

and both (k2 - EB) and (k3 - EA) are negative.

to forwarding

grain is stored

Forwarding: There should be no forward sales unless the return to

forwarded storage (k3 - kl) is positive. If k3 - kl > 0 and if

expected return to forwarding (k3
- EA) is greater than or equal to

expected return to futuring (k2 - EB) , i.e., if k3 - EH - k2 > 0 , then

the entire supply should be forwarded. If (k3 - EH - k2) < 0 then an

amount less than the entire supply should be forwarded (possibly none).

Futuring: If expected return to futuring (k2 - EB) is positive,

a short position in excess of the stored grain uncovered by forward sales

should be taken. If k2 -EB<O, any short position taken should be

less than the physical quantity stored and no short position should be

taken unless two conditions hold - (a) expected return to forwarding is

less than expected return to futuring and (b) expected return to futured

storage is positive, i.e., (EA-kl) +(k2-EB) =(k2+EA-kl) >0.
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If (k2 -EB)=O, any stored grain should be fully hedged; the hedging

should be entirely by futuring if the return to forwarded storage (k3 - kl)

is negative; entirely by forwarding if return to forwarding (k3 - EA) is

nonnegative; and by some of each if return to forwarded storage is positive

while return to forwarding

3. Derivation of Results

is negative.

Mathematically, the decision maker’s problem is ‘cofind values &, S,

~ which maximize the function

(1) T(m,s,g) = E$[(A-kl)m + (k2-B)s + (k3-A)g”J

subject to O <m s n, 0<s, OSg<m.

$ is the decision maker’s utility function for gain,3 T IS his

expected utility function. The other symbols were defined in the previous

section. The task for this section is to relate the maximizers h, ~, ~

to some circumstances and expectations of the farmer. Except when the

contrary is stated, the following conditions are assumed -

(a) *’>0, *“CO, lim $’(x)=O
x-m

(b) A, B have finite means and variances; H = A - B

is statistically independent of B ; any

combination of A and B is nontrivial

(c) El$[(A-kl)m + (k2-B)s + (k3-A)gll < m

EIY$’[(A-kl)m+ (k2-B)s + (k3-A)gll <~

for all m, s, g in R3 .

(d) P(k2-B 20)< 1 .

linear

and

(e) k3 # kl
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(a) is a standard assumption in expected utility theory. $’>0

means that larger gains are preferred. ~“ <0 implies risk averszon.

lim $’(x) = O is a weaker condition than bounded utility which has
Xa
sometimes been assumed. (b), (c) are mathematical regularities which

4
seem plausible. A trivial random variable is one that is constant

with probability one. If a linear combination of A and B were trivial,

one could be written as a linear function of the other and eliminated

from the problem. (d) says that futuring is not a sure thing, i.e., it

does not offer positive probability of gain with zero probability of

loss. Inspection of grain market data (examples are offered in Section

4, page19) suggests that, typically, P(k2 - B z 0) should be less than

one-half. (e) is initially assumed for convenience.
‘3

= kl is highly

unlikely and will be seen to cause no difficulty if it should occur.

However, the development is simplified by deferring this case to the end

of the section.

It is shown in the Appendix that

(i) (a) and (c) imply that q has continuous

partial derivatives which may be obtained by

differentiation under the expectation.

(ii) The set of assumptions implies that q is

strictly concave and has a unique maximum over

the admissible set.

(i) follows from a proposition proved in [3, page 31 and (ii) 1s

essentially due to Leland [7]. In both cases, there are minor differences

in context which probably justify restatement of proofs.5
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In this section we shall repeatedly want to determine the sign of

a product of random variables of the form -

(2) EY 9(X) = (EY)(E v(X)) + Cov (y, y(x)) = EX + Cov

where X, Y, q(X) have finite means and variances and q is a positive,

strictly decreasing function. v positive means

where ~ means “agrees in sign wlch” in the strict sense that Xzylf

and only if (x ~ O if and only if y ~ O) . The following propos~tion

~4, page 6] will be useful -

(iii) Let X, Y be random variables with finite means

and variances. Suppose Y = f(W, V), X = g(W, Z)

where f and g are strictly

respective first arguments; W

V, Z, W are independent.

Let Q be strictly decreasing

has finite mean and variance.

monotonic in their

is nontrivial; and

and such that

Then Cov (Y,

q(x)

q(x))

ia negative if f, g are of the same monotoniclty

(both increasing or both decreasing) and Cov (Y, V(X))

is positive if f, g are of opposite monotonicity.

Now to justify

in Section 2, it is

variables.

the conclusions on optimal choice that were stated

helpful to start with a simple transformation of
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IA Wm. g and let

(3) y(m,s,w) = T(m,s,m-w) = E~[(k3-kl)m + (k2-B)s + (A”k3)w]

where ()<m<n, OSS, (j<wSm.

Since the transformation is 1-1 onto, h, 4, h-$ maximizes q

if and only if fi,S, & maximizes y . Suppose S, fi were knom,

consider -

(4) y~(m,~,fi)= E(k3-kl) ~’[(k3-kl)m+ (k2-B)~ + (A-k3)$]

= (k3-kl) E! ‘[(k3-kl)mi-(k2-B)6 + (A-k3)ti] .

Since $’ > 0, E$’ > 0 and y’ ~ (k3-kl) regardless of s, 6 . Thus
m

‘3
- kl > 0 implies that y can be maximized by assigning m Its

highest admissible value (n) and k3 - kl < 0 indicates that y can

be maximized by assigning m its least admissible value (0) . Hence -

(5) (k3 -kl)>O=&=n, (k3- kl)<O=fi=O .

.
These two cases are examined separately. Consideration of the

highly unlikely case that =k
‘3 1

is deferred to the end

Case I: k3 < kl

By the second part of (5), there are no forward sales

(6 = G*g = G - ;= O) so there are just twodeclsions to

m and s . Let, recalling A = B +H,

of the section.

if k3<k1,

be made, namely

(6) ~(m,s) = y(m,s,m) = E$[(B +H - kl)m+ (k2-B)sl
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0 <s, O<m Sn be the expected utility function obtained by re-

cognizing the equality of m and w . To investigate possible optimal

values of the short futures position, note

(7) P: = E(k2-B) $’[(BiM-kl)m+ (k2-B)s]

Equation (7) is of the same form as Equation (2), page 8, if we let

Y

l-(

Ex

Cov

Since (>0,

(8)

Recall that

= (k2-B), X= (B+H-kl)m+ (k2-B)s

= Ex + COV

= [E(k2-B)] [E$‘[(B+H-kl)m + (k2-B)s]]

and

where

= Cov [(k2-B), $’r(B+H-kl)m + (k2-B)s]] .

the second factor of Ex is positive and

Ex~k2-EB.

$’ is strictly decreasing ($” z 0) and H is

independen~ of B . Thus Proposition (iii), page 8, applies and

(9) Cov~m-s.

Suppose ti were known. Then v(rR,s) and v~(fi,s) are functions of a

single variable s . From the strict concavity of ~ (Proposition (ii),

page 7) it follows that w(fii,s)is strictly concave. This implies thet

~(fii,s)has a unique unrestricted maximum, say S ; that S S*,.sap/
u u s’

. and that v can be increased by moving s toward ;u from either side.

These circumstances are illustrated in Figure 1.
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(10)

LcIhLL-s

Figure 1

‘Rms (8) and (9) imply ~~(fi,~)~ k2 -,EB and

Recognizing the restriction O s s yields

(11) : -fi~k
2 - EB except that ‘2

-EB<

TIIUS,if something is stored and forward sales are

decision maker will over, under, or fully hedge in

o, &a ()+ ;= () ●

not attractive, the

futures according to

whether expected return to a short position 1s positive, negative or

zero. This partly covers the conclusions stated under Total Hedging

ar@ under Futuring in Section 1.

Now consider possible choices of m assuming 2 known (O s S) .

~’ = E(B+H-kl) ~’[(B+H-kl)m + (k2-B)s~ .

Again, this is of the form of Equation (2) with X as before and

Y=B+H-k
1“

Therefore,

E~=EB+EH-kl=EA-kl

andif m=O, Cov : $ .
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Accordingly,

(12)

Together (12) and (11) make

optimal storage and futures

expected return to futuring

it seems useful to supplement

another change of variable.

a number of qualitative assertions about

hedging for various circumstances regarding

and to storage. Before summarizing these,

them with a further result obtained by

Letz=m-s. Thenz (which might be negative) represents

unhedged storage. Rewrite expected utility -

~(m,z) = V(m,m-z) = E ~[(k2+ H - kl)m + (B-k2)z~

Osm<n, z<m

If 8 is temporarily regarded as fixed, we may obtain

C: ~+H-= E(k kl) 4’[(k2+H-kl)m+ (B-k2)z]

6 ~k2+EH-k
u 1



13

(13) k2+EH - kl>O=&>O

The reader can readily verify that examining ~’ merely reproduces thez

results already obtained from V: .

Expected utility may also be written -

6(S,2) = E$[(A-kl)z + (k2+H-kl)sl

0ss - s <z <n- s

Again, regarding i? as fixed,

0; = E(k2+H-kl) ~’[(B+H-kl)z + (k2+H-kl)s~

Ex ~k2+EH-kl

Cov:-(a+s) . Therefore

or

(14) k2+EH- kl>O-S>-2

k2+EH- k1<Oa3=max[0,-~] .

The relations given in (11), (12), (13), (14) are summarized in

Table 1.
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.

Table 1

NEGATIVE RETURN TO FORWARDED STORAGE

Circumstances of Expected Returns

(kl*3 , ~=0)

Optimal Decisions

Futuring Futured Storage Storing Amount Stored Short Future

‘2
- EB k2+EH-kl EA-kl 6 s

+ -1- + >&

+ 0 0 +

0 + + + =Iii

9 e e 0 0

+ + + <la

EJ + ‘t 0

L

+, -, 0 indicate respectively positive, negative or zero values for

the quantity specified at the top of the column.

e indicates a nonpositive value.

The blank in the second column indicates that return to futured

storage need not be specified to obtain the implications for &, 6

that appear in the same row.
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Case II: k3 > kl

The procedure follows the pattern of Case I and will be presented

more briefly. Case 11 assumes k3 >kl which implies ~= n. Re-

writing (1)

m(n,s,g) = E~[(A-kl)n+ (k2-B)s + (k3-A)gq

0ss, O<g<n

q:= E(k2-B) $’[(A-kl)n + (k2-B)s + (k3-A)g]

Ex~k -EB
2

COV~n- s-g

(15) 3 +~ - n: k2 - EB except that ~ = O if
‘2

-EB<O, &=n

q;= E(k3-B-H) $’[(B+H-kl)n+ (k2-B)s + (k3-B-H)g]

Ex~k3-EB-EH

n2S+gaCov>0 except n= g, ~ a ()- Cov =1 ()

(16)
‘3

-EA>Oa&>n-s except that
‘3

-EA20,6=0-&=n

‘3
.EA<osg<n except that

‘3-m=O’s=O=~=n

Again, the conclusions can be supplemented by a change of variable.

Let v = g+s and let
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G(v,g) = q(n,v-g,g) = E$[(A-kl)n+ (k2-B)v+ (k3-H-k2)g]

OSg<n gsv

$ = E(k3-H-k2) i’[(Bti-kl)n + (k2-B)v + (k3-H-k2)g]

Ex&!k3-EH-k2

Cov~n-g

au-n ~ k3 - EH - k2

(17)
‘3

-EH - k2Z()*~=min{$, n}

‘3”m
-k2<O*~<n

Note that k3 - H - k2 is the excess of return to forwarding over

return to futuring. It is the effect on final return of simultaneously

reducing the short future by a bushel while Increasing forward sales

by a bushel.

Alternatively, expected utility is

A(s,v) = ?l(n,s,v-s)= E~[(A-kl)n+ (k2+H-k3)s + (k3-A)v~

0ss v- nSsSv

A:= E(k2+H-k3) ~’[(B+H-kl)n+ (k2+H-k3)s + (k3-A)vl

Ex~k2+EH-k3

COV~C-n-~

~u-(f-n) ~ k2 + EH - k3

.

(18) k2 + EH -k3>O*~>v-n

k2+EH- k3 S 0=$ s =max {0, $-n]



17

Implications of (15), (16), (17), (18) are summarized in Table 2.

Now consider the case that k3 = kl . Write expected utility as -

(3 ‘) y(m,s,w) = E$[(k3-kl)m+ (k2-B)s + (A-k3)w]

= E~[(k2-B)s + (A-k3)w] = e(s>w)

OSg O~wSn

Varying m while holding s and w constant does not affect the

argument of * and therefore does not affect expected utility. Clearly,

optimal choice is not generally unique if k3 = kl . Recall that

wam- gsoiff?=n, then ~=n, ~=O. Ifti=O, then

6= g= o ● However, if O <0 < n , there is a range of variation

for u g (specifically ~ ~m <n with g = m - ~) that corresponds

to maximum expected utility.

Note that setting m = n does not restrict the range of variation

of s, w . Since, in this case, expected utility may be stated as a

function of s, w; this means that no expected utility is lost if the

decision maker sets m =)n and then proceeds as in Case II. Alternatively

he could set g = O and proceed as in Case I. Thus Tables 1 and 2 are

also relevant to k3 = kl , but in this latter case the decision maker

can proceed either as though k3 > kl or as though k3 c kl Without

loss of expected utility.
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Table 2 I

POSITIVE RETURN TO FORWARDED STORAGE (k3 > kl, d = n)

Circumstance of Expected Returns

~ ~ UE2
Futuring

over
Futuring Forwarding Forwarding

‘2
- EB k2+EH-k3

‘3-M

+ +

+ Q +

o +

e e fB

+

e

Total Forward Short
Hedge Sales Future
;+g k 3

>n <n >n - i

>Kl n +

n <n n-~

n n 0

<n <n <n-~

<n <n 0

+, -, 0 indicate respectively positive, negative or zero values

for the variable specified at the top,of the column. 0 indicates

nonpositive, @ nonnegative.

The blank in row 1, column 3 indicates that, in this instance, the

expected return to forwarding need not be specified to obtain the

results in the final three entries of that row.
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4.

are

Some Discussion of Assumptions and ResulLs

In this model the farmer has four ways to

riskless: sell now and sell forward. Two

hedged and store with a futures hedge. He can

market his grain. Two

are risky: store un-

use any combination

of alternatives and he can also speculate on futures if he wishes.
7

For each bushel he sells for current delivery, his return in dollars

at T is ra where a is his current cash price and r allows for

interest to time 7 .

His possible gains (positive or negative) from selecting one of

the other alternatives are

Unhedged storage: A “ kl

Storing and hedging in futures: k2+H-kl

Storing and selling forward: ‘3 - ‘1

Unhedged storage exposes him to the random variable A, unknown cash

price at T . Hedging in futures makes his outcome depend on the

random variable H . Selling forward avoids randomness altogether.

Recall that H = A - B was called the basis and assumed independent

ofB. Since H is the only random component introduced in storing

and hedging in futures, someone who chooses this alternative is said

to be “gambling on the basis.” It is also frequently said that “the

basis is more predictable than the price” as an advantage of futures

hedging over unhedged storage. ~is is borne out

and by the data in Table 3. However, we clearly
\

empirical studies of just what might be meant by

an expected utility approach and what reasonable

by general experience

need conceptual and

“more predictable’fin

criteria might be
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developed for prediction, or more accurately,

formulation.

Table 3 shows average prices of December

delivery month at Kansas City and Chicago for

for subjective probability

wheat futures in the

the crop years 1950-1975

along with average December cash prices at various locations in the

winter wheat area and the resulting basis for crop years for which

quotations are available. Means and standard deviations are calculated

for years prior to 1971 as well as for all available years. Calculations

through 1971 are included because of the extreme fluctuations in grain

markets since 1972. Looking at both sets of calculations, standard

deviations of 2 to 8 for basis are a different order of magnitude

from standard deviations of cash prices of 13 to 132. Of course, an

individual farmer’s distribution of basjs in a given year will not be

the same as the frequency distribution for a nearby market, but the much

Lower observed standard deviation of basis as compared to price does con-
-.—- -..

firm our prior belief that he is justified in having a mor6 concentrated

subjective distribution for basis than for price.

The only properties of the basis used in obtaining the qualitative

results of the preceding section were its expected value and its in-

dependence of B . The determination of B, the futures price in a

given year, depends on national and international supply and demand;

whereas the basis H is determined by such things as local transportation

costs, the quality of the farmerls grain that year, and the effective-

ness of arbitrage between the local and central markets. While these

sets of considerations may not be entirely unrelated, possible relations
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do not seem a priori strong and various small interconnections need not

all work in the same direction. IE must be borne in mind that the

independence being assumed is between the farmer’s subjective distri-

bution of B and his subjective distribution of H, both conditional

on information available at harvest. The assumption of independence

should be tested (not easy) as our knowledge of the expectation formetion

process develops.

Perusing Tables 1 and 2, it is interesting that use or nonuse of

futures can usually be indicated without raising questions of variability.

As more complete models are developed to get more precise conclusions,

low variability of the basis may be expected to be important in deter-

mining the magnitude of the short position in circumstances in which some

futures position is indicated.

In the real world,

uncertainty as presumed

make price dependent on

forward contracting does not completely eliminate

in our idealized model. Some forward contracts

a market quotation at some future date ([1],

pages 15-18) and reports of occasional defaults by either buyer or seller

do circulate, [1], pages 4, 5 and 19-22. Casual inquiry suggests that

most forward contracting 1s at a specific price. For this reason and

also since contracting at an as yet unknown market price blurs the

distinction between forward and futures trading it seemed reasonable

to take the forward price as fixed in an initial study. As extended

models are developed, a variety of assumptions should be explored con-

. cerning possible terms of forward and futures contracts and associated

uncertainties.
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Within the framework of the present model, Tables 1 and 2 of Section

3 show how certain circumstances determine restrictions on optmnal

choices. It is natural to inquire which circumstances are likely or

relevant. This could be answered precisely only by knowing the sub-

jective probability distributions of a number of actual decision makers.

However, we can observe what has happened over a number of crop

years and it seems reasonable to suppose that subjective distributions

will typically reflect this history to

do not have data on prices for forward

is confined to unhedged storage and to

some extent. Unfortunately, we

transactions so our present record

returns to short futures positions.

Table 4 shows

on the Kansas City

the returns to futuring (k. - B) actually realized
L

and Chicago wheat markets (July

wheat less December quotation less cournissionless

along with returns to unhedged storage (A - kl),

less July price less five months’ interest on July

quotation for December

interest on margin)

December cash price

price less five months’

storage) at various locations,and the return to futured storage

(k2 - B+A-k1=k2+H - kl) at these locations for crop years in

which data are available.

The frequencies of various observed circumstances in the 72 observed

instances of Table 4 are shown in Table 5. Columns 5-7 of Table 5 show

the restrictions on optimal decisions implied by assuming: (1) that

expected returns follow the pattern indicated in the first three columns

for observed returns and (2) that k3 < kl . These restrictions are

found by consulting Table 1, page 14.
.
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1’
Table 5

FREQUENCY OF VARIOUS CIRCUMSTANCES

(k2-B) (k2+H-kl) (A-kl)

+ -+ +

+ +

+

+- +

. +

+ 0

Number of
Instances

5

10

6

24

21

5

1

—

72

Optimal Decisions

+ Ofi

+ O%i

00+

+ 04

+00

000

00+

Ii al xl-g

n * %-~

n n +

n <n a-~

n * o

n n o

n n +
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The last three columns of Table 5 show restrictions on optimal choice

that follow if we assume: (1) the circumstances given in the first three

columns with k
3

substituted for k
1’

(2) k3 >kl . These are

from Table 2, page 18. The data must be supplemented with returns from

other locations, especially locations interior to the growing regions

before conclusions are drawn. However, the suggestions from this preliminary

look are of some interest.

The fact that return to short futures is usually negative checks with

traditional futures theory that speculators who bear the risk of price

fluctuations (by holding long positions) when much of the crop is un-

allocated require a normal premium. As a matter of incidental interest

the historical premiums are shown in Table 6. The columns headed Kansas

City and Chicago show net returns to long positions in these markets from

July to December. Each entry is the negative of the corresponding entry

in Table 4, less two commissions less twice the interest charge on re-

quired margin.

It seems reasonable that a farmer’s mean expected return to futuring

(k2 - EB) should typically be negative and when this is so, expected

return to storage (J3A- kl) should typically be positive (since A

and B are known to be highly correlated) consistent with the high

frequencies of circumstances in rows 4 and 5 of Table 5. Thus, his

possible use of the futures market depends on his expectations regarding

the basis, the only unknown in column 2. The basis must be compared

with k2 - kl which may be stated as price received on a futures contract

(net of transactions cost) less opportunity cost of storing. As noted

earlier, it will be possible to analyze this choice more completely when

more specific assumptions are ma& and properties of personal distri-

butions in addition to means are used.
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Table 6

HISTORICAL RETURNS TO LONG FUTURES POSITIONS (JULY-DECEMBER)

Year Kansas City Chicago

1950 3.1 3.7

1951 16.8 24.6

1952 5.8 -6.4

1953 1.3 -.4

1954 14.9 15.6

1955 -8.7 3.6

1956 15.0 21.6

1957 1.3 -*5

1958 2.0 .6

1959 6.6 1.5

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969

4.6
1.4

-3.5
17.5
9.6
9.1

-11.6
-12.4
-3*5
11.3

13.6
2.6

-13.4
27.6
1.5
14.4
-18.0
-15.8
-7.8
10.1

1970 13.3 18.1

1971 2.7 16.2

1972 99.3 100.3

1973 248.7 242.3

1974 11.3 12.6

1975 -16.3 -30.4
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1.

2.

3*

4.

5.

6.

7*

FOOTNOTES

For Minnesota crops, wheat and oats would typically be
harvested in August with a peak price in January, the respective
months would be November and June for corn, and October and
June for soybeans. See Houck [51. In the winter wheat belt,
harvest falls in June or July and the typical peak price is In
December or January.

If he stores uncontracted grain it is natural to contemplate
selling at the time of the usual seasonal peak unless the farmer
feels he has special knowledge that affects his expectation of
the yearts seasonal price pattern. Futures hedging contracts are
usually closed simultaneously with the offsetting transaction in
the physical commodity. A more complete model would permit the
farmer to reconsider hls uncontracted grain and futures position
occasionally during the season.

Using the utility function for gain implicitly assumes that the
random variables affecting returns from gain are statistically
independent of random components of return from other ventures.
See Hildreth [21, pages 101-104.

Independence between B and H is perhaps a little h~rd to
judge and is discussed more fully on page 21.

Lelandfs assertion [7, footnote 3, page 381 that EIWI <m
implies E@)l <~ for $ as above is not correct. Let

~(x) = - e-x be a utility function exhibiting con:,cantabsolute

risk aversion and let P(W = - n) = ‘n for

Then EIWI = I while El~(W)l = ~ ~~)n = m
1

contexts I think we typically want to assume
making his proof applicable.

n =1, 2, ... .

. In economic

El*l< m anyway,

w represents grain stored but not sold forward. Increasing m
while holding s and w constant corresponds to simultaneously
increasing storage and forward sales.

Only short positions are considered in the present paper. A farmer
could, of course, take a long position if his expectations and
utility justified such action. In view of hls natural long position
in physical grain it seems unlikely that an additional long position
in futures would often be optimal. However, this possibility should

be added to later models.
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APPENDIX

Let TI:RN+ R be an expected utility function written

‘@) = EI$(fcxnyn)=E$(dY)

where Y1 ““ YN are random variables such that any linear combination

of them is nontrivial and al ““ ~ are decision variables.

Suppose

(I) ~CRN is closed, convex with O E C3

(II) $’>0, ‘j’’<O, lim $’(x) = O
X*

(111) El$(ti)l <m , E!yn $’(@)l <m

for n=l””N and all dcRN

Then

(V) q is strictly concave

(VI) q has continuous partial derivatives which

are obtained by differentiation under the

expectation

(VII) q assumes a unique maximum on Cl

Proof

(V) Let (n, $, P) be the probability space of Y .

Let O<AC1, A*=l-h, ~+~. Then
#
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where the strict concavity of $ (Assumption II) implies that

t(~ti(d +A*W(@))>k*(d(w)) +k**(13’Y(W))on {wlCW(w)

and nontriviality of linear combina~ions of ccmponenes of

guarantees that the latter set has positive probability.

L ‘ll(M+hY,)- ‘tl(cYY) +(@*y, ) - $(a)

By the Mean Value Theorem

$(df + hyl) = !(M) + hY1

where K is a random variable ~ O ~K< 1 . Thus

Let Y;=msx {Y, 0),Y;=max {-Y, 01 ,

W+=Y: $’(W - lhlY1), W- ‘Y; $’(d - lhlY1) .

Since $’ is strictly decreasing

\Y1 y’(d+hq ~w++w- =fi -and W is integrable since

integrability of W+, W- is assured by (III). Hence, by

Lebesgue’s Convergence Theorem .

+ = lim EY1$’(ciY+ hml) = E lim Y1~’(ciY+ KYlh) = EY1 i’(d’i).
1 h+ h-0

By a result of Fenchel (see Katzner [61, page 198), called to

my attention by M. Richter, a partial derivative of a concave

function is continuous wherever it exists.

.
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(VII) Let cvp([~(o), m)) ; c

closed set under a continuous

From the strict concavity of

and, by

Thus c

that c

1

definition, C

n CI is closed

is the inverse image of a

function and therefore closed.

m> C is strictly convex,

contains any maximizers of q .

and convex. It suffices to show

n Q is bounded since compactness immediately follows

and Weierstrass’ Theorem assures a maximum. If there were

two maximizers, the line segment joining them would lie in

C fl(1 and contain higher values of q (q strictly concave).

TO show C n U bounded let BL = {crllla\lsL] with boundary

%
and L the limit postulated in (IV). Define z=cnan~o

4 is compact.

From OeCnCt, C rlCt convex it follows that if

Citcnc.tnB:, L
then ~

n
Ctcf$. If & is empty,

cnaCBL and we are through,so consider 4 # @ . Also,

Cn(!nB~CCOnSa9~{~lCY ~Ag,A20,gEc#}.

Choose any g c ~ and for A 2 0, define -

V(A) = T(18) = E$(kgY) = E$(AX) . From (VI) p is continuously

differentiable and, from (V), strictly concave. Note

U’ - EX$’(AX) = EX+$’(XX+) - EX-$’(-XX-) = a(k) - b(k) .

Since ~’> O,

lim $’(x) - 0
X*

a(k) > 0 and b(A) >0 . From $“< O and

s one sees that a(k) 1 0 as A * ~
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while b(l) increases with 1 . Thus ~’(~) becomes and remains

negative as A increases so ~(~) sometim returns to the value

~(o) = q(o) for a A21, say k(g) . Since g c 4 was arbitrary

we observe that v g c 4 E A(g) 213 n(~(g)g) = T(o) and q(Ag) < n(o)

for A > ~(g) .

Furthermore, since k(g) must solve ~(~g) = T(O) and ~ is continuously

differentiable with \’(A(g)g) #o, l(g) is continuous (and indeed

differentiable) by

assumes a maximum,

dcCone4nBc =A*

the Implicit Function Theorem. Therefore A(g)

say A*, on compact dl. By this construction,

q(a) < q(o) or C n conea n B=A* is empty. It was

observed above that C

bounded. The rest of

so C flU is bounded.

In the storage-hedging

(x= (m, s> !3)>y = [(A

rl~fI B: CCone 4 so we conclude C n c1n B: CBA*

C (1Ct is contained in BL and hence bounded

problem,

- kl), (k, - B), (kl - A)~ ,
. .

(Z= {m, s,glO<m<n, O ~s,O~gsm].

Clearly (I) above is satisfied and Conditions (a) and (c) of Section

3, page 6 duplicate (11) and (111) of this Appendix. It remains to

show that Condition (IV) is satisfied for the problem as specified in

Section 3. Note that (IV) says that the

thing (a combination of random variables

admissible amount of any sure

or ventures that can win but

can’t lose) is bounded. We must show that 3L such that

.
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PC(A - kl)m+ (k2 + /)%-B)s+(k3- A)ga O]=la(m2 +s2 <L.

Since admissibility requires m s n, g s n it suffices to show

that s is bounded for any sure thing. Write

(A - kl)m+ (k2 - B)s + (k3 -A)g=Xw+Ys+kg

where

w=~.g, ()<w<n, x =A-kl,y=k -B, k=k3-kla
2

Condition (d), page 6 requires that P(Y < O) > 0 . It follows via

Lebesguets Convergence Theorem that 3 c > 0 a P(Y c - c) ‘ n - ““””

~), page 6 requires that EIXI <co which requires lim
j*

Thus if we choose a positive E so that P(Y c - e) > 0

Mj=(X<j)

j. Now if

must hold on

jw - es + kg

n(Y<- E), then P(Mj) > 0 must hold for

Xw-t-Ys+kg>O as. then, in particular,

>U. tionalclon

P(X<j)=l.

and define

sufficiently large

the inequality

almost all of M .
j

But Xw+Ys+kg~O for we Ms

20SEs<jw+kg*s S ~ . Hence jE

dL=n 2+~2(j+lkl)2

is an upper bound for amounts of sure things..

arguments that Conditions (a) - (e) of page 6

This completes the

with U as above imply

Conditions (I) - (IV) of the Appendix.
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It may be worth noting that if k3 = kl , q remains concave

but not strictly concave. If k3 > kl then (A - kl) + (k3 - A) is

a sure thing, but it is bounded by n . Whether or not there are

other sure things cannot be said from the assumptions of the model,

but the argument given assures that admissible amounts of any which

might exist are bounded by L .

.

.


