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GRAIN RESERVES AND PRICE STABILIZATION

Yigal Danin*

An Introductory Statement

This staff paper describes research on grain reserve stocks as a

means of achieving price stability. It is assumed that price stabilization

is desirable and the question of desirability is not investigated in this

study. The paper is divided into two parts:

Part I: Concept and Measurement of Price Instability and a
Model of Price-Stocks Relations

Part 11: A Model of
Theory and

Optimal Buffer
Computation

Stocks for Price Stabilization--

Part I

1. The Concept and Measurement of Price Instability

The paper begins with a discussion of the concept of price instability

and its measurement. The valuation of price instability is a subjective

matter. However, for a quantitative analysis it is necessary to define

some quantitative instability index which has certain characteristics.

The one that is suggested in this study is the mean of square deviations

of a series of unknown future prices from a series of target prices.

*The author is a Lecturer in the Department of Agricultural Economics~
Hebrew University of Jerusalem, Rehovot, Israel. This paper summarizes
part of a study on grain reserve stocks and price stabilization undertaken
jointly by Professor Willard W. Cochrane and the author when the latter
was a Post-Doctoral Fellow in the Department of Agricultural and Applied
Economics, University of Minnesota, 1975.
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2. A Simple Model of Price and Stocks Relations and Computations of
Probabilities

The problem of grain reserves as a means for price stabilization is

stated. Methods of evaluating an adequate quantity of grain reserves and

proposals for a stocks policy are briefly surveyed. It is argued that an

optimal stocks policy for price stabilization should take into account

current prices as well as the current level of existing stocks as indi-

cators in a price stabilization rule for changes in stocks. The latter

indicator is important because it affects the potential of reducing price

instability in future periods.

A simple stochastic model of demand, supply, and price determination

is formulated. An intervention by acquiring or selling stocks is intro-

duced and the relations between stocks and prices are

addition it is shown how to calculate the probability

analyzed. In

distributions of

prices and stocks in the model under any specific stocks policy. These

probability distributions are the basic data one needs in order to compare

the outcomes of different stocks policies.

3. Minimizing Price Instability by Buffer Stocks--a Simplified Example

Part I is concluded with a very simplified example which demonstrates

the main considerations in the search for an optimal stocks policy, i.e.,

the one which minimizes the instability index of future prices. In

particular, it is shown that there is a substitution between current and

future price stabilization. It follows that, in general, the change in

stocks should be greater than the change in stocks which stabilizes cur-

rent prices, in order to accumulate reserves for future contingencies.
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Part II

1. A Model of Optimal Buffer Stocks for Price Stabilization

Based on the market model presented in Part I, an optimization model

is formulated in an attempt to reduce the price instability index. Some

propositions which characterize the optimal stocks policy are stated and

proved. In fact, the procedure developed here enables one to obtain a

whole set of efficient stocks policies. By “efficient” is meant minimiz-

ing instability for a given mean stock, or equivalently, minimizing mean

stocks for a given level of instability index. From the set of efficient

policies a policymaker can choose the one that is compatible with his

subjective preferences.

2. Computation Procedure

Based on the analysis of section 1, a computer program

to compute a price minimization stocks policy. The program

was written

also computes

the probability distributions of prices

In particular, a program which computes

stocks rule was written. This specific

and stocks under any stocks policy.

the implications of a specific

rule is the “bounded price rule”

proposed by Professor W. W. Cochrane. A range of prices is defined, and,

as directed by the rule, stocks are acquired whenever the market price is

below the lower boundary of the range, and stocks are sold whenever the

market price is above the upper boundary (if there are enough stocks to

release). Using the probability distributions, the program calculates

the following indicators by which one can compare different stocks policy

proposals: the mean price, coefficient of variation of price, the

coefficient of variation around the target price, and the mean and coef-

ficient of variation of stocks.
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3. Application to Grain Reserves Problem—

The procedure described above was applied to two cases: (1) world

grains and (2) U.S. wheat. The purpose was to demonstrate how the procedure

can be used to evaluate the order of magnitude of grain reserves needed

for price stabilization and to compare the expected implications of

different stocks policies. However, it should be noted that the

empirical work in the present study is a preliminary one. No econometric

work has been done to estimate the parameters of the assumed models.

Those were evaluated by judgment aq,dinformation from other studies.

This calls for further research.
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Part 1: Concept and Measurement of Price Instability and
a Model of Price-Stocks Relations

The subject of this paper is the instability of grain prices and a

policy of reserve stocks to reduce the instability. There has been

increasing interest in the problem of grain price instability in recent

years following a worldwide shortage of grains in 1972-73, the increase

in purchases in the world market by the Soviet Union in 1973, and the

depletion of U.S. stocks where, before 1972, reserves had stabilized

the market.

The desirability of price stabilization and the questions of who

benefits or loses from this stabilization are controversial and have been

discussed intensively in the literature (for examples see Waugh (1944),

(1961), Oi (1961), Samuelson (1972), Turnovsky (1974)). Related to this

are the questions of what is to be stabilized--prices, quantities, con-

sumer expenditures, or farmer incomes? (See Subotnik and Houck (1975)

[6].) In this study it is assumed that price stabilization is socially

desirable.

There are many ways by which prices can be stabilized: e.g., buffer

stocks, production control, taxes and subsidies, export and import control,
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etc., and each has its advantages and disadvantages. In the present

study only buffer stocks are considered.

The order of the paper is as follows:

Section 1 discusses the concept of price instability and its measure-

ment from ex post and ex ante points of view. A criterion for instability

in the context of a stochastic world is suggested. A procedure for

analyzing the effect of a price stabilization stock policy within the

framework of a simple supply and demand model is the content of section 2.

Based on the instability criterion suggested in section 1, a primitive

two-period optimization model is presented in section 3. Some important

propositions which characterize the general problem of buffer stocks for

price stabilization are analyzed within the framework of this simple model.

Part II presents a more general optimization model, a stochastic

dynamic programming computation procedure, and some empirical results.

1. The Concept and Measurement of Price Instability

Before any discussion of price instability can be made, one has to

clarify exactly what is meant by this concept. In particular, in a

quantitative analysis aimed at evaluating the performance of a system or

testing the implications of some stabilization policy, it is important to

define a quantitative criterion for instability. However, instability

may be defined in different ways since it is a subjective matter.

In what follows it will be convenient to distinguish between an

ex post and an ex ante point of view. Consider the ex post attitude first,

in which a historical time path of price is to be qualified as stable or

unstable. The simplest case is when price remains constant all of the time,

a case most, if not all, people would probably define as stable. However,
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some would probably also define as stable a price time pa~tlth~ltcoln~:ldcs

with some regular xmotonic curve of time (like a linear time trend or a

constant proportional rate of change), and as unstable one that fluctuates

up and down from the curve. This concept is adopted in the present study,

with the following definition and notation:

Let {p~} be some regular monotonic function of time t (1 ~ t < T),—

to be called “reference or target price,” and let {Pt} be an actual histori-

cal time path of price. {Pt} is defined as stable, relative to {p;} if

*
P=p t for all t, and as unstable otherwise.
t

To measure the degree of instability many indices can be used and it

is a matter of personal taste which one to choose. However, it seems

reasonable that an instability index I({Pt}) should fulfill at least two

characteristics:

(1) I= O if and only if Pt = p; for all t, i.e., {Pt} is stable

relative to p; if it coincides with p: all of the time.

(2) I is an increasing function of the deviations (of the same

‘1)} anddirection) from the reference price, i.e.: Let {Pt

{P(2)} be two time paths of P such that:
t

p(l)
= P(2) for all t + to

t t

and such that:

and

then:

sign (P(’) - p* ) = sign (P(2) -p*)
to to to to

]p(l) -P* [ > \p(:)_p*o[

to to t t

I({P~l)}) > I({P~2)}) .
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In this paper 1(

of Pt from the target

(1.1)

{Pt}) is defined to be the sum of square deviations

p~, that is:

I({Pt}) =: j (Pt-P:)2
t=l

This index, which is similar to the variance, has the characteristic of

increasing the marginal penalty for deviations from the reference path.

However, it is not argued that this index is in any sense the best one.

Many indices which have

is hard to say which is

Let us turn now to

the above two conditions can be applied’ and it

better.

the ex ante case in which the instability of a

future time path of price is defined. Its main difference from the ex post

case is, of course, the uncertainty about future prices (the unrealistic

case of certainty can be treated exactly as the ex post case). In the

ex ante case only the probability

known or assessed. A new element

distribution of future prices might be

of instability is added, namely, the

“A few examples of possible

[$ f (Pt_p;)i] l/2t=l

indices are:

A f ‘ptp-pJT-1 t=2
t-1

etc.
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dispersion of the

to the deviations

was the source of

probability distribution at a point in time, in addition

of the whole time path from the reference path, which

instability in the ex post case. Again, there are many

possible indices to measure the dispersion of a probability distribution;

probably the most in use is the variance, i.e., the mean of square devia-

tion from the mean. To include the notion of reference or target price,

an index of dispersion is used here that is similar to the variance and

is the mean of square deviation from the target price (at some time t), i.e.:

E[(Pt - P:)*I

where E is the expectation, or mean, operator. To combine the two elements

of instability, the dispersion of the probability distribution at each

point in time and the deviations of the whole time path from the reference

path, the following instability index is defined and used in the rest of

the paper:

(1.2)
[

I({Pt}) = E; ! (pt-p:)2j=~ i [E(pt-P;)21 .
t=l t=l

It should be clear that this index should not be considered as

ideal and many others may be applied. A possible modification is to apply

different weights to different periods of time. For example,

consider instability at near future to be more important than

at far future and introduce a discount factor 6 to modify the

(1.3)

[

T
I({Pt}) = Et ~ (Pt - P:)* “

1

t=l 1(l+d)t “

one may

instability

index into

In addition, one might want to consider relative deviations rather than
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absolute ones and to modify the instability index into:

(1.4) [Tj,p’ip’~J,,t]I({Pt}) = EA

T%is is the index that will be used later in a model of optimal buffer

stocks.

2. A Simple Model of Price and Stocks Relations and Probabilities
Computations

2.1 Background

Since 1972 the world has experienced a chain of events that caused a

steep rise in grain prices, a depletion of stocks, and serious problems

of hunger in some developing countries in South and Southeast Asia and in

Africa. The United States, as a major exporter of wheat and feed grains

and a major supplier of food aid to needy countries, found these worldwide

problems reflected in its grain market through its open trade relations

with the rest of the world. Thus, there is increasing interest in the

question of adequate grain reserves both within the United States and in

international discussions.

Some proposals have been suggested concerning the evaluation of

adequate reserves and the policy to be implemented in order to meet the

two main aspects of grain stocks, food security and price stability.

One method to evaluate the quantity of needed stocks, initiated by

Waugh (1967) [11] and followed by Bailey, Kutish and Rojko (1974) [11, can

be called ‘Shortfall analysis.tt Generally, a time-trend curve of production

is estimated and the deviations of production from that curve are measured.

Assuming that past patterns and trend will continue in the future, the

problem is to find the level of stocks that is needed to meet an accumulated
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deficit (i.e., negative deviation from the trend line), or some percentage

of it, with some probability. The deficiency of this method is that it

does not give a definite rule on how to build and dispose of stocks,

except the general

years and disposed

More specific

obvious idea that stocks should be accumulated in good

of in bad ones.

proposals on a stocks policy can be grouped under the

title “bounded price” policy. W. W. Cochrane (1974) [2] suggested defining

an upper and lower price boundary and buying stocks whenever the market

price falls below the lower boundary and selling stocks whenever the market

price is above the upper boundary insofar as there are positive stocks.

The deficiency of this proposal is that it is based completely on price

signals and does not

the same reaction to

shortage. Later, in

price stabilization,

account.

Other proposals

take into account the existing level of inventory;

price is proposed when stocks are in abundance or in

section 3 it is shown that even if the only goal is

quantity considerations should also be taken into

combine the basic bounded price rule with some target

stocks level and modify the rule when stocks are above or below the target.

In order to evaluate the feasibility and desirability of any specific

proposal, it is important to estimate its implications in attaining the

objectives for which it was designed and the means needed to implement it.

In designing and implementing a stocks rule, consideration should be given

to its effect on the probability distribution of future prices as well as

the quantities of stocks and their probability distribution. For example,

the following questions might be asked: What is the probability that the

price will be in some interval? What is the probability of being out of
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stocks? What is

one might decide

different values

the mean price and the mean of stocks, etc.? in addition

on the general formula of a stocks rule, but want to test

of its parameters (e.g., different boundaries of the

bounded price rule). Unfortunately, the grain econo~ is very complicated.

A complete stochastic and dynamic analysis must include cross effects among

the main crops on the demand side as well as on the supply side and rela-

tions between different sources of supply and demand within a country

(interregional)and among countries (international). The problem is com-

plicated by stochastic disturbances in the various relations, especially

in a dynamic analysis such as required here. In view of this complexity,

it seems inevitable that many simplifying assumptions must

wants to do a quantitative analysis.

Until now some studies on grain stocks have been done

procedures (TWeeten, Kalbfleish and Lu (1971)[8], Sharples

be made if one

by simulation

and Walker

(1974)[5]). In these studies a simple model is assumed that includes basic

demand and supply equations with stochastic terms that are assumed to have

known probability distributions. A sequence of drawings from the probabil-

ity distributions is made by a computer generator corresponding to a

sequence of time periods. The whole system is then simulated by the com-

puter, resulting in the determination of a sequence of equilibrium values

of the main variables (prices, quantities, stocks, etc.). This procedure

is repeated many times and the average results printed, including the aver-

age yield, production prices and stocks, as well as their variances. Any

specific stocks rule can be introduced into such a model and comparisons

made between different rules and the “free market” solution.

The method used in the present study is similar to the simulation
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studies in its main assumptions about the economic model. However,

instead of repeatedly drawing sequences of disturbances from their probabili-

ty distributions, the probability distributions of the main variables

(prices and stocks) are directly computed using the internal relationships

in the model. Practically, a method of approximation is used by discre-

tionizing the probability distributions (i.e., allowing the variables to

obtain only isolated values). The basic model is presented in the follow-

ing subsection.

2.2 The basic nmdel

The model is a partial one that includes

of only one commodity (which may be one grain

crops), Price and quantity are determhed by

demand and supply equations

or an aggregate of some

the model. All other factors

are assumed to be exogenous and included either in systematic “shifters”

which shift the demand and supply functions with time or in stochastic

disturbances that shift these functions randomly, according to some known

probability law. Formally, the model is as follows:

Demand function at time t:

(2.1)

where: Y =
t

Pt =

$(Pt) =

‘dt =

gd =

Yt = [$(pt) + ‘dt](l + %)t

quantity demanded at time t

price at time t

mean of demand function at t = o, $’(P) > 0.

random disturbance term

demand’s rate of growth

It is assumed that edt is distributed according to a known probability
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law, represented by fd(edt), which is a probability mass function (in the

case ‘hat ‘dt
is a discrete random variable) or a probability density

function (if edt is continuous). It is assumed that fd(edt) is identical

for all t, that edt has zero mean, and that any two disturbances of two

periods, edt and edt,, are mutually independent.

All the exogenous factors that cause a systematic shifting of the

demand function are assumed to be included

income effects), while all other exogenous

in gd (e.g., Population and

determinants of the demand are

included in ed. (For example, if the demand includes a demand for export,

the randomness might be due to weather effect on yield abroad, or ed might

be caused by unsystematic changes in prices of complements and substi-

tutes, etc.)

Supply function at time t:

(2.2) Xt = [*(pt-l) +estl(l+gs)t

where: X
t = quantity supplied from production at time t

P
t-1

= one-period-lagged price at time t

wt-l) ‘,mean of supply function at t = O

lJ1’(Pt-l) Lo

e = random disturbance termSt

i%s= supply’s rate of growth

eSt is distributed according to a probability law represented by fs(est),

which is a probability mass function or a probability density function

(if est is discrete or continuous, respectively). fs(est) is identical

for all t and

independent.

for any two periods t t’, est, and est, are mutually

In addition, est and edt, are independent for all t t’.



15

As in the demand case, it is assumed that all of the exogenous factors

of supply that are changed systematically with time are included in gs (e.g.,

systematic technical change), and all other exogenous determinants of supply

are

use

and

included in the random disturbance es (e.g., weather effect on yields).

In summary, it is a simple “cobweb” economy. For convenience, let us

the following notation:

$Jt(Pt)= $(Pt)*(l+gd)t

I@’tq) = 4@t_1)”(l+ IQt

Edt z edt ● (l+gd)t

c Ze “ (l+g~)t
St St

rewrite the demand and supply functions:

(2.1’) Yt =

(2.2’) Xt =

Let us denote the stocks at the

stocks at t are Ct-l).

Given the lagged price Pt-l

I$@t) ‘Edt

l@t_l) + Est

end of period t by C+ (the beginning
L

, and the values of the random disturbances

cdt and eSt at time t, the price is determined by the equilibrium condition:

(2.3) Yt+ct-ctl=xt

or

(2.3’) $t(pt) ‘Salt +Act = lJt(pt-J +Est

where: Act s Ct - Ct-l is the change of stocks at t.
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Define the “free market price” to be the equilibrium price when Act = O

and denote it by it.

?t is defined by:

+~(it) + ‘dt = iJt(pt_J + Est

or:

(2.4) Pt = $;l[+t(Pt_l) + et]

where: +;l is the inverse demand function, c ~ ct - cdt
is the combined

St

disturbance of supply and demand. et is distributed according to

a probability law represented by ft(Et) which is derived from

‘d(ed), ‘S(es)$
2/

and the definitions of Cdt and est.—

Eq. (2.4) describes the “free price” as a function of the lagged price

P~ ~ and the disturbance Et. Let us denote this function by At(Pt_l, St).

(2.4’) it = $;l[iJt(pt_l) + Et] ~ At(PC_l, Et)

Figure 1 might help to understand equation (2.4). Prices are measured along

the vertical axis and quantities along the horizontal one. The mean of

production supply at time t is a function of Pt ~: Given Pt ~, it is con-

stant and is described by the heavy line in figure 1, designated by Vt(Pt-l).

Actual production at time t is obtained by adding the supply disturbance

Est--see the light vertical line designated by $t(Pt_l) + Est. Similarly,

the mean demand curve at time t is the heavy curve, designated by @t in

figure 1. The actual demand curve is obtained from the latter by adding

~/For example:
If ed ~ N(O, u:) and es ~ N(O, a:) then Et w N(O, u:),

where u: ~ (l+gd)2ta~+ (1 + gs)2ta~ .



Price

I

I

I

v
I

I

!

I

J
I

I

4,

I

AC(bt

J,,

I

I

i,
u
I

Pt

*t

Price

A

— .- -. __

I

--t-+

~.

I I
— -——. k-.——------4

\
+t+ Edt Figure 1

—.— _ ....—---.___.-’

Quantity?

= $t(Pt-l)+E
t

\

L—_ . . ..-.

I @tlct-l) Figure 2

.~—— —“”–----+
0 ACt Ct ~ C Quantity

t



18

the demand disturbance sdt
--see the light curve designated by ~t + Edt.

The “free market price,” it, is determined by the intersection of the

actual supply and demand curves. It is clear from the figure that the

difference between the mean demand curve and the mean supply curve (i.e.,

the heavy curves) at price $t is equal to Ct = Est - Edt. Thus, @t can

also be determined by adding et to the mean production ~t(Pt-l) and read-

ing the correspondingprice on the mean demand curve $t (equivalently to

O;l in equation (2.4)).

Given it, beginning stocks Ct_l, and carryover stocks Ct, the price

Pt can be determined by the equilibrium condition (2.3).

Suppose now that a stock rule is to be investigated. Generally this

rule describes the quantity of carryout, Ct, which is the policy variable,

as a function, say, Gt of the state variables, which are the market price

it and the beginning stocks Ct_l. Formally,

(2.5) Ct = Gt(~t, &).

Following this rule let us derive the probability law of the price Pt and

the stocks Ct. To do that let us first describe the stocks Ct as a function

of P c
t-1’ t-1’

andc:t

Ct is a function of Ct ~ and of it (see (2.5)). it in turn is a

function of Pt_l and Et(see (2,4’)).

Therefore, from (2.4’) and (2.5):

(2.6) Ct = Gt[A(Pt_l, Ct), Ct_l] ❑ Bt(Pt ~, Ct ~, @ .

Next we want to express Pt also as a function of these three variables.

From (2.3’):
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.
(2.7) pt = @;l[~t(pt_l)+ et - (Ct - ct_l)],

and from (2.4) we get:

(2.8)

(This is the mean of the quantity

&- see figure 1.) Therefore, by

(2.9) Pt = $;l{@-t) -

+ et = I@t) .

demanded at the “free market price,”

(2.5):

and by using (2.4’) and (2.6):

(2.10) Pt = 4J~1{$t[A(pt-1,Et)] - JNpt-ls Ct-l> @ + Ct-l}

Graphically, the stocks rule Gt, given the beginning stocks Ct-l,

is described by the curve designated by Gt(~t\Ct-l) in figure 2, in which

prices are measured along the vertical axis and quantities along the

horizontal one. The change of stocks as a function of it, given Ct-l, is

obtained by the difference between the latter curve and Ct-l--see the

curve ACt(~tlCt_l) in figure 2. To determine the price Pt, given Pt-l,

Ct, and Ct-l, first find it in figure 1 as described above. Second, find

ACt in figure 2 by using it (from figure 1) and Ct-l. Return to figure 1,

subtract ACt from $t(~t), and determine pt by the corresponding point on

the mean demand curve $t.

2.3 Probabilities computations

Assume for a moment that the joint distribution of (Pt-l, Ct_l) is

known and let us derive the joint distribution of (Pt, Ct). Since in the
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computation procedure the probability distribution ft(ct) is assumed to be

discrete, we describe here only the discrete case. The continuous case is

conceptually similar, but the formal notation is much more complicated and

will not be presented here. Thus, given the joint probability function of

(pt_~, ct_l), i.e.:

.
Prob {Pt-l = p=, ct_l = Cj} i =1, 2, ... j=l, 2, ...

and the probability of Ct, i.e.:

Prob {Et = ek k=l,2, ...,

what is the probability Prob {Pt = p, Ct = C} ?

The independence of et and ct_l implies that et and (Pt-l, Ct_l) are also

independent. Therefore:

(2.11) Prob {Pt = p, Ct = c}

= ~ ~ ~ prob {pt-l = pi, Ct_l = cj}{Prob et = el}
ijk

over all i, j, k
such that:

.
B(pi, CJ, Ek) = C

. .
and D(pl, CJ, Sk) = p

Now, the beginning values of the first period are given since they have

already occurred. Suppose that P. = p“ and Co = Co are known; then the

probability function of P. and Co is also known to be:

{

lifp= p“ and c = co
(2.12) Prob {P. = p, Co = c} =

O otherwise
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Applying equation (2.11), the joint probability function of (Pl, Cl) can

be computed and from it the probability function of (Pz, C2), etc.

The sequence of joint probability distributions summarizes the most

important information for the analysis of a stocks rule. The (marginal)

probability distribution of prices and stocks can be easily calculated by:

(2.13) Prob {Pt = p} = ~ Prob{Pt=p, C=cj}
all j

and

(2.14) Prob {Ct = c} = ~ Prob {Pt= pi, C=c}
all i

and so also the cumulative probability functions:

(2.15) Fpt(P) ~ prob {pt SP} = ~ prob {pt = Pi}
i

over i
such that

Pi 2P”

(2.16) FCt(c) ~ Prob {Ct ~ c} ~ ~prob {Ct= cj}

j

such that

Cj<c.—

In particular, by (2.16) one knows the probability of being out of stocks.

Having the probability distribution of prices and stocks, one can also com-

pute some summarizing indices such as the mean, the variance, the coeffi-

cient of variation, and an instability index around some target price.

When a comparison is made between the simulation models mentioned above,

one finds that both procedures give the same information; the difference

is in the method of deriving it. In the present procedure the basic
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probability distributions of the disturbances are used explicitly in the

computation, even though in an approximative ways while in simulation,

repeated samples are drawn from these distributions. Each of the methods

can be used to investigate the outcome of some specified buffer stocks

policy but does not by itself constitute a rule as a result of the compu-

tations. In the next section an optimization nmdel is developed within

the framework of the basic model presented here in an attempt to derive

a stocks rule which minimizes a price instability index. The model in

section 3, which follows, is a simplified example in which the main

features of the problem are analyzed and demonstrated. This model is

then extended to a more detailed and more realistic model in Part II,

together with some empirical experiments.

3. Minimizing Price Instability by Buffer Stocks--A Primitive Example

In the previous section it was argued that a stocks rule should take

into account quantity aspects, even if the only goal is price stabilization;

that is, in addition to the market price, the quantity of the existing

stocks should influence the decision on carryover stocks.

strate this by a primitive example that also shows some of

on which an optimization model is developed in Part II.

Following the general model of section 2, assume that

two periods, t = 1, 2. The demand equations are identical

periods and are nonstochastic and linear, i.e.:

Let us demon-

the principles

there are only

for the two

(3.1) Yt = Cto - aPt t = 1, 2.

Production of the present period (t = 1) is known and equal to xl:

(3.2) =x‘1 1
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On the other hand, production

probability function is known

in year 2 is uncertain. However, its

and is of the following simple form:

J(l-a)
(1)

ifx=x2

Prob {X2 = x} = A
(2)

1

ifx=x2

o otherwise

()<a<l.

The following equations follow from the equilibrium conditions

(see (2.3)):

(3.4)

(3.5)

so:

(3.6)

P’=a’’: x’+> t = 1, 2.

The “free market price,” it, is given by:

a - Xt
i’t=oa t = 1, 2.

AC
Pt=it++ t = 1, 2.

Using the instability index (1.2), assume that the problem is to

find stocks rules that minimize the instability index, given the beginning

stocks Co. Formally the problem is:

Given Co, find functions

h
/.

c1 = G1(~l, co) and C2 = G2(~2, Cl) that tinimize

(3.7) * 2 + (P2 - P;)21,E[(pl - PI)

where PI* and p; are the target prices and ~1, ~2 are the optimal
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stocks at the end of periods 1 and 2 respectively.

Define Wt = (Pt - p~)2 and rewrite (3.7):

(3.7’) I({Pt}) = E(wI +W2).

Notice that in order to minimize (3.7), it is necessary that

for any given Cl, C2 will be chosen, such as to

*2
minimize EW2 = E(P2 - p2) .

BY assumption (3.3), using (3.5), the “free market price” maY obtain OnlY

two possible values, namely:

-1

a - Xjl) (1)
o
a

z p2

‘2 =
a - X$2) (2)
o
a

E p2

(3.8)

Assume that
(1) <P*

P2 < P;2)> see figure

‘1(2) -
P2

P*

(1) -
P~

(1)
if x2 = x2

(2)
if X2 = x2 .

3.

-.
I

I

I
I
I

I I
t I

q---&r-
Figure 3.



25

From the probability function of X2 (see (3*3))’ ‘he prObability ‘unction

of @2 is given by:

{

(1-A) ifp=
(1)

P2

(2)
(3.9) Prob {~2 = p} = A ifp=p2

o otherwise.

It is obvious that in order to minimize E(P2 - p~)20ne must choose C2,

such that for anY given ‘2s ‘2 = (P2 -P;)z be minimized, where PO is given

by (3.6). The rule for t = 2 is clearly as follows:

If ~2 < p;, increase stocks until p2 = p~*

If ~2 > p;, reduce stocks until p2 = P; ~ ‘f ‘here ‘s

if not, reduce stocks to zero. Formally, the optimal rule

L

enough inventory;

fort=2is

1
c1 + (P; - ~2)”~ if F2 :P;

..
(3.10) 62 * and Cl ~ (p2 - P~)”a= G2(~2, Cl) = Cl + (P: ‘p2)*a if p2 ?P2

o if ~2 >P~ and Cl & (~2 -p~)”a

For each possible ~2 and given Cl, the optimal carryover for t = 2
.

has been determined. Let us denote by V2(p2~ cl)> ‘he ‘alue ‘f ‘2 = (P2 - P;)29

corresponding to p2 and cl> when applying G2(p2s Cl) from (3.1o). Using (3.6):

G2(~2~ Cl) - Cl
(3.11) v2(i2s cl) = [F2 + - P;12*

a

More specifically we have:

[

o if $2 :P~ for any Cl

(3.11’) V2(~2, Cl) = o if ~2~P~ and C1Za(p2 -P;)

(62
c1 2

- P; --# ifF2~p~andC1~a(F2 -p;)
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Using the probability function of ~2 (3.9), it can be easily shown

‘hat ‘V2’ the expectation of V2, is a function of Cl, given by:

(3.12) EV2(cl)
(1) (2), C1)”A= v2(p2 , Cl)-(l- A) + V2(P2

and using (3.11’):

(3.12’) EV2(C1) =

I
(2)

A(P2
c1 2

-P;-& if Cl & a-(p$2)- P;)

Graphically EV2(C1) is depicted in figure 4:

mJ2

4

(P(2)
i“ Z-p;)z

a.(pjz)-;)
> c1

Figure 4.

Note that the maximal quantity of

the price of period 2 is

show that as long as the

(2)
than a(p2 - p;), EV2 is

‘or cl’
which is greater

(2) _
a(P2

stocks which is needed to stabilize

P;). Equation (3.12’) and figure 4

beginning stocks of t = 2, i.e., Cl, is smaller

positive and decreases with Cl, and EV2 is zero

(2)
than or equal to a(p2 - p;). This indicates
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that the more stocks that are held from period 1, the less instability is

expected in period 2. Formally this is expressed by the negativity of the

(2)
derivative for Cl < U(P2 - p;):

Io if cl~a(pjz) - P;)

aEv,(cl)
(3.13) o~ ;c& =

1 1

now to the original problem and search the optimal

t = 1, i.e., t, = G,(~,, C-). It will be shown that
J- -1. J. v

is no more optimal for t = 1, and

over nmre than is needed to

the two periods is that under the

Let us return

carryover rule for

the same rule which was applied to t = 2

that sometimes it is worthwhile to carry

*
equate PI to PI. The difference between

assumptions, one does not care what might happen after t = 2, thus C2 iS

valueless. On the other hand, Cl is valuable because of its ability to

reduce future instability, which is the objective of the problem.

Knowing G2(~2, Cl), the problem has been reduced now to the following:

Find a nonnegative function ~1 = Gl(fil,Co), that minimizes

(3.14) I({Pt}) = E(P1 - p:)2 +E(P2 - pj)2.

At time t = 1, ~1 is assumed to be known and is not stochastic any

nmre. Therefore, the expectation sign can be taken off from the first

term of (3.14), which can be written by:

(3.14’) I({Pt}) = WI + EV2(Cl).

Using (3.6), WI can be written in terms of AC1 and fil:

(3.15)
[ 1

2
c1 - co

‘1 = (1’1- P:)2 = il _p; + ~ .
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A simple marginal analysis results in the following rule: Increase Cl as

long as the marginal change in I({Pt}) is negative, and reduce Cl whenever

the marginal change in I({Pt}) is positive; that is:

(3.16) If~<o increase Cl and
1

If~>O reduce Cl if Cl # O.
1

aI
awl aEv2

Now, — , hence (3.16) can be equivalently written:
~1 = ~ + ‘acl

(3.16’)
aEv2 awl

If-~— > acl increase C
1
and

1

aEv2 awl
if-~

‘q
reduce Cl if Cl # O.

1

aEv2 awl
The details of ~ were given in eq. (3.13). ~ is obtained by

1 1

differentiation of (3.15):

awl
— is the marginal change of instability in period 1 due to a marginal
acl

change in Cl, or the “marginal destabilization of Cl in period l“, to be

denoted by MW. If it is positive (negative) this means that further increase

of Cl will lead to greater (smaller) instability in period 1. Similarly,

aEv2
— is the marginal change of instability in period 2 due to a marginal
acl

change in Cl, or the “marginal destabilization of Cl in period 2.” The

negative of the marginal destabilization in period 2, i.e., -
aEv2

acl ‘
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will be called the “marginal stabilization of Cl in period 2“ and will be

denoted by IMEV21. If lmV21 is positive it means that an increase in Cl

will lead to a greater stability in period 2. In this terminology (3.16’)

states as follows: Increase Cl as long as the marginal stabilization of

Cl in period 2 is greater than the marginal destabilization of Cl in

period 1, and reduce Cl in the opposite case if Cl is not zero.

3/
It follows that if 61 is positive, it is necessary- that the marginal

destabilization of Cl in period 1 will be equal to the marginal stabiliza-

tion of Cl in period 2, i.e.,

(3.19) l~vz I = ‘1’ if ;1 > 0.

Three cases can be distinguished in the following table.

I >0 I case (1) I case (2) I
]=0 I impossible I case (3) I

Let us analyze each case.

3/– This condition is necessary a@ sufficient for global minimums at
tl, since I is strictly convex in Cl, which follows from the positivity

of ~
.

ac~
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Case (l): ~l~2M” In this case it is optimal to carry over

a large enough quantity of stocks that the marginal stabilization of Cl

in period 2 is zero, i.e. (see 3.13):

It follows that the only consideration in

effect on period 1. Hence, to be optimal

such that the marginal destabilization of

i.e. (see 3.17):

(L

the determination of ~1 is its

the change of stocks should be

Cl in period 1, MWl, be zero,

. *.
(3.20) AC1 = Cl - Co = u ● (pl - PI) in case (l).

a(P; - ~1) is exactly the change of stocks AC1 which is needed to

*
equate the price PI to the target price PI if the free market price is

‘1“ Note that in this case the change of stocks depends only on il.

Graphically, case (1) is described in figure 5, case (l), in which

Cl is measured along the horizontal axis. ‘iven co and ‘1’ ‘he ‘rginal

curves MW ,1 IMEV21, and MI = MWl - IMEV2\ are depicted in the upper sec-

tion and the total curves WI, EV2, and I = WI + EV2 are depicted in the

lower section. The optimal ~1 is the minimum point of I (lower section).

At this point MI = O (in the

curves coincide with MWl and

A
of c1“ Hence the same Cl is

upper section). In case (1) the MI and I

WI curves respectively in the neighborhood

optimal also to the problem without period 2.

It is possible to define a range in the (~1, Co) plane which corres-

ponds to case (l): From (3.13), \MEV21 = O implies Cl ~a(p~2) - p;), and

from (3.20) Cl = Co +a(p~ - ~l). It follows that
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(3.21)

See figure 6.

co ~a(ij (2)
- P;) + ~(P2 - p~) in case (1).

over C~ has an effect on period 2.

stocks than would be held had only

this case, at the margin, the carry-

Hence it is worthwhile to hold more

period 1 been taken into account. The

optimal carryover is derived by equating the marginal destabilization of

Cl in period 1, MWl (from (3.17)) to the marginal stabilization of Cl in

period 2, MEV2 (from (3.13)), that is:

(3.22) MWl -2A “ (2)
- a(p2 - p*)l = lMEv2\=+ [61 - co - cl(P:- Fl)l == [cl

a a

Hence:

(3.23) tl = —
l:A % + ~(P; -

(2)
Fl) + aa(p2 - p;)] in case (2)

or:

(3.23’) tl = [c. + U(P; - il)l + & [a(Pj2) - P;) - co - a(P; - il)l

in case (2).

Define:

(3.24) A=— (2)
JA [~(P2 - P;) - co - @ - il)l

Equation (3.22) and the condition IMEV21 ~ O imply that

i.e., the optimal carryover ~1 is greater than the anmunt that would be

optimal if there were no period 2. The addition (see 3.23’) is A, defined

by (3.24). The change of stocks is given by:

(3.25)
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(3.25) shows that the optimal change of stocks is equal to the change

needed to equate PI to p; (that is a(P; - pi)), PIUS the positive term A.

A is the additional stocks due to the effect on period 2. Notice that the

first part [a(p~ - pl)l depends only on il. However, A depends on ~1 as

well as on Co. In particular, the effect of Co on A is negative, which

means that smaller quantities of Co lead to greater accumulation of A81.

The interpretation is as follows: The effect of Cl on period 2 is realized

only when ~2 iS greater than the target Price P~, that is, in our example

(2)
only if it happened that $2 = p2 .

(2)
In this case a quantity of a(p2 - P;)

is needed to reduce the price to p;. However, a quantity of Co + a(p~ - ~1)

is secured due to considerations for period 1. The addition is

(2)
[a(P2 - P;) - co - a(P: - il)l.

It is worthwhile to note that

This addition is weighted in (3.24)

generally in the context of price sta-

bilization by buffer stocks, the more unstable future price is, the more

valuable are the stocks; hence it pays to carry over more stocks. In our

primitive example, future price instability is measured by the variance

around the target price, which is

(2)
A(P2

(1)*2+(1-A)(p2- P2)
(2)

- P;)2 = (P2 - p;)2 .

(It was assumed that lp~2) - p~l = lP~l) - p~l). This explains why Atl

(2)
is greater when p2 is higher. In addition, it was stressed that the

effect of stocks on future instability is realized when prices are above

the target price. The more biased the probability distribution of market

prices is toward higher prices in period 2, the more valuable will be the

stocks from period 1 and greater carryover will be optimal. In the present
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primitive example, the bias of the probability distribution of market

prices toward higher prices is expressed by the probability of being above

*
p2, i.e., by A. It can be seen (3.24) that the greater A is, the greater

is A, hence, A;l.

Case (2) is denrmstrated graphically in figure 5 case (2). In this

case, the curves of marginal stabilization in period 2, IMEV21 and marginal

destabilization in period 1, MWl intersect above zero (upper section of the

figure). The minimum point is at dl. The stocks which would be held, had

only period 1 existed (ignoring the effect on period 2), are at C; in which

WI is minimized and MWl = O. (’l’hisis the level of stocks which leads to

‘1 = p:).

Let us define the range in (~~, Co) plane in which case (2) exists:

(2)From (3,13), IMEV21 > 0 implies Cl ~ a(p2 - p;) and from (3.23),

(2)
c1 =* [c. + (P; - il) + aa(P2 - P;)]. It follows that

(3.25a) co ~a(fl (2)
- P:) + U(P2 - p;) in case (2).

In addition, ~1 LO, hence

(3.25b) co L q - P;)
(2)

- aa(p2 - p;) in case (2).

See figure 6.

Case (3): tl = O, IMEV] > 0. In this case, for a given beginning stocks

Co the free market price ~1 is so high that even if all the stocks C are
o

withdrawn to the market, still the marginal destabilization of Cl in

period 1, MWl, is greater than the marginal stabilization of Cl in

period 2, IMEV21. It is optimal to reduce carryover to zero. This is

demonstrated in figure 5, case (3). The range in @ ~, Co) plane which
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I I
I\
I

\l I

i

I

‘1 1//
I

~,

I
I

EV2 I
I
I+— —

-A
0 c1

c1

(2) *
2A(P2

~

-P2)/a <
IMEV21

‘1

\

2[@1-P;)-col /:.’- ,-‘--”--”;–- “—— c1

(2) *
co+a(P;-~l) : ~1 : a(P2 -P2)

Case (1)

‘Za(p!%,),aw

Figure 5

P
1’

I

I
I
1 I

1 1, i
I
, I
I
I I
I I
I

I I
I
I I

o c: tl
c1

2[C@-p;)-co] /a2p/

y\

IMEV2I

—.—...
(2) * — c1

C%(P2 -P2)
I

c1

Case (2)
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corresponds to case (3)

(3.26)

can be derived by the complement of (3.25b), i.e.,

(2)
- P;) - Xa(p2 - p;) in case (3).

See figure 6.

co = C@ (2)
1 - P;) + a(P2 - P;)

/’
co =

(2)
a(il - P;) - ~a(p2 - p;)

case (1)

L

Figure 6

To summarize the discussion on the example let us write the optimal

carryover rule of the three cases in the following compact formula.

[

co + CM(p;- q) if: co ~cl(il
(2)

- P;) + U(P2 - P;)

1
Co+a(p~ -

(2)~1) +* {U(P2 - P;) - [c. + C%(P:- Fl)l}

(3.27) =
(2)

if: U(P1- p!) - Aa(p2(2)- p;) < co < U(P1 - P;) + U(P2 - P;)

o
(2)

if: a(~l- P;) - Aa(p2 - P;) ZCO



36

and in terms of change of stocks:

Ia(P; - il) if: co ~ a(il
(2)

- P;) + a(P2 - P;)

U(P; .il)+* {CI(P:2)-P;) - [c. + a.(p;- PI)]}

(3.28) Atl = 1

i

(2) (2)
if: (il.-p:) - aa(p2 - P;) < co < ~(il - P:) + a(P2 - P;)

o if: a(P1 - p;)
(2)

- Aa(p2 - P;) Lco

Figure 7 dewnstrates (3.28) graphically: The optimal change of stocks

A~l is measured along the vertical axis and ~1 is

.
tal one. For a given beginning stocks Co, AC1 is

by (3.28). For example, if Co = O the curve a b“

measured along the horizon-

a function of ~1 described

do e“ describes the

optimal accumulation A61 for different values of il. ab” corresponds to

case (l), b“do corresponds to case (2), and d“eo to case (3), in which

AC1 = - Co. TWO other optimal curves corresponding to two beginning stocks,

co = c:
2

and Co = co abldlelrespectively, are drawn in the figure, i.e.:

and ab2d2e2 respectively. Again, the ab part corresponds to case (l),

the bd to case (2) and de to case (3). The line ab0b1b2, etc. . . . repre-

sents the carryover rule which does not take into account the effects on

period 2. The portion of case (1) coincides with it. However, given the

beginning stocks Co,

carryover is greater

As ~1 obtains higher

if ~1 is greater than some P the optimal quantity of

than implied by the former curve. This is case (2).

and higher values, the change of stocks AC, decreases

until all the beginning stocks are reduced to

carryover &l is zero and the change of stocks

is case (3).

zero. From this

remains equal to

L

point on,

- co. This
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Notice that generally the optimal change of stocks depends not only

on the price ~1 but also on the beginning stocks Co.

One can also see from figure 7 the implications of greater future

(2)
instability, that is, of higher P2 , and of greater bias of the proba-

bility distribution

greater A. Both of

over ~1 for each Co

of future prices

them imply wider

and 61.

toward higher

range of case

prices, that is of

(2) and greater carry-



39

Part I

REFERENCES

[1] Bailey, W. R.; Kutish, F. A.; and Rojko~ A“ SO Grain StOCkS Issues
and Alternatives--A Progress Report. Economic Research Service,
U. S. Department of Agriculture, Washington, D. C. 1974.

[2] Cochrane, W. W. Feast or Famine: The Uncertain World of Food and
Agriculture and Its Policy Implications for the United States.
Report No. 136, National Planning Association, Washington, D. C.
1974.

[3] Oi, w. Y. “The Desirability of Price Instability under Perfect
Competition.” Econometrics, 29:58-64. 1961.

[4] Samuelson, P. A. “The Consumer Does Benefit from Feasible Price
Stability.” Quarterly Journal of Economics, Vol. 86, No. 3,
August 1972, pp. 476-493.

[5] Sharples, J. A. and Walker, R. Reserve Stocks of Grain. Research Status
Report No. 1, Description of the Price Bounds Model. Economic Research
Service, U. S. Department of Agriculture and Department of Agricultural
Economics, Purdue University (unpublished). 1974.

[6] Subotnik, A. and Houck, J. P. “An Economic Analysis of Stabilizing
Schemes,” Staff Paper No. P75-7. Department of Agricultural and
Applied Economics, University of Minnesota. 1975.

[7] Turnovsky, S. J. “Price Expectations and the Welfare Gains from
Price Stabiliz~tion.” American Journal of Agricultural Economics,
56(2), November 1974, pp. 706-716.

[8] Tweeten, L.; Kalbfleisch, D.; and Lu, y. C. An Economic Analysis
of Carryover Policies for the United States Wheat Industry. Technical
Bulletin T-132, Agricultural Experiment Station, Oklahoma State
University. 1971.

[9] Waugh, F. V. “Does the Consumer Benefit from Price Instability?”
Quarterly Journal of Economics, 86: 351-365. 1944.

[10] Waugh, F. V. “Consumer Aspects of Price Instability.” Econometrics,
29(1):58-64. 1961.

[11] Waugh F. V. “Reserve Stocks of Farm Products.” Agricultural policY:
A Review of Programs and Needs, Vol. V. National Advisory Commission
on Food and Fiber, Washington, D. C., pp. 3-52. 1967.



40

Part II: A Model of Optimal Buffer Stocks for Price Stabilization--
Theory and Computation

In part I of this paper, the concept of price instability was dis-

cussed and an index of price instability in the context of a stochastic

world was introduced. This index was defined to be the mean of the sum

of square deviations of a series of prices from a series of “target” or

“reference” prices (see (1.4) in part I). In addition, a model of price

and stock relations within the framework of a simple demand and supply

system was presented (section 2.2 in part I). A primitive example was

constructed to demonstrate how an optimal buffer stocks model can be

applied to the problem of minimizing the price instability index. In

part II, a more general case is analy~ed and demonstrated. Section 1

presents an optimal buffer stocks model for price stabilization and ana-

lyzes some of its characteristics. A summary of a computational pro-

cedure is the content of section 2. Detailed computations and a computer

program are given in the appendix in a technical form. In section 3, two

empirical experiments with the model demonstrate how it can be applied.

Finally, section 4 concludes the paper with some comments and recommenda-

tions for further research.

1. A Model of Optimal Buffer Stocks for Price Stabilization

In part I, an instability index of a series of future prices {Pt}~

was defined by (1.4), which is rewritten here:
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(I,,, +’,,;] =‘[+t&~tp;p;]2(,:6)]
*T

where t=l, 2..., T is a sequence of periods from 1 to T, {pt}l is a series

of “target” or “reference” prices, and d is a discount factor.

In this section we analyze the possibility of reducing future price

instability (measured by the instability index (1.1)) by an intervention of

a stocks activity in the market of the commodity under discussion. The

analysis will be undertaken within the framework of the single commodity

model which was discussed in section 2.2 of part I. The basic assumptions

will be summarized in 1.1 for convenience.

1.1 The model.

Demand:

(1.2) Yt = ‘$lt(Pt)+Edt t = 1, 2, ● *., T

where Y. = quantity demanded at time t
L

Pt = price at time t

@t(Pt) = mean of demand

and cdt is a stochastic

It is assumed that

function at time t

disturbance at time t.

(1.3) +t(pt) = $(pt)(l+&!d)t

where 4(Pt) is the mean of demand function at t=O, and .gdis a (constant)

rate of demand growth.

Also (1.4) Cdt = edt(l + gd)t

where edt is distributed according to a known probability law represented by

‘d(edt)> which is a probability density or mass function (in the case that

e is continuous or discrete respectively).
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supply:

(1.5) Xt = $t(pt-l) + s~t t=l, 2, .... T

where Xt = quantity supplied at time t

+t(Pt-l) = mean of supply function at time t

E
St

= stochastic disturbance at time t.

It is assumed that

(1.6) $Jpt-l) = w’t_-p(l+@t

where +(Pt-l) is the mean of supply function at t=O and gs is the rate of

supply growth.

Also: (1.7) c~t= est(l+g)t

where e is distributed according to a probability density or mass
St

function fs(est).

It is assumed

any t and t’.

It is assumed

that Sst, Est!, ~dt$ cdt~ are mutually independent for

that price is determined by the equilibrium condition:

(1.8) Yt+Ct -Ct_l=Xt

where Ct is the stocks held at time t, and by (1.2) and (1.5):

(1.9) Pt = O~l[tt(pt_l) + et - Act]

-1
where bt is the

Act = Ct - Ct-l.

is denoted by ~t

inverse demand function at time t, Et z est - ~dt, and

The “free market” price (or briefly the “market price”)

and defined by
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@t = ‘@$t(pt-l) +Etl

From (1.9) and (1.10) it follows that:

(1.11) P
t = 4~1[4t(~t) - ACt].

(1.11) is the basic relation that exists between the final price Pt on

the one hand and the market price (it), the beginning stocks (Ct_l), and

the final stocks (Ct) on the other hand.

1.2 The minimization problem. Suppose that the parameters of the

model presented in 1.1 are known (this includes the parameters of the

supply and demand functions as well as the parameters of the probability

distribution functions of Ct). The objective is to reduce future price

instability by an

is, of course, to

prices are high.

intervention of a stocks activity. The general idea

acquire stocks when prices are low and sell stocks when

However, the possibility of selling is limited to the

amount of stocks held at that time, which is the result of previous deci-

sions. Hence, at each time the question is how much to sell or buy to

affect the current price in a desired direction as well as to maintain

adequate stocks for future contingencies. One also has to take into

account that there are costs connected with holding stocks, so in general

there is a substitution between cost and price stability. However, the

proper rate of substitution between the two is a subjective matter. Never-

theless, to be efficient, cost should be minimized for any given degree of

instability (measured by the instability index (4.1)) and vice versa; for

any level of cost, instability should be minimized.

Assume that the cost of holding a unit of stocks per unit of time is
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constant and equal to 6. Assume also that the subjective rate of substi-

tution of instability (index) for storage cost is A. Then a criterion for

a stocks activity might be to minimize

[

= I({Pt};) o A + (3E~ Ct 1
t (1 + (s)t1

ADifferent results will be obtained with different A’s and by changing

one can trace a whole set of stock policies.

In each period of time t, a decision has to be made on how much

stock to accumulate or dispose of. In a dynamic stochastic system, the

sequence of various events is important. As time passes, variables of

previous times that were stochastic are realized. Any decision rule at

some point in time can depend on realized variables that correspond only

to previous time; the other ones remain stochastic. So far we have

divided the whole time horizon into a sequence of periods. Let us now

assume the following order within any particular period t:

At the beginning of period t, all the events that occurred previously

are given. In particular, the beginning stocks are given and equal to the

ending stocks of t-1. Also the final price of t-1 is given. Assume now

that the decision on change of stocks ACt is made after the realization of

the stochastic disturbance of that period. Given Pt ~, this means (accord-

ing to (1.10)) that at the decision time the market price @t is also given.

Then the change of stocks implies the ending stocks as well as the ending
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I

I

price (according to equation (1.11))and is illustra~ed by this sequence.

r~:~+~ ,~me

P
r

t-1
Tt

‘t+l

‘t
it ACt Et+l Pt+l Act+l ---

c
t-l

Ct c
t+l

1/The problem of optimal stocks policy— can now be stated in a formal

way as follows:

Given Co and Po, find a series of stocks rules

which minimize

subject to:

o :Ct(.) t = 1, .... T

r’:$1’~+’%1,,;,)t I coy‘o)t

(1.11) Pt = $;l[$t(it) - (c -Ct-l)]
t t =1,2, ....T

yThe tem ,Ioptimal,,

should be considered only in relation to the
present problem of minimizing the objective criterion (1.12) and not in
the general meaning of social desirability. As has been stated in the
outset of part I, there is no agreement on the desirability of price
stability.

~/ ~{
“ I Co, Po} means the (conditional)expectation, given Co and Po.

The ~ will be omitted from now on since it does not affect the solution.
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(1.10) et= $;l[iJt(pt_l)+ Q t =1,2, .... T

Ct is distributed according to ft(st)

et, Ct, are independent for any t # t’.

Before proceeding into the investigation of the problem stated

above, let us introduce additional notation for convenience by defining

(1.13)

*2

[1
Pt - pt

=
‘t - * A + ect

‘t

‘t
is a function of Pt and Ct. However, Pt is a function of ~t, Ct and

ct-l (eq. (1.11)) and it in turn is a function of Pt-l and Et; hence in

summary, Wt is a function of Ct ~, Pt ~, Ct and ct. The following nota-

tion will be used interchangeably to indicate explicitly the dependence

of wt on these variables.

(1.13’) “t =wt(Pt, Ct) =wt[Pt(ct_l, Ct, it), Ctl =wt(ct_l, it, Ct)

= wt(ct_l$ pt_lj Ct! @

Using this notation the objective function (1.12) can be written as:

T
(1.12’) Minimize E{ ~ Wt 1 I CO,POI

t=1 (l+d)t

Generally, there is an interdependence among the decision rules of

all the periods and they have to be solved simultaneously. However, the

special structure of the problem reduces the complexity of the solution

and enables one to solve it in steps, period by period.

The additivity of the objective function (1.12’) in Wt 1
and the

(l+d)t
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recursive structure that follows in equations (1.11) and (1.10) imply a

proposition that is similar to Belman’s Optimality Principle of Dynamic

ProgramnrLng. Generally, any stocks rule for some period t*, i.e., (!t*,

may

the

be a function of realized variables of only previous time, and of

probability distribution of future variables.

Suppose that the stock rules for all t are given. Then, by the

1
additivity of (1.12’) in Wt and by (1.11) and (1.10) it follows

(l+d)t *
that changing the stock rule for t does not affect the value of that

part of the objective function that corresponds to time before t*, i.e.,

it does not affect the value of

t*-1

(1.14) E{ ~ wt
1

I
t=l (l+a)t

because no variable in (1.14) depends on

rule for t* does affect the value of the

T

co, Po},

ct*” However, changing the stocks

residual part of (1.12’), i.e., of

(1.15) E{wt* 1 + ~ Wt 1
(l+(5)t* t=t*+l (l+d)t

I CO,PO}

because wt* and wt*+l are functions of Ct* (see 1.13’)), as well as other

future variables (through (1.11) and (1.10))0

Notice that all the terms of (1.15) do not include explicitly any

variables of periods t = 1, 2, .... t*-1, except wt*, which includes

ct*-l and Pt*-l (see (1.13’)).

Together with the assumption of the independence of the stochastic

disturbances from different periods, it follows that the only variables

from periods that are previous to t*, that affect (1.15), are Ct*_l and

Pt*-l; hence (1.15) can be written as
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(1.15’) E{ f Wt 1 I COPO}
t=t* (l+rs)t

where the subscripts below the expectation sign indicate the

over which the expectation operation is averaged.

pt*_@o$ PO]

random variables

(1.15’) states that (1.15) can be calculated in two steps: first take

the expectation over the random variables of t=t*, t*+l, .... T, conditioned

on Ct*-1> Pt*_l;

on Co, Po). The

Minimize

then take the expectation over Ct* ~, Pt*_l (conditioned

whole objective function (1.12’) can be written as follows:

(1.12”) E {iwt
1

\ Co, po}
‘1’C2’”””’ET t=l (l+&)t

t*-1

= ES { “~ Wt 1 [CO, PO}
ls~2$”””sEt*-1 ~=1 (l+&)t

CT [t;t*wt1 tlct*-p pt*_ll+E {E
et*-t$ pt*_l ~t*>ct*+l> ●@*$ = (1+6)

\ co, Po}

Suppose that the stocks rules of t=l, 2, .... t*-1 are given; then

it is clear that the value of the first part of (1.12”), i.e. of

t*-1

(1.14) Es {~wt lt[co, Po}
~, C2’ .... Et*-t t=l (1+6)

is not affected by the determination of the stocks rules for t=t*, t*+l,

.... T. It follows that the stocks rules for t=t*, t*+l, .... Twhich
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minimize

(1.15’)

the second part of (1.12”), i.e., which minimize

Ec {E
[ f ‘t ~l+:)tl%*-l’ pt*-~lco$ P*}t*-1$ Pt*_l Et*> ~t*+ls ● **3 ET t=t*

also minimize

The following

(1.12”), for any given stocks rules for t=l, 2, .... t*-1.

proposition is therefore true:

Proposition. To be optimal to the problem of

necessary and sufficient that the stocks rules for

be optimal to the following problem:

minimizing (1.12”) it is

t=t*, t*+l, .... twill

Given Ct* ~, Pt* ~ find stocks rules Ct*(0), Ct*+l(0), .... CT(”)

which minimize

T
(1.16) E —Ic Pt*_l}

{ ~ ‘t (1:6)et*, ct~+l, ● 003 ‘T t=t* t*-1‘

subject to (1.13’), (1.11) and (1.10).

This proposition enables us to solve the problem in steps, period after

period, starting with the last period T and proceeding backwards to the

first one, similarly to regular dynamic programming. First the stocks rule

which minimizes

this, one knows

function. This

(1.16) for only one period, i.e., t=T, is solved. Having

the effect of changing CT-l on the T-th term of the objective

can be used in the determination of the stocks rule of T-1

in the subproblem of minimizing (1.16) for t=T-1, T.

be extended by induction to t=T-2, T-3, .... 2, 1 and

thus solved.

Let us now analyze

background on which the

based.

the solution in more detail.

This procedure can

the whole problem is

This will provide the

computation procedure, described in section 2, is



50

Starting from t=T, the subproblem to be solved is:

Problem T: ‘iven CT-l
and PT_l, find a stocks rule O ~CT(”) which minimizes

(1.16)TECT{WT 1 I CT-l’ ‘T-l} = &)TEET{wT I CT-l’ ‘T-l]
(1+6)T

where:

[1
*2

PT - pT
(1.13)T WT= A + f3cT

P;

(l.ll)T p~ = $;l [+,@T) - (CT - cT_~)]

(l.lO)T ~T= $11 [14T(PT-1)+ CT]

According to the assumptions on timing within a period (see figure 1.1),

CT is already given at the time of stocks change ACT, hence FT (which is a

‘unction ‘f ‘T-1
and ST (see (l.lO)T) is also given at that time. Therefore,

to minimize (1.13)T it is necessary for any given CT_l and ~T to find that

stocks level, CT, which minimizes WT. Let us denote the optimal stocks

rule by

A

CT = GT(CT-l> ~T)

Also, denote the value of WT under the optimal rule by VT. VT is defined

by substituting FGT(CT-~, T) for CT in (1.13)T and (l.ll)T. Clearly, VT

‘s a ‘unction ‘f CT-l
and PT and we write

VT(CT-l, iT)

To obtain the minimum value of (1.16)T, the expectation of VT has to

be taken over CT, ~T is a function of Pt_l and CT (see (l.lO)T) so that
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VT is a function of CT-l, PT-l and ST. However, after integration, the

expected value of VT(CT-l, ~T(pT_l~ ‘T)) ‘s a ‘unction ‘f CT-l and ‘T-1”

Let us denote the minimm of (1.16)T~ givefiCT-l, pT_ls bY EVT(cT-ly ‘T-l):

(1.17)T = E {VTICT-l,EVT(CT_l~ ‘T-l) CT ~T(pT-~, ‘T)]}

= fVT[CT_~, ‘T(PT-l$ cT)]dfT(eT).

This is the end of step T.

Proceed now to step

The problem to

Problem T-1: Given

T-1:

be solved is:

CT-2
and PT z, find stocks rules O SC T-@, CT(*) which

minimize

1
‘1”16)T-1 ‘CT ~, CTIWT-l ~1+6jT-l+wT— I CT-23 ‘T-2]

(l+&)T

1= {E {WT_l+&E~ [w lCT_~, ‘T-~llCT-2, ‘T-2}}
(I+(3)T-1 ‘T-1

TT

where:

*

[1

2
‘T-1 - ‘T-1

(1.13)T-~ ‘T-l= * A + ‘CT-l
pT-1

(loll)T_~ pT_~ = ‘$~~~[$T-~(iT-~)- (CT-l - CT-2)1

(l*lO)T_~ ‘T+ = $~t~[~pl(pT_2)+ ‘T-l]

The optimal stocks rule for t=T is already known from the previous step.
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Substituting it in (1.16)T and using the notation of EVT(CT_l, PT_l), the

problem is reduced to the following:

Find stocks rule O ~CT_l(*) which minimizes

(1J6’)T-1 ECT~{wT-l+~EVT(& pT-l)lCT-2~ pT_2}

As in problem T, the assumptions on timing within a period imply that

the optimal stocks rule for T-1 should be a function of CT z and ~T-l, to

be denoted by

A

CT-l = ‘T_l(cT-23 ‘T_l)”

It is the stocks level ~T-l which minimizes

‘VT[CT+Y ‘pl(c7@T_l~cT-l(1.18)T_1 ‘T-l[CT-lY ‘T-l(CT-2$ ‘T-1$ CT-l)] + (ltd) )1

for given CT_2, iT_l, where the dependence of PT ~ on CT ~, f!T-1
and CT ~

follows from (l.ll)T.

For each given (C iT-2$ T-l) the minimal value of (1.18)T-1 is obtained

iT ~) for CT-l in (1.18)T-1. This value is alsoby substituting GT_l(CT-2$ _

a ‘unction ‘f CT-2 and ‘T-1 and ‘iii be ‘enoted by

Recall that ~T ~ ‘s a ‘unction ‘f ‘T-2
and CT-l (see (l.lO)T_l). The

_ is obtained by taking the expectation ofminimum of (1.16’)T ~

vT_l[CT-2, ~T_l(PT-2, cT_l)] over eT_l, given CT-2, PT-2, to be denoted by

‘VT-l’
which is clearly a function of CT-2 and PT-2:
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(1.17)T-1 ‘vT_l(cT-2spT-2) = ‘CT ~{vT-l[cT-2’ ‘T-l(PT-2$ ‘T-l)]}

= n T_1[cT_2, ‘T_l(pT4$‘T-1 )ldfT-l(eT-l).

This is the

stage T-2 and to

Problem T-2:

end of stage T-1 and it is possible now to proceed into

solve the problem:

‘iven CT-3 and ‘T-3’
find stocks rules

~ 5 CT-2(”)) CT-l(”), CT(”)$ which ‘inimize

(1.16)T-2 E
‘t$T 2WT (lid) + /cT_3J ‘T-31

‘T-2’ CT-l’ ‘T = -

which by using the results of step T-2 is reduced to the problem of

finding O SC T-3(*), which minimizes

(1*16’)T-2 ECT 2{WT-2 ‘EvT-~(cT-2Y ‘T_2) I cIT-3~‘T_3}

which is in the same form as (1.16’)T_l in step T-1. Thus, by induction

the procedure can continue to steps T-3, T-4, .*., 10 Step 1 concludes

the computation.

In this study a

discussion was used.

approximated by sets

computational procedure which is based on the last

In this procedure all the continuous variables were

of discrete values. This will be discussed in the

next section (section 2) and in more detail in the appendix. Before dis-

cussing this technical aspect let us analyze the optimal stocks rules in

some detail.
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1.3 An analysis of the optimal stocks rules. In this subsection,

the optimal stocks rules will be characterized and some conclusions, which

are extensions of those which have been concluded in a primitive example

in part I (sec.

assumes that no

does not depend

3), will be derived. First, the simplest case, which

costs are attributed to holding stocks and that supply

on lagged price, is analyzed. The case with costs will be

discussed later.

Case (a): No cost no lagged price.

Assume that holding stocks costs

depend on the previous year’s price.

8 = ()and A = 1 (this will not affect

nothing and that the supply does not

For convenience assume also that

the qualitative results).

Under the present assumptions, the t-th term

does not include cost and is defined simply b:’

[1Pt-p;2
(1.20) w:= *

Pt

The supply functions are now

(1.21) Xt =x;+E5t

where x: is a constant mean of production at time

on P
t-1*

of the objective function

t which does not depend

The price equations (see (1.10), (1.11) above) become

(1.22) Pt = $~l[@t) -(Ct- Ct_l)] = Ojl[$t(~t) - Act]

(1.23) it = $;l(X: + Et)

3/– We reserve the unstarred Wt for the general case, which includes costs.
Hence, in general: *

‘t = ‘t + ec

However, in the no-cost case w; and Wt are identical.
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The following derivatives will be useful throughout the analysis and

therefore are derived at the outset:

From (1.20)

aw~
(1.24) ~= +(Pt -p:)&,

t t
Pt

and from (1.22)

apt
(1.25) ~= -

t
+::Pt) ‘ 0

where $;(Pt) is the derivative of the demand function with resPect to

price.
aw;

The sign of ~ depends on pt and P:.
t

af
(1.26) sign ~ = sign (Pt -p;) = sign {$~l[$t(pt) - Act] -P:},

t

which states simply that when Pt > p:, increasing the stocks’ change

increases the gap between Pt and p: , and the opposite is true when Pt < p*.

The second derivatives are:

From (1.24)

a2W*
t

[1

ap 2
2{&-

a2Pt
— =— + (Pt- p:) —}

*2aAc: pt t aAc:

and from (1.22) and (1.25)

a2pt
1

apt

[1

apt 3
(1.27) —= z 41:(Pt)”q= — @;(Pt) ,

aAc: [+;(pt)l
aAct
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where: $“t(Pt) is the second derivative of the demand function with

respect to P.

It follows that:

~2W*

II

apt 2 +:(Pt)
(1.28) ~=~ — {1+ (P

-0 [-($:(Pt)]}*
aAc: pt

aAct t

The sign of (1.28) is not a priori determined because ~~ can in general

be either negative or positive or zero. However, many common demand

functions, often in use, are convex and have $; ~O; (e.g., linear, constant

elasticity, semi-log, quadratic, etc.), therefore we assume:

(1.29) o:(Pt) ~ o .

It follows that

a2W*

(1.30) +> o ifPt >P;.
aAct

This property means that when Pt > p~, the marginal effect of ACt
*

on w
t

is positive and increasing, i.e., the more ACt, the greater is its marginal

effect in increasing w;. On the other hand, the decreasing part of w;
azm

with respect to ACt might still have ~ positive or negative. However,
t

it turns out that the positiveness of the second derivative is important

only in regard to the increasing part (this point will be clear later on).

Equipped with this formal discussion, let us start with the analysis of

the stocks rule of the last period T, following the procedure of the last

subsection (sec. 1.2). The problem to be solved is problem T of subsection 1.2.
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It is more convenient to transform it into terms of stocks change (ACT)

instead of stocks (CT). Also, since the lagged price (P~_l) does not

play any role in the present case it will be omitted from the formulation.

Restated, the problem of period T is:

Problem T: Given the beginning stocks

which minimizes

(1.31)T TEc (w~lCT-l)

subject to the constraint:

(1.32)T AcTL-cT_~

where the last constraint is

():CT=

implied by the

CT-l
+ ACT .

c~_l find a stocks rule AAC~(.)
* —L

nonnegativity Oft”T“

Recall fromw; depends on ACT through equation (1.20), (1.22) for t=T.

subsection 1.2 that in order to minimize the expected value (1.31)T it is

necessary to minimize w; for any given beginning stocks and market price

i.e., given CT_l and FT

(1.33)4’ minimize (w*lC -
A.. T T-19 ‘T)
AL
T

subject to

First

the constraint (1.32) and equations (1.20)(1.22) for t=T.

ignore the constraint and find the unconstrained minimum of

w; with respect to ACT. From (1.26) it is clear that given PT, WT has

~/denotation of c

, ~T tozthe right hand side of the vertical line
in (1.33) indicates thatT~~_l and pT-l are given”
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a unique minimum where PT = p;. Let us denote the unconstrained minimizing

stocks change

The condition

W Acj(cT-l, ~T) to indicate its dependence on CT_l and ~T.

I?w= p: implies, through equation (1.22) that
1. 1

(1.34)T Ac;(cT-l, ~T) = @~) - $T(P~)

which states simply that to minimize w;, ACT should be equal to the amount

which is needed to close the gap between the demand at ~T and the demand at

the target price p;. Figure 1 may help to demonstrate the determination

of ACO.
T

‘T

o*

I

I

/

WT(ACTl~T)

\

‘T
. p;

I 4
PT < p; pT > p;

d“

.>
ACT

A“C$ AAC:

Figure 1

Notice that although formally AC; is a function of both the beginning

stocks (CT_l) and the market’price (iT), in fact only the last one affects

AC;. This is typical only to the last period since it is assumed that it

does not matter what happens after T, hence the ending stocks CT is
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valueles~ by itself. The only consideration in period T is to put the

price PT as close as possible to p;. Later on it will be shown that in

general, the amount of beginning stocks at some period t, i.e., Ct-1,

affects AC;, because the ending stocks Ct are valuable in their potential

to reduce future instability, This consideration, which other buffer-

stocks proposals (see Cochrane [1] and part IS sec. 2.1) fail to take into

account, does not exist in period T.

So far, the constraint (1.2) has been ignored. However, AC~(CT_l, pT)

might violate it. In this case, the minimal feasible value of w; is

obtained with

ACT = - CT-l

i.e., dispose of all the existing stocks. Let us denote by A the optimal

value of a variable. In particular A~T denotes the optimal stocks rule

for t=T:

It is obvious that the first line of (1.35)T can be relevant only in case

that the market price FT is greater than the target Price P~, since only

in this case the change of stocks is negative (i.e., selling) and might

violate the constraint. Refer back to figure 1: two cases of beginning

stocks are presented by A and B.
CA

‘en CT-l = T-1 the amount of beginning

stocks iS OA. In this case there are enough stocks to dispose of and to

put the price equal to the target price. The optimal change of stocks is
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A“c; which is identical to the unconstrained one (AC;). When CT_l = C~-l

the amount of beginning stocks is represented by OB. In this case

AC; is not feasible and the optimal stocks change is AAC~ which is identical

B
to - CT-l.

,.
Let us summarize the characterization of A CT in the following

Proposition.

Proposition lT (Optimal stocks change for t=T). The optimal stocks

.
change for the last period (A CT) is generally a function of the beginning

.
stocks (CT-l) and the market price (PT). However the optimal stocks rule

for period T is to set the final price (PT) as close as possible to the

target price (p~)o
A

The beginning stocks (CT_l) affects A CT only in the

sense that it might be smaller than is needed for disposals of stocks in

order to equate

The ending

stocks rule for

‘T
=P;. Otherwise A*CT is

price which results from the

period T, given CT-l and 6T,

‘ot a ‘unction‘f CT-l”

application of the optimal

is denoted by fiT(CT_l,~T).

It is derived by substituting the optimal stocks change in the price

equation (1.22)

The feasible minimum value of w~, i.e., the value of W; under the applica-

tion of the optimal stocks rule for period T is denoted by V~(CT-l, ~T).

Using (1.36)T and the definition of w; in (1.20),
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(1.37)T V;(CT-l$ FT) = 4

where: ~T is defined by

Let us characterize

A *2
‘T- pT

[1 * ‘f CT_l ‘.‘$~r(P~)- $T(~T) = -AC;

‘T

o ‘f CT-l ~@T(p~)- $T(~T)= -AC;

(1.36)T

the dependence of fl.on the beginning stocks by
L

the partial derivative with respect to CT ~:

By (1.35) it follows that

A

a~T(cT-lS ‘T) =
(1.38)T

acT ~

1 0 ‘f CT-l ~’@p:) - ‘T(FT)

a@T aAAcT
.— .-
aAcT acT-l

1
-1 ‘f CT-l ~~T(p~) - $T(~T)

and using (1.24) and (1.25),

adT(cT+ ‘T) =‘1.+.(;T- p;) ~ < &&)<0 ‘f CT-l –
- +T(FT)

(1.39)T pT
acT-l

(1.39)T states that for a given ~T , &T decreases with CT-l as long as

CT-l is less than a certain quantity which by itself increases with

~T(i.e., $T(P~) - $T(FT)). Let us denote this quantity by ~T-l(~T).s’

y ~
T-l(~T) is in fact identical to the tinus unconstrained minimum

(-AC; = $T(p~) -$(~T)). In other periods, t # T, it will be seen that

(continued)
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‘en CT-l
is greater than ‘T(iT), V~does not change and from (1.36)

and (1.37) it is known that in this situation the final price is equal

to the target price (pT = p;) and V; is equal to zero.

Turn now to the second derivative of V~with respect to CT-l:

~2w* ~A’c 2 ~w*
a2V~(CT-~S ‘T) _ T

[]

T a2AAc~+—.—
2 aAC2 acT_l aACT 2

acT-l T acT-l

a2AcT
(1.38)T implies that ~= O , hence, using (1.28) and (1.38)T

acT-l

ac;-l

‘f CT-l &@T(p~)- @T(~T)

The positiveness of the first line of (1.40) is implied by the

assumption that $; > 0 (i.e., the demand function is convex) and by the

— A
‘act ‘hat’ ‘hen CT lCT-l(PT) = ‘T(p~) - OT(pT)’ ‘he ‘rice ‘T ‘s ‘rester

than the target price p; (see (1.36)T). The following Proposition sum-

marizes the discussion on the effects of the beginning stocks for period T.

Proposition 2T (The effect of beginning stocks, given the market

price, for t=’C). Given the market price (~T), there is a level of

(footnote~/ continued)

(a similar value Ft-l ~(~ ) is not identical to the

-AC:. We keep the special notation also for T for

unconstrained minimum

later comparisons.
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beginning stocks ~T-l(~T) which is an increasing function of ~T such that:

(1) Whenever the beginning stocks (C~-1) are smaller than ~T-l(~T),

then the optimal stocks change (ACT) is a strictly decreasing function of

the beg~nning stocks (C~_~), and @T(CT-l~ pT), the optimal value, is

positive, and is a strictly decreasing and convex function of CT-l.

(2) Whenever C~_l ~~T_l(~T), then A~T equals constantly to the

unconstrained minimum point, and ~T(CT_l,~T) is constantly O (i.e., complete

.
stabilization:

‘T
= p;).

Figure 2 illustrates this. As ~T approaches p: from above, the turn-

ing point ~T_l(FT) tends to zero. Whenever ~T * , @T is constantly zero.~ pT

‘T

o FT-l(iT) CT-l

Figure 2
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To conclude the analysis of the last period consider the expected

PT), recalling that ~Tvalue of V~(CT_l, - is a function of the compound

disturbance ST. (See 1.23.)

(1.41)T -1 0+ ET)]EV~(CT_l) = fV;[CT_l~ $T (xT ● dfT(cT),

The linearity of the expectation operation and of the derivative implies

that the derivative and second derivative of the expected value are equal

to the expected value of the derivatives. Hence the qualitative results

which have been stated for V~, given ~T, are valid for EV$ also. Theroeti-

cally, it might be that for any level of CT ~ there is a market price FT

which is high enough so that CT-l < ~T_l(~T) = PT(p~) -~T(~T). In this

case EVT will always have a negative derivative. However> practically it

can be assumed that there is a maximal price ~ such that any market price

—
higher than P has probability zero, i.e.:

Prob. {~ > ~} = O and Prob. {~ = ~} > 0

.

‘efine CT-l
= ET-l(F). Then for CT-l < ~T ~ , EV~ decreases in CT ~ and

for CT_l ~~T-l, EV~ is zero. The following Proposition follows directly

from (1.37)T, (1.39)T and (1.40)T (like Proposition 2) and characterizes

‘v~(cT-l) as a ‘unction ‘f cT_~@

Proposition 3T (The effect of the beginning stocks on the expected
.

value for t=T):
.

‘here ‘Xists a CT-l ‘Uch ‘hat: ‘henever CT-l < CT-l’

EV~(CT-l) is positive, strictly decreases in CT ~, and is convex in C
T-1 ●

Whenever CT ~

into terms of

.

CT-l < CT-l”

—

2 CT-I’ T T_l) constantlyEV*(C

derivatives: dEV$/dCT-l < 0

dEV~/dCT_l =
0 ‘henever CT-l

equals to zero.

and d2EV$/dC$-1

—

z CT-l”
Figure

Translated

> 0 whenever

3, which iS
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similar to figure 2, illustrates this Proposition: The upper part shows

the course of EV*(CT T-l)
whereas the lower graph, denoted by ME@T depicts

the marginal effect of CT-l on EV~. MEV~ is the derivative of E@T(CT-l).

Note that in the no-cost case E#T is the minimal value of the index of

price instability for period T, given CT_l, so ME@T can be called the

marginal destabilization of ACT_l in period T. lME~Tl will be called

z
MEvm

,T-1
.

CT-l
o

Figure 3
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respectively, the marginal stabilization of CT_l in period T. Proposition 3

and figure 3 show the stabilization effect of CT-l on period T up to a

—
point, C–T_l,in which complete stability is reached. This effect is the

factor which makes the difference between

stocks rule for the last period T and the

as other periods. Let us analyze now the

the determination of the optimal

optimal rule of period T-1 as well

stocks rule for period T-1.

The stocks rule for period T-1 has to solve problem T-1 of subsection 1.2.

Restated in terms of stocks change and under the special assumption of the

present case (no-cost,no-lagged price), the problem is as follows:

Problem T-1: Given the beginning stocks for period T-1, i.e. given

cT ~, find stocks rule A“CT_l(*) which minimizes

(1.31)T_1 E (Wf_l +EV:lCT_2)
‘T-1

subject to the constraint

(1.32)T-1 ACT_l~- CT-2 ●

‘;-l
depends on ACT_l through equations (1.20), (1.22) for t=T-l; EV~is a

_ ((1.41)T) and therefore, given CT_2 and the definition offunction of CT ~

ACT-1 = CT-l - cT_2s it is also a function of ACT ~.

Notice that in comparison to (1.31)T, (1.31)T_1 includes two terms,

i.e., w~-l and EV~, instead of WT only in (1.31)T.
%1

is a measure

of price instability of the current period T-1, while EV~ is a measure of

instability of future time (in this case t=T). This fact makes the

difference between the two problems. Recall from subsection 1.2 that in

order to minimize the expected value (1.32)T_1 it is necessary to
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minimize w~ ~ + EV~ for any given beginning stocks and market price, i.e.,

given CT_2 and pT-l

(1.33)T_~ minimize (w~_l + ‘V$ICT-2$ ‘T_l)

‘CT-l

subject to: the constraint (1.32)T-1, eq. (1.20)(1.22) for t=T-1 and

eq. (1.37)T, (1.41)T, which define EV~(CT_l). AS before, first ignore

the constraint and find the unconstrained minimum of w~_l + EV~ with

respect to ACT-l. In the discussion for period T, w; as a function of

ACT was characterized. This can be applied also to the relation between

*
‘t and *Ct of any period t. In particular wf-l(AcT-llcT-2$‘T-1) ‘as a
unique minimum at some ACT-l which equates the final price PT-l to the

target price P~_l. Denote the stocks change which minimizes W~_l by

T-l(iT_l).Q’ACOO In addition, for any ACT-l which is less than AC~~l(PT-l),

w; decreases monotonically with ACT-l and for any *CT_l which iS greater

?
*

increases with ACT_l. Furthermore, the marginalthan *C~~l( T_l)* ‘T-1

S!.Ew2 of w;_l ‘ncreases ‘ith ‘CT-l that is greater than AC~~l(PT-l)

(this follows from (1.30).

Figure 4 demonstrates this

of the figure, the course of w;

given iT_l. The minimum point is at AC~~l. In the lower section of

figure 4 the marginal curve of w~-l as a function of ACT_l is drawn.

characterization. In the upper section

-1 as a function of ACT_l is depicted,

6/
– It was shown that AC; was a function of only ~T and not of CT_l.

This is applied here to
%:1

which is a function of only ~T_l.



‘T-1

‘T-1 (ACT-l I‘T_l)

T

‘CT-l

‘CT-l
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This curve is denoted by MW~-l (marginal of w~-l). ‘ecall ‘hat ‘;-l ‘n

the case of no cost is a measure of current price instability (for period

T-1), SO MWy-l can be called the current marginal destabilization of ACT-l.

Let us now add the other term, i.e., the measure of future instability

EV~. Given cT_23 ~T.-lis a direct function of ACT-l and it is easy to

translate the dependence of EV~ on CT-l into a dependence on ACT-l.

Proposition3T stated that there is ~T_l such that for CT_l < CT-l, EV~ iS
.

.
a strictly decreasing convex function of CT_l , and for CT_l ~ CT-l, EV~ = O

—
constantly. Equivalently, ‘iivenCT-2 there exists A~T-l(CT-2) such that

‘he*ever ‘CT-l < ‘T_~(cT_2), EV~ is a strictly decreasing convex function

.
of AC

T-1‘ and ‘henever ‘CT-l –> ACT@T-2)~ EV;=O”
It is obvious that:

. .=
‘CT-l(CT+) = CT-2 - CT+ “

Graphically the presentation of EV*T-l(ACT-l + CT-2)9 given cT_2S

is almost identical to figure 3; one only has to translate CT_l into

ACT-l.
‘s CT-2

increases, the same value of EV~ is obtained with smaller

stocks change, so that an increase in CT-2 sh$fts the EVT curve parallel

to the left. In figure 5, two EV~-l(ACT-l + CT-2) curves are depicted in

A
the upper section, corresponding to two levels of CT_2, namely, CT_2 and

B A B
CT-2‘ ‘Uch ‘hat CT-2 < CT-2*

Their marginal curves are drawn in the lower

section of figure 5.

Let us now study the behavior of the sum w~_l + EV~ as a function of

the stocks change ACT-1$ given the beginning

price PT-l. It is clear that the minimum of

smaller than AC~~l(~T-l), because for such a

‘tocks CT-2 and the market

the sum cannot be with ACT_l

level of ACT-l, w~-l strictly
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EV.
J.

‘)EVT(ACT-l$+ CT-2.

A~T_1(c;_2) A~T_1(c:_2) ‘CT-l

‘CT-l

A B
CT-2 < CT-2

Figure 5
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decreases with ACT-l and EV$ is decreasing or equals O.

relatively small amount of beginning stocks (CT_2), EV~

decreasing at AC~~l(~T-l), i.e., w~-l is at its minimum

If there is a

might still be

but EVT can be

reduced more by increasing the stocks change ACT-l. This means that at

AC~_l(~T_l) current price (PT-l) is completely stabilized and equals the

target price (p~-l). However, future price instability can be reduced

more. It is worthwhile to increase ACT ~ as long as the marginal increase

of current instability is smaller than the marginal reduction of future

instability. Using the terminology defined above: It is worthwhile to

increase ACT-l as long as the marginal current destabilization (MW*~-1) is

smaller than the marginal future stabilization (lMEV~l). The minimum of

*
‘he ‘urn‘T-1

+ EV~ is obtained where MW~-l = lMEV~l ~ - MEV~ (i.e., the

derivative of w; with respect to ACT-l is equal to minus the derivative of

EV~. Let us denote the unconstrained minimum point of w~-l + EV~ by

ACO FT-~(cT_~, T_~) to indicate that it depends on CT-l as well as on ~T_l

(compare to Ac; which is a function of only ~T). The convexity of w~-l

in ACT-l for ACT-l > AC~O1- and the convexity of EV~ in CT_l ensure that

there is a unique minimum ACOT-1“

Figure 6 demonstrates the determination of AC~-l(CT-2, ~T-l) in the

case which has just been discussed, i.e., when

The curve of w~-l(ACT_ll~T-l) and its marginal curve &T-l are drawn in

the upper and lower sections of figure 6, respectively, exactly as in

figure 4. The curve EV~(ACT-l + c~_2) is an E@T curve corresponding to a

A
relatively small amount of beginning stocks CT_2 = CT-2 , as in figure 5.
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,
I

o“

o

EVT(ACT_l+ c;-2) VT-l+ EV:

\wT(AcT-llFT-~ /

.
(CB“,-l T+)

f

r

,, T_l (i,_l)ACoO F
“;-l(C:-2’ T-l)

ACT-l
..

(CB -
I . ‘A

“;-l T-2’PT-1) , ACT-l(C,-2)

Figure 6
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Instead of drawing the marginal curve of E@T, the negative of it is drawn

in the lower section of figure 6, denoted by lMEfl(. The curve of the sum

w; ~ + E? is also drawn in the upper section. Its minimum is at

AC$-l(C:-2, iT-l) where the marginal current destabilization curve (MW~_l)

intersects the marginal future stabilization curve (lMEV~l). Suppose now

that there is a relatively large beginning stocks (C~_.2) such that at

00 (i
*

‘CT-l T_~), EVT iS O. In this case it is obvious that the minimum of

*
‘he ‘urn ‘T-1

+ EV~ is obtained at AC~O1(~T ~), i.e.:

P“;-l(CT-+ T-l)

There are enough stocks to completely

00 (i ) ,
= ‘CT-l T-1

stabilize both current and future

prices. The last

EVT(ACT-l + c~-2)

A
CT-l“ W:-l + Et:

case is demonstrated also in figure 6.

Bcorresponds to beginning stocks CT_2 = CT-2 greater than

is the curve of the sum in case B and lME~~l is the

Bmarginal future stabilization corresponding to c
T-2“

Notice that in general the change of stocks AC~_l which minimizes

‘;-l
+ EV*T-1$ given cT_2 and ‘T_~9does not necessarily minimize current

price instability but may keep the end price (PT-1) greater than the

target price (P~_l). This is so in order to accumulate adequate stocks

for future contingencies, expressed here by EV~. The need to do that is

weakened the more beginning stocks (CT_2) exist. Therefore, the more CT-2

is, the closer is the minimizing stocks change AC~_l to AC~~l and the

closer the final price (P~_l) to the

is the minimum value of w~-l + EV~.

is a beginning stocks level, call it

—

target price (p*T-l) and the smaller

Given any market price ~T-l, there

‘T-2(FT-~), such that if

*
CT-2 L CT-2(PT-1)’ then the minimum of w

T-1
+ EV~ is O (i.e., complete
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stabilization of current and future prices). FT_2(~T_1) iS the amount

of CT z for which the EV~ curve intersects the WI-l CUrVe at w~_l = ‘v; = 0

(also-MW~l= lMEV~l= O). Hence, ~T_2(PT_1) is defined by

.

CT-l
-F -T-2(PT-1) = “~!@T-l)

or

‘z - AC:l(iT_l) .‘T-2(pT_l) - T-1
,,.,

Let us consider it now.

Ac~-l(CT-2, iT_l) is smaller

So far, we ignored the constraint (1.32)T_1.

If it happens that the unconstrained minimum,

than - CT_2, AC~-l is not feasible and the best which can be done is to

reduce stocks to zero, i.e., the optimal stocks change in this case is

- CT-l”
To summarize, let us denote the optimal stocks rule for T-1 by

‘CT-l(CT+ ‘T+)”

/-,

(1.35)T-~ ‘tT-~(cT-2> ‘T-1)

[

- CT-l
a if cT-2 5- ‘C~-~(cT_2> ‘T_~)

{

00 (i “&l(cT+ ‘T+)=
“;-l(CT-2’ ‘T-l) ‘ CT-l T-l) ‘f -

C:l (iT_l)\

I

It is obvious that the first line of (1.35)T_1 can be valid only if
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the market price FT-l is greater than the target price p~_l because onlY

*
‘hen‘T-1 >‘T-1 ‘ Ac~-1(CT_2, ~T_l) can be negative. Recall again that

although the optimal stocks rule of the last period T was also a function

of the beginning stocks (C~-1), it depended on it only through the constraint

(1.32)T, i.e., when there are not enough stocks to dispose of in order to

get the unconstrained minimum. Otherwise, A~T was a function only of the

market price ~T. However, for T-1 the optimal stocks rule A“CT-l is a

function of the beginning stocks CT_2 even if the constraint is not violated

by the unconstrained minimum. This is true even if the market price is less

than the target price within a certain boundary. This is due to the need

to accumulate stocks for the future (i.e., for T). Only when there are

enough stocks to completely stabilize both current and future prices, then

the optimal stocks depend on the market price and the only consideration

then is to equate the price to the target price. Recall that the minimal

level of beginning stocks which enables the current price to be equated

to the target price, as well as all possible future prices to be equated

to the target price, was denoted by ~T-2@T_l)”

The following Proposition summarizes the characterization of CT_l(.):

‘repositionlT-l

optimal stocks change

stocks (CT-2) and the

(Optimal stocks change for t=T-1): Generally the

for period t=T-1 is a function of the beginning

market price ~T_l. (1) For a given ~T_l > p; ,

there exists a level of beginning stocks, gT_2 , such that whenever

CT-2 z CT-2 all the existing stocks will be disposed of in order to

reduce the price PT-l as close

nothing will be carried out to

,~/in fact, c
–T-2

s Max {O,

as possible to the target Price P~_l J and

period T.~’

- AC;-l(CT-2, i?T-l)}



76

(2) For any

c“T.2(pT_l) which

and T. Whenever

given ;T_l there is also a quantity of beginning stocks

enables us to stabilize completely prices of both T-1

—

CT-2 “T-2(PT-1
) the optimal stocks change is constantly

equal to that amount which is needed to equate the current price to the

target price. In this case, and only in this case, the optimal stocks

change depends qn price only.

(3) Whenever the beginning stocks are between gT_2 and ~T_2 the

optimal stocks change is a decreasing function of C*-2, given i’T-1“

Denoting the end price when applying the optimal stocks rule for

A .

t=T-1 by pT-l(CT-2, ‘T_l)~ it can be concluded that

(
“*

> ‘T-1 ‘f CT-2 ‘ET-l(PT-l)

(1.36)T ~T_l(CT_2, iT-l)
{

1
—=P;-l ‘f CT-2 “T-l(pT-l)

Turn now to the value of w; ~ + EV$ under the optimal stocks rule,

which is denoted by V~_1(CT_2, pT-l)

* “*
‘T-1 = ‘~-l + E ‘T

From the above discussion it follows that
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(1.37)T-1 * (c iT_l)
‘T-1 T.-2’

I
*

‘T-1

*=
‘T-1

o

(- cT_:

(Ac;_l

liT-~)-1-EV~(0) if

.
pT-~) + ‘vj(cT-2 + ACj-l) ‘f

if

0 (c Q
CT-2 5- ‘CT-l T-2’

- ACj_l(CT-2, ~T_l)

< CT-2 5FT-2(pT_l)—

ET_2(FT_l) :CT-2

To characterize the relation between V; ~ and C T_l , let usT_2, given P

derive the partial

CT-2 5- AC~(CT-2y

respect to CT_2 is

of all the stocks.

derivative is also

derivative with respect to CT_2. For

‘T-1
) it is obvious that the derivative of A“CT_l with

negative, since in this case it is optimal to dispose

—

ln ‘he case ‘f CT-2 > CT-2 –> “!-l(CT-2’ ‘T-1
) the

negative, i.e., the more beginning stocks, the less

acquiring of stocks (or more selling from stocks). Formally this can be

shown as follows:

The condition for the optimum is:

aEv~(cT_2+ ‘“cT_~)
.

acT-l

Hence:

~2w* a2Ev*

;-l dAACT ~ = -~ (dA”CT_1+dCT_2)
2

a‘CT-l acT-l
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~2w*
T-1 > ~
2

a‘CT-l

a2Ev*
T

2
~o

acT-l

therefore

.

‘A CT-l
dCT z

‘0= ‘CT-l
> C:l (iT-l). (See (1.30))

by Proposition 3T

--
9

ac;-l

a2w* a2Ev*
T-1 + T
2 2

a‘CT-l acT-l

<0

—
(i ) *ACT-l = *C:l(FT-l

‘or CT-2 ~cT-2 T-1
) and the derivative equals O.

In summary:

1-1 ‘f CT-2 2
F- AC~-l(CT-2s T-l)

1
-a2EvJ/ac~-1

=
a2w* a2Ev* ‘f - ‘c~-l(cT_2~ ‘T-1) ~cT-2 ~sT-2(pT-1)

T-1 + T
2

a‘CT-l
ac~-l

The marginal change in V~-l(CT-2, ~T-l) is given by
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(1.39’)T-1
N;-l(CT-2, FT-l)

acT-2

;-l/aAcT-lwhere: aw

%1(AcT-ll~T-l)aAAcT-l
aAcT-l aCT-2

is given by (1.24) and is

—

cT_l(pT_l)5CT4 J
in which case it is O ,

~EV;(CT_l)
is negative except when ‘T_~(iT-2)

acT-l

.
@(cT-l)

+
[ -)aACT-l

acT-l
1+acT2

positive, except when

2CT+ * in which case it is O,

aA;T ~
and O ~ ac—> - 1 is given

T-2 =

Using the details of (1.38)T-1

av~-1(cT_2, iT-l)

(1039)T_~
acT-2

/
-aw;-l

a‘CT-l

by (1.38)T_1.

we summarize:

if c
T-2 L

T_l(cT-2, fiT_l)- ACO

. -aw;-l a2Ev~/ac~-1

aACT_l a2w*
T-1 +

a2Ev:

aAc; ~
2

acT-l aAcLl ac21

if - AC~-1(CT_2, i’T-l)

—

~ CT-2(PT-1)

— .
) < CT+‘f CT-2(PT-1 –
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(1.39)T_~ is a$ follows. The first line of (1.39)T-1 refers

which the constraint (1.32)T-1 is effective, no stocks are

period T and all CT-2 is sold at period T-1 to reduce the

price to as close as possible to the target price p~_l. The second line

of (ls39)T_1 refers to the case in which both the current and future

instability measures are affected by CT-2: On the one hand, the more

cT z, the less will be the stocks change A“CT-l(see (1.38)T_1) and the

closer will be the current price (~T_l) to the target price (P~_l).

(Recall that awl-l/aACT-l is positive when PT-l > P;.) On the other hand,

although A’CT-l ‘s ‘educed ‘hen CT-2
increases, it decreases less than

the increase in CT-2,(recall from (1.38)~ ~ tht aA”cT-1/acT-2 < - 1).

Therefore in total, CT_l = CT-2 + ACT_l, increases with CT-2 and reduces

the measure EV~ of future instability. Finally, the third line of (1.33)T-1

corresponds to the case where both current and future prices are already

stabilized, hence additional beginning stocks make no difference; the sum

*
of w + EV~ remains constantly zero. To complete thecharacterization

t-1

of the optimal stocks rule the convexity of V~-l(CT-2, ~T_l) in CT-2 will

be proved:

It was shown that at the optimal state, given ~T_l and CT_2, the

final price (PT_l *
) is always greater or equal to p~-l; hence wT_l is convex

‘n ‘CT-l (since a2w~-1/aAC~-l LO when PT-l > p~-l).

convex ‘n cT_l$ hence it is convex in ACT-l and CT-2

Altogether, w~-l + EV~ is convex in ACT ~
and CT-2”

can be proved:

Leuma: Let 3(x, a) be convex in x and a.

In addition EVT is

(CT-l= CT_2+ ACT-1).

The following lemma

Let x(a) be a solution of the following minimization problem:
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Given a,

Min %(x, a)
x
-a<x—

and let ~(a) be the minimum value of 3 in this problem, i.e.:

~(a) = %(;(a), a) s3(x, a) for all x such that - a 5x.

8/
Then %(a) is convex in a.–

Apply the lemma to the problem of minimizing (1.33)T_1 subject to (1.32)T_1

for a given PT-l by substituting ACT-l for x, CT_2 for a, wT(ACT-ll~T_l)

+ EVT(CT_2 + ACT_l) for ~(x, a) and ‘T_~(cT-2, ‘T-l) for Z(a). The

consequence is that VT-l(CT-2, iT-l) is convex in CT_2, for any given ‘T-~.

Let us summarize the effect of CT z on VT-l(CT z, ~T-l) by the

following Proposition, which is very similar to Proposition 2T.

‘r~position 2T_~ (The effect of beginning stocks, given the market

price for t=T-1). Given the
.

beginning stocks, ~ (PT-2 T-l)

such that:

market price (~T_l) there is a level of

which is an increasing function of fiT-l,

(1) Whenever the beginning stocks (CT-2) are smaller than ~T-2(~T_1),

8/,— Proof of the lemma: We have to prove that:

i[Aa’ + (1-A)a”] ~A8(a’) + (1-A)2(a”), O LA 51.

(a’, a“ are the two values of a.)

Define x ~ A~(a’) + (1-A)~(a”).

.
x(a’) ~- a’, ;(a”) > - a“ ~ x > Aa’ +

—
(1-A)a”.

(continued)
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A

then the optimal stocks change (ACT) is a strictly decreasing function of

cT-23 and V;-1(cT_2, iT-l), the optimal value, is positive and is a strictly

decreasing and convex function of CT-2.

(2) Whenever CT-2 ~~T-2(~T_1)s A~T-l eqUalS constantly to the

unconstrained minimum of wT(i.e.~ to AC~~l(~T-l)) and VT-l T-25 ‘T) ‘sk (c

constantly O (i.e., complete stabilization of both current and future prices).

Returning to the original problem T-1 in which i-thas to minimize the

expected value E(w~_l + ~V~), let us calculate the expectation of

‘~_l(cT-2~ ~T_l)(recall that ~T-l is a function of cT_l(l.23)).

(1.41)T-1 (c ) = rv*
‘VT-I T-2 T-l[CT-2’ ‘;~l(x;-l + ‘T-l)]dfT-l(sT-l)”

As in period T, all the qualitative results which characterize the

*
‘elatiOn between‘T-1 and CT_2, for any iT-l, are translated to the relation

*
between ‘VT-l and CT-2”

In addition the assumption that there exists ~

such that

implies that

zation for a

Prob {P > ~} =0, Prob{P=~}>O

* (C ) reaches its minimum at O (i.e., complete stabili-
‘VT-l T-2

large enough CT-2)●
In short,

‘reposition3T-1” Proposition 3T which was stated for t=T is true

for T-1.

(footnote~/ continued)

‘33[x, Aa’ + (1-A)a”] ❑ 3[A4(a’) + (l-A);(a”), Aa’2[Aa’ + (1-A)a”l _

c2
+ (1-A)a”] ~ Ai3[;(a’),a’] + (1-A)3[;(a”,a“)] ~ A;(a’) + (1-A)2(a”)

o 01 is implied by the fact that %(”) is a minimum, 2 is implied by the

convexity of %. The other equalities are followed by definition Q.E.D.
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It is now possible to characterize the solution for t=T-2, T-3, .... 1.

All the subproblems are qualitatively similar because of Proposition 3T_1.

Hence

Proposition 4. Propositions IT-l, 2T_1 and 3T-1 are true for all

t=l, 2, .... T-1.

Summarizing the analysis of the no-cost case, it was shown that the

optimal change of stocks is in general a function of both the market price

and the quantity of beginning stocks. Only when there are enough stocks

for complete stabilization for the whole planning period does the optimal

stocks change depend only on price. Besides the last case, the optimal

change of stocks is a decreasing function of the beginning stocks; neverthe-

less, the carryover increases with the quantity of beginning stocks. In

addition, in the no-cost case it is optimal in general to accumulate more

than is needed to stabilize current price. Hence in general, the mean

price is higher than the target price.

Next we analyze the case with storage cost. Some of the results of case

(a) are still valid but some of them are not. In particular it will be shown

that it is not generally true that it is optimal to accumulate more than

is needed to stabilize current price and that if costs are relatively high,

it might be optimal to accumulate less than that.

Case (b): Storage cost, no lagged price. Let us assume now that

unit storage cost is 0 per period of time. Suppose also that the valuation

of instability (as measured by the instability index) in terms of cost is A.

The objective to be minimized by the stocks policy is

[1Pt- p: 2
E{[l p; A+ect] 1 }

(l+d)t
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For convenience let us continue to assume that the discount rate

zero (no effect on the qualitative results). Defining the t-th term

the objective function by:

*
=W

‘t t
.A+ct”e.

is decomposed into instability (w;) and cost (CT). The

objective function can be rewritten as:

(1.42)
T T

E{ ~wt} = E{t~lW; ● A + Ct “ e}.
t=l =

Equations (1.20) through (1.30) are valid also in the present case

and we continue to assume no lagged price.

Starting with the last period’s stocks rule:

Problem T: Given CT ~, find stock rule AACT(CT_l, ~T) that minimizes

(1.43)T E{wT} = E{w~A + CT ● e}

subject to the constraint

(1.44)T ‘CT z - CT-l “

The stocks rule is the solution of the following problem:

‘iven CT-l and ~T

(1.45)T minimize wT
ACT

= W;a + ecT

*
= ‘Ta + ‘Ac + 8CT-1

subject to the constraint (1.44)T.
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As in the no-cost case, first we analyze the unconstrained minimum

of WT. The necessary condition is to equate the derivative with respect

9/to ACT to zero, i.e.:–

awT aw~(ACTl~T)~ + ~
= ~ (pT- P;) $~(:T)(1.46)T — = +0=0.

aAcT aAcT
PT

a function of ~T and ACT (see (1.22)). (1.46)T

Then, given ~T, the minimizing unconstrained

can be solved.

Recall that PT is

can be solved for PT.

stocks change, AC~(~T)

The price which solves (1.46)T does not depend on the beginning

stocks CT-l, hence the unconstrained minimizing change of stocks, AC~(~T),

is a (decreasing) function of only the market price (~T) and not of the

beginning stocks (CT_~)●
It should be noted that, contrary to the no-cost

case, the price which solves (1.46)T is not equal to the target price but

is lower than the target price. Denote this price by P;.

The second derivative of WT with respect to ACT is identical to that

of w; (see (1.28)). In the present case the convexity of the demand

function is not sufficient to ensure the positiveness of a2wT/aAC~

because when PT < p;, the

or interchangeable. This

procedure, since it might

second derivative may be positive or negative

has implications for the computational

not be sufficient to find a local minimum

to ensure globality. However, linear

9/
– See (1.24)(1.25) for aw~/aACt.
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demand function and others (e.g., constant elasticity) do imply uniqueness.

To avoid complexity, let us assume that the unconstrained minimum is unique

and that in the relevant range (i.e., with high probability), Wt is convex

in AC
t“

Figure 7 demonstrates the determination of the unconstrained minimum.

The curve of w~(ACTI~T), given ~T, is drawn in the upper section, and its

marginal curve is denoted by MW~ in the lower section. Given CT ~, it can

be seen in (1.45)T that the cost part ( CT) can be separated into variable

cost (6ACT) and fixed cost (@CT_l); only the first one affects the solution

and is drawn (after dividing by A) in the upper section. The negative of

its marginal is depicted in the lower section (the horizontal line through

;) ●
In addition, in the upper section the curves of instability plus

variable

vertical

the same

marginal

cost (w; + + ACT) and plus total cost (w* +TT ~ CT) are depicted (the

distance between them is } cT_l). Both of them have, of course,

minimum at AC~(PT) where the marginal curve Mw~ intersects the

cost curve in the lower section. Notice that increasing the

beginning stocks (CT_~) only shifts the upper curve upwards but does not

change its minimum. Notice also that the minimum of AWT + OCT is to the

left of the minimum instability (i.e., minimum of w;),
*

so that POT < pTO

The value of the instability measure w; at the unconstrained minimiz-

*0
ing stocks change, AC~(~T), is denoted by VT . Contrary to the no-cost

case, V? is positive (i.e., price is not completely stabilized).

Increasing ~T causes a parallel shift to the left of all the curves

*
which include w

T“ AC~(~T) also decreases but the value of instability

measure at AC; (i.e., VT) is not changed.

As in the no-cost analysis, AC~(~T) may not be feasible, in which case



87

A

*O

‘T
)

w;(

/

1
PT<p; , PT>p*

w~(ACTliT)

‘1 0ACW~(AcTliT)+~ T

F I

.. —. —. ——

-.“

,/ I

A( I

@“
*

‘T

— — .—.-.-_~ ACT

AC~(~T) ,,/

e
e.—

-—
A

A

.,,,//--

/“’
/“

Figure 7



88

the optimal rule is to set the price as close as possible to P;, i.e., to

dispose of all stocks.

Define ~T-l(pT) by

~T_l(;T) ~ - AC:(iT)

the optimal stocks change for T is:

1

- CT-l
if cT_l ~FT_l(i’T) z - ACj(iT)

(1.47)T AtT(CT-l, iT) = ‘

1

~_l(iT)AC” if cT_l ~~T_l(iT) z - ACj(iT)

The value of WT under the optimal rule is denoted by VT(CT_l, FT) and
.

its corresponding instability component by V~(CT-l> ‘T). They can be

A
obtained by substituting ACT in WT and W; respectively. Given ~T

higher than P;, a typical course of V~(CT-l, ~T) is as follows: Starting from

zero beginning stocks (CT_l = O), V; decreases until

*

‘T =
o. Then it increases with CT_l as long as CT-l

CT ~ ~~T_l(i!T), vJ(cT_l, ~T) is mnstanth equal to

stocks change is constant in this range (see (1.47)T). A typical curve

it reaches its minimum,

—

s CT-l(PT)”
For

v~ (because the

*
of V;(cT-l) iT) (given iT > PT) is depicted in the upper section of figure 8

with its marginal curve in the lower section (denoted by MV~).

AS to the course of VT(CT-l, ~T) = V~(CT-l, ~T) + oCT~ uP to ~T-l(~T) it

coincides with V~(CT_l, ~T) because no stocks CT are carried over. HOW-

ever, for CT-l > ET-l(pT)~ the change of stocks constantly equals AC~(~T),

so that
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i.e., it is increasing linearly

Dividing through by A, the

MVT/A are drawn in figure 8.

‘ith CT-l”

curve of VT/A and its marginal curve

The effect of a higher market price is to shift the w~(ACTl~T) curve

to the left (i.e., to set the same price one must decrease the change of

stocks). AC~(~T) also moves to the left (and by definition ~T_l(~T) increases).

However, V? is not affected because the price P?, which solves (1.46)T,

is not changed. It follows that the effect of increasing ~T is to shift

the curves of figure 8 to the left. In figure 9, three curves of VT/A

and V; are drawn for three different market prices ~A, ~B, and ficsuch that:

GA > ~B
=P*’$C*

Their corresponding marginal curves are drawn in the lower section of

figure 9.

The following proposition is analogous to Propositions lT and 2T in

the no-cost case and summarizes the above analysis.

Proposition 5T (Optimal stocks change for t=T).

(1) The optimal stocks change for the last period (A~T) is generally

to set the price as close as possible to P;, which is lower than the target

price p;. The beginning stocks (CT_l) affects A6T only in the sense that

it might be smaller than the quantity needed for disposal in order to

equate PT = p; ● Otherwise A~T depends only on ~T.

(2) Given the market price (~T), there is a level of beginning stocks,

z-T-~(pT), which by itself is an increasing function of P
T’

such that:

(a) Whenever CT-l~FT_l ‘T(P ), the optimal stocks change is equal

to-c “ VT(CT-l, fiT)coincides ~th AV~(CT_l,T-1‘ ~T) and may
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first decrease with CT ~, but when closer to ~T(~T) it

‘ncre-es ‘ith CT-l”

(b) Whenever CT_l > ~T_l T ,(~ ) the change of stocks (A”CT)

is constantly equal to the unconstrained minimum point

*
(AC;(iT) = - ~T_l(FT)); ‘T(cT_ls ~T) is constantly equal

*O
to VT > 0 (compare to O in the no-cost case), and VT(CT_l, ~T)

increases linearly in CT ~.

Before proceeding to problem T-1 the expectation of VT(CT-l, ~T) must

be computed. It is denoted by EV (CT T-l)- According to our notation EVT

can also be separated into instability and cost terms, i.e.:

(1.48)T EVT(CT-l) = EV~(CT_l) ●

= EV:(CT-l) “

~~nerally EVT and EV~ are weighted sums

A+ f3eECT

A + (3CT~ + (3EACT-l(CT~) .

of the individual curves corres-

ponding to different market prices, where the

(or densities in the continuous case) of ~T.

‘~(cT-~, ~T) it follows that the greater CT-l

weights are the probabilities

From the analysis of

is, the larger is the set of

market prices (~T) for which CT-l is greater than ~T_l(~T); hence the proba-

bility of V~(CT-l,
*O

;T) being equal to VT increases with CT-l. Hence,

*O
EV~(CT_l) approaches VT when CT-l increases (compare to O in the no-cost

case). Its shape depends on the probability distribution of ~T. It might

be a decreasing function of CT-l for all CT ~, but also may first decrease

*O
up to a minimum point and then increase and approach VT . However, it is

never zero.

In figure 10 sotw VT/A and V; curves corresponding to different market

prices (iA > iB > ...
-F * *

> P ) are drawn as well as the EV and EV /A curves.
T T
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*
me Ev~(cT.l)curve is a weighted average of the V parts of these curves.T

It has a negative slope but as was stated, it might also have an increasing

portion.

In a similar way EVT(CT_l) is a weighted average of the VT(CT-l, ~T)

functions.
‘s CT-l

increases, VT(CT-l) approaches a slope of 0 because of

the increasing weight of the cost term eECT(CT-l). A typical EVT/A curve

is drawn in figure 10. It always has an increasing portion as CT_l

increases and it might also have a decreasing portion when CT-l is

relatively small.

Let us summarize the last

Proposition 6T (Effect of

*

analysis in the following proposition.

beginning stocks on EV and EV* for t=T).

The shape of the EVT and EVT curves depends in general on the probability

distribution of ~T. The instability measure EV~(CT-l) is always positive.

*O

increases, EV~(CT_l) approaches VT . EV~(CT-l) alwaysb CT-l has a

decreasing portion when beginning stocks are relatively small. However,

it might reach a minimum and then increase with CT-l.

The whole term

EvT(cT_l) = AEV~(CT-l) + 8ECT(CT-1)

approaches a slope of 0 > 0 when CT ~ increases. However, with small

beginning stocks, EVT(CT_l) might decrease with CT_l.

To conclude the discussion of the last period, let us investigate

the effect of changing A, i.e., the value of instability in terms of

costs.
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Given ~T, for CT-l < ~T-~(pT) ‘e ‘ow from the previous analysis that the

.
opt:l,ma]chapt:e01 stocks l.~AC,I,- - (;,l,,-l,shenm n m{lr};lnal chim}te Ill A {lot’~nol

affect ACT. lt also does not affect the instability measure under the

optimal rule, i.e., V:(cT-l, @. Formally, we can write:

dA;T dV~
(1.49)T — =— =

dA dA 0 ‘or CT-l < ~T-~(iT)O

—
(~ ) the effect of A on A~T can be analyzed by differ-

‘or CT-I ‘CT-l T

entiating the condition for minimum (1.46)T.

~w~(ACT IiT) a2w~(cT IFT)
(1.50)T aAcT

dA +
aAC:

or

dAiT aw;(AcT [iT)/aACT
(1.50’)T ~ = - >0 for

a.a2w~(cT liT)/aAC~

AdA~T = O

CT-l
i> ‘T-1( T)

The numerator is negative since the minimum of WT is when PT < p;,

i.e., in the decreasing portion of w;. The denominator is positive

because of the 2nd order condition for the minimum. Hence

dA~T —
—. (i )
dA PT> 0 ‘or CT-l > CT-l T

which means that it is optimal to accumulate more stocks when A is greater.

The effect of A on the instability measure under the optimal rule can

be characterized by

dV~ aW; dA~T
(1.51)T — = — “

. .

dA
—<o

aACT dA ‘or CT-l > CT-l(PT)”

i.e., the instability measure decreases as A increases.
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‘iven ‘T and CT-l’
one can trace efficient combinations of instability

(V;) and cost (OCT)(i.e., given V~ minimize 6CT or given 13CTminimize V;)

by changing A.

The marginal rate of substitution of instability V; for cost (i.e., the

slope of the efficiency frontier, given C -T ~ and @T) is - 1.

~is is followedby (1.51)T:

(1.52)T
d06T 0= =-
dVT

a.
CT-l‘ ‘T aw~/aAcT

The last equality is implied by (1.46)T.

So far we held ~T as given. However, (1.50)T and (1.51) are true

10/
for any ~T provided CT_l > ~T_l(FT).— On the other hand, when

CT-1
< ET-l(~T), (1.43)T holds and dV~, d6T both equal O. Therefore,

(1.52)T is true also for the expectation, i.e.,

dOE~T
(1.53)T =- A.

dEV~
CT-l

The meaning is straightforward: EV~ measures instability of period

T’s price, OE~T measures the mean cost to reduce instability. To be effi-

cient the mean cost for a given level of instability must be minimized.

Equivalently, instability must be minimized for a given level of mean cost.

Being on the efficiency frontier there is a substitution between insta-

bility and cost: - A is the marginal rate of this substitution. Later on

we shall see that this is true for the whole planning period (t=l, .... T).

KJ/At c

T-1 =
~T-l(~T) the derivatives do not exist. However, (1.49)T, (1.50)T

and (1.51)T hold for the proper right hand and left hand derivatives.
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Let us now analyze the optimal stocks rule for t=T-1, which is the

gen~ral case that also fits the other periods t=l, .... T-1.

Prol@em T-1: Given CT-2, find the stocks rule “CT-l
(*) that minimizes

(1.43)T-1 E{wT-l + EVT] = E{Aw~-l + ‘CT-l
+ AEV: + 6ECT)

subjiectto the constraint

(1.44)T_1 ‘CT-l 2- CT-2

whene EV is obtained by the solution of problem T.
T

.
(c -

‘he stock ‘ule CT-l T-2’ ‘T-1
) is the solution of the following

prolllem:

‘iven CT-2 and ‘T-1’

(1°45)T_~ ‘inimize ‘T-1 + ‘VT

‘CT-l

1P + AEV~(CT-2 + ACT_l)= AW~-l(ACT_l T_l) + ‘CT-2 + ‘ACT-l

+ 6ECT(CT-2 + ACT-l)

subject to the constraint (1.44)T-1.

In the last row of (1.45)T_l,we indicated explicitly that given

*
i
T-1‘ ‘T-1

is a function of the stocks change ACT-l. Also we separated

CT-l ‘0 CT-2 + ‘CT-l
such that given CT-2, only ACT-l plays a role.
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As before, first analyze the unconstrained minimization, for which

it is necessary that the derivative with respect to ACT-l vanishes, i.e.:

aw~-l(AcT-lliT-l)+el + ~AaEvJ(cT-2+AcT-1)+~aEcT(cT-2+AcT-1)1
(1.40T_1 [a

aAcT-l acT-l acT-l

. 0.

(1.46)T_l iS composed of two parts: The expression in the first brackets

describes the marginal change in current loss (composed of instability

(w~-l) and cost (OCT_l)). The expression in the second brackets describes

the marginal change in future loss ( also composed of instability (EV~) and

cost (OECT)). Only an expression similar to the first one was involved in

problem T, and this makes the difference between T and the other periods

exactly as it was in the no-cost case.

Rearranging (1.46)T-1, it can be written as:

aw~ ~ aEv~ aEcT
(1.46’)T_l A “ - +6 = - A—- —

a‘CT-l acT-l
e acT-l “

(1.46’)T-1 states that to minimize (1.45)T_1, it is necessary that current

marginal net loss (composed of current marginal destabilization

[ Jaw*
aaAcT ~

and current marginal cost (6)) should be equal

net benefits (composed of future marginal stabilization

( aEc- )

[OacT_~
.1.

marginal future cost ). Equivalently we can write

*

awT-l = - ~
aEV~

[ -1

aECT
— -

A aAcT ~
aCT-l

e 1+ acT ~(1.46’’)T_1

to marginal future

which states that for optimality it is necessary that current marginal de-

stabilization
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*

[ JawT-l [1
aEV~

A aAcT ~
should be equal to future marginal stabilization - —

acT-l

aECT
minus marginal cost (0 + 0 —) ●

It is the last term which makes the
acT-l

difference between the present case and the no-cost case analyzed before.

Recall that in the no-cost case, the unconstrained minimum was always

to the right of the point of minimum current instability, i.e., the price

after application of the stocks rule was greater or equal to the target

price. This was true because

to increase stocks which will

In the present case, however,

accumulate that much stocks.

‘hen ‘T-1 = P~_l it might still be worthwhile

enable us to reduce future instability.

the cost element might make it unworthy to

It might even be worthwhile to save costs

and accumulate less stocks

the minimum point might be

i.e., with the final price

than are needed to equate P
T-1 = P;-l so that

to the left side of minimum current instability,

lower than the target price.

Formally this can be shown as follows: Looking at (1.46”)T ~, it was

stated in Proposi~ion 6T that EV~ may have a portion that increases with
aEv~

c~_l, hence - —— may be positive or negative (in the no-cost case
CT-l

- aEv~/acT_l was always non-negative . That is, marginal stabilization of

future prices can be positive or negative. Even if positive, there is

still the cost term on the right hand side, i.e.,

aEcT
-6(1+ —), which is negative. In balance, the right hand side of

acT-l

(1.46”) might be positive (in which case the minimizing ACT_l will be

more than is needed for complete current stabilization and the final

price (pT_l) will be greater than the target price). However, the right
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hand

than

will

side of (1.46”) might be negative, when the cost effect is stronger

the future stabilization effect (in which case, the minimizing ACT_l

be less than is needed for complete current stabilization and the

final price (PT-l) will be lower than the target price).

Graphically, the determination of the unconstrained minimizing

stocks change, denoted by AC~_1(CT_2, ~T_l) is demonstrated in figures

*
and 12. ‘e curves ‘f ‘T-1 and ‘f ‘T-1

/A = w~_l +~CT_l are depicted

11

in

the upper section of figure 11 for the given PT-l and CT_2. The marginal

curve of wT/A is depicted in the lower section, as in figure 7. In

addition, given CT-2, the curves of EV~ and of EVT/A are also drawn in

the upper section of figure 11. The negative of the marginal curve of

EVm/A is drawn in the lower section of figure 11. The minimum of the sum
J.

+ EVT js obtained
‘T-1

curve and the - MEvT/A

be to the right of the

at the point of intersection between the MW
T-l/A

curve. In figure 11 this intersection happens to

minimum point of w~-l. In figure 12, which is

similar to figure 11, the intersection of the marginal curves is to the

left of the minimum point of w~_l.

Notice that, contrary to period T, the unconstrained minimizing

stocks change (AC~-l) is a function of both the market price @T_l)

and the beginning stocks (CT-2). The reason for this was discussed in

case (a) and can be applied here: Future stabilization depends on current

carryover and the beginning stocks affect the marginal stabilization of

current stocks change on future prices. However, in the present case

there is also a cost factor which is opposite to the stabilization effect.

So far, the unconstrained minimization for period T-1 has been analyzed,

‘s before’ ‘c~-l(cT-2’ ‘T-l), the unconstrained minimizing stocks change
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might not be feasible because of the constraint

it is optimal to dispose of all stocks. Define

(1.44)T-1. In this caw

~_2(PT_1)byE

the optimal stocks change is

/

- CT-2

(1.47)T_1 i‘;T-l(cT-2~ T-l) =

[
$

‘c~-l(cT-2’ T-l)
if CT z > FT-2(iT-1).-—

We shall not discuss in detail the effect of beginning stocks on the

value of the objective under the optimal rule, V +
T-l(CT-2’ T-l)* ‘he

analysis can be carried out in a way similar to the no-cost case. The

main conclusions are summarized in Proposition 6T_13 below. vT_l(cT-2z PT_l)

can be decomposed into instability and cost components as follows:

(1.48)T-1 VT-l(CT-2, ~T-l) = AoV~-1(CT_2, ~T_l) + eO[~T_l+ECT(~T_l)]

= AIw~-l(A~T-l} ~T_l) + EVT(CT-2 + A~T_l)l

A

+ 9[CT-2 + A CT-l + ECT(CT_2 + A“CT-l)]

where A~T-l(CT-2S~T_l)isa function of cT_2 and ‘T_l”

Similarly, the expected value of VT_l, EVT-l, can be decomposed into

instability

Let us

(1.49)

and cost as follows:

denote by ~t the expectation of the sum of stocks from t on, i.e.,

mt = E{Ct + Ct+l + .... CT}
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Then:

(1.50)T-1 (c )
‘VT-l T-2

= A*E {wT_l(AACT-l, FT_l) + E“T(CT_2 + A“CT_l)}
CT-l

+ $*EC {(CT-2 + AACT_l) +fiT(CT_2 + A“CT_l))
T-1

To summarize let us state Propositions 5T_1 and 6T_1.

Proposition 5T_1 (Optimal stocks change for t=T-1).

1. Generally the optimal stocks change (A~T_l) is a function of both

the market price (~T_l) and the beginning stocks (CT_2). However, for any t

(~ ) which is by itself an increasing functiongiven iT-l there is a ~T-2 T-1 >

‘f ‘T-1
such that: Whenever CT-2 ~~T_2 T-l(~ ) the optimal change of stocks

is to dispose of all stocks.
—

Whenever CT_2 ? C

A

T-2(pT-1) the optimal stocks

Gchange CT-l(CT-2, T-l) decreases with CT_2 and ~T-10 The range of market

prices such that ~T-2(~T_1) is positive includes prices above the target

price (P~-l) as well as prices below it (compare to the no-cost case in

which this range included only prices above p~_l).

2. The final price $T_l which is implied by the optimal stocks rule

may be either higher or lower than the target price.

Proposition 6T-1 (Effect of beginning stocks on EV and EV* for t=T-1).

The shape of EVT-l and EV~_l curves depends in general on the probability

‘distributions‘f ‘T-1
and FT. The instability measure EV~_~(cT_2) is
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always positive (i.e., it is never optimal to achieve complete stability

in t=T-1, T. EVT-l(CT-2) always has an increasing portion. However, for

‘mll ammts ‘f CT-2
it may be a decreasing function

It should be noted that all periods other than T

similar to T-1 so that the analysis of period T-1 can

to the other ones.

‘f CT-2”

are qualitatively

be directly applied

Let us conclude by analyzing the effect of changing A. For

—

CT-2
(~ ) it is obvious that A has no effect on A~T_l and on VT_l,

< CT-2 T-1

i.e.,

dAtT ~
‘VT-l o.— =

dA dA

In the case that CT-2 > ET-2 T-l(~ ) the analysis is carried out

similarly to the analysis in period T:

Differentiating (1.46)T-l gives:

,[

*

awT-l
a2EvT

(1.51)T-1
aAcT-l + acT@A

1

dl +

11/It can be shown that—

a2w* 2

1

T-1 + a ‘VT A
‘ACT-l =

o
3AC; ~ 2

acT-l

aEvT * a2EvT aEV~

~= ‘VT and aAacT ~
= — , hence:

aCT-l

“Let US show that aEVt/aA = Ev~:

continued
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A

‘ACT-l =
dA

106

aw;-llaAcT_l+ aEv~/acT-l

a2w~_1/aAc~_l+ 32EvT/2c~-1

(footnote 11/ continued)—.

avto.+-l, Ptj A)

aA

awl aAt aEv
= ;; + [a aAct

aEvt+l t+l
+e+ax]++ aA

The second term in the last line vanishes: either the expression in

brackets equals zero (if At is an interior solution), or Aa~t/aA = O

(if A~t is a boundary solution A~t = - Ct-l).

For t = T, aEvt+l/aA =

For any t < T this can

and prove for t:

O by definition. Hence

avT * aEvT *

‘=WTaa
and — =

aA ‘VT

be proved by induction: Assume that aEVt+l/2A = EV~+l

Hence:

av A* + aEvt+l

TI=wt aa
= ;; + EV:+l

aEvt
— .
aA

E{;: + EV:+l} = EV; “ Q.E.D.
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From (1.46)T_1 it follows that the denominator of

*

awT-l
aEv; a~T
—=:(1+—)+ acT ~aAcT-l - acT-l

In addition, the denominator is positive, implied

condition for a minimum. Therefore (1.52)T_1 iS

The effect of an increase of A is to reduce

to increase the mean stocks. This can be proved

A1 and A2 are two values of A such that A1 < A2.

.
of EV* 1 “2

T-1 and ‘CT-l
which correspond to A and A

—9

(1.52)T-1 is negative:

<0

by the second order

?c)sitive.

the instability index and

iimply: Suppose that

Denote the optimal values

*2
)y EV*l, til and EV ,

EC’ respectively. The optimal stocks rules corresponding to Al and AA

are both feasible. Therefore minimization implies:

~lEV*l + ~=1 < ~lEv*2 + -2
—

and
~2Evk2 + ~E2 < ~2Ev*l + -.-1

9

from which it follows that

*
(1.53)T-1 (A2 - A1).(EV*2 - EV*l)<O or~<O

Also:

(1.54)T-1 (i - ~). (=2 - EC1)
Al ~2 = $ (A2 _ A1).(~2-@) > 0

—
AEc>o

‘r Al

Given $T ~ and CT z, it is possible to trace efficient combinations

of mean cost (em) and instability index (EV*) by changing A. There is a
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substitution between instability and cost. The marginal rate of substitution

is - A, i.e:”l

dEV~_l
(1.55)T_1 =-.

‘eECT-l

a.

.,-, /
=’ (1*55)*-1 can be verified as follows: It is obvious that the

values of EV* and = corresponding to a given A should be on the efficiency

frontier and are obtained by minimizing AEV* + e= on the frontier. Denote

a change of EV* by AEV* and the corresponding change of ~ on the efficiency

frontier by A~(AEV*), such that:

AEV* ● A~(AEV*) < 0 .

To minimize AEV* + Ofi the following condition should be satisfied at the

*+
minimum point: Let AEV and AEV*- be a positive and a negative change in

EV* respectively. Then:

A“ AEV* + 0 ● Afi(AEV*) > 0 .

*+
Substituting AEV and AEV*- for AEV* results in:

OOA~(AEV*+) - A and
6*Ati(AEV*-) < - ~

*+ 2 .
AEV

AEv*_ –

Assuming differentiability and taking the limit as AEV* + O we get

~E=-A .
dEV*
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(1.55)T-1,which is also similar to (1.52)T, is valid for allyper~od

t, t+l, .... T.

In figure 13 the efficiency frontier is drawn. It gives the policy-

maker a set of possibilities to choose from according to his evaluation

of the importance of stability relative to the cost of achieving it.

‘i\\eq--i
I ‘:~,

“ ‘!.,“,’,=.“ \
I -y,

-’\\
I

~. ““-l- - ‘-’- -’-A:\.,.\t ~B ‘> y-. .. . .
I

(

i AA ‘“-

I +

t EV; Et
EV;

Figure 13

summary

Based on the market model presented in part I, an optimization model

is formulated to be used to find stocks rules which minimize the price insta-

bility index. The main part of this section is devoted to an analysis of

the stocks rules. First the case in which storage cost plays no role is

discussed. For any period t, the optimal rule should depend on two indi-

cators, the market price (it) and the level of existing stocks (Ct-l).

The effect of the market price on the optimal change of stocks is negative.
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This is so because current price stabilization activities require that

stocks be accumulated in increasing amounts the lower the market price is

relative to the target price, and that stocks be released in increasing

quantities the higher the market price is relative to the target price.

However, price stabilization in the future depends on the quantity of

stocks that is carried over. Generally, in the no-cost case, unless there

are enough existing stocks to completely stabilize prices throughout the

whole planning period, it is worthwhile to accumulate more stocks than

would be implied by equating the current price to the target price. The

optimal change of stocks depends negatively on the level of existing stocks.

Costs are included in the model by adding a linear cost term to the

objective function. The problem is stated to minimize a weighted sum of

the price instability index and mean costs. By a change in the weight of

the instability index, denoted by A, a whole set of efficient combinations

of instability measure and mean cost is traced. “Efficient” here means to

minimize price instability for a given mean storage cost. This gives the

policymaker a set of stock policies to choose from that range from no

intervention to maximum feasible stabilization (i.e., the no-cost case).

The general directions of the effects of market price and existing stocks

on the change in stocks do not change in comparison to the no-cost case.

However, the greater the relative weight of cost in the objective function

(smallerweight of price instability index), the smaller the quantity of

stocks that will be accumulated.

2. Computation Procedure

Based on the discussion in the previous section, a program was com-

posed to compute the optimal buffer stock rule for price stabilization.
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The program also computes the probability distributions of prices and

stocks which result from applying some stock rule. In this section tile

computational procedure is explained. A detailed flowchart of the compu-

13/
tation is given in the appendix.— Subsection 2.1 describes the compu-

tation of the stock rule and subsection 2.2 describes the probability

computations.

2.1 Computation of the price variability minimization rule. The

computation procedure is an approximative one. Any continuous variable

(e.g., price, stocks, random disturbance) is approximated by dividing its

domain into a series of discrete points. A correspondence between these

points and the integers is then defined. For example, suppose that the domain

of stocks is from O to 1000 (i.e., the probability of being less than O or

greater than 1000 is zero) and that the approximation is made by using inter-

vals of 100 between any two points, then it is assumed that stocks can

obtain values of O, 100, 200, 111, 1000 and the correspondence between

stocks and integer index is defined as follows:

o

100

200

.

.

.

1000

INDEXC(C)

1

2

3

.

.

.

11

—

“A Fortran program which is based on the flowchart of the appendix
is available on request from the author.
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where: CC(IC) is the quantity of stocks corresponding to the index

IC(IC=l, 2, ...) and INDEXC(C) is the integer index corresponding to a

stocks quantity of C. By making the division finer, one can approximate

the variable under discussion as close as he wants to, but of course,

computation costs increase.

Following the approximation by discrete points, all continuous

probability distributions are

tributions so that instead of

mass functions.

Before proceeding to the

approximated by discrete probability dis-

density functions there are probability

computations let us make a note about

notation in this section. The notation is different, even if similar,

from the notation used in section 1 and part I. Following the notation

of computer programs, no superscripts or subscripts are used. Names of

integer variables begin with letters I through N. The name of the first

index of an integer variable begins always with M and the last one with N.

For example, the index of a period is denoted by IT (corresponding to

sub-t in section 1), the first period is denoted by MT, and the last one

by NT (corresponding to T in section 1). Some of the

this section with their counterparts in section 1 are

table 1.

notations used in

summarized in
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Table 1. Notation Used in Section 1 and in Section 2

Corresponding
Notation in Notation in integer variable

Variable Section 1 Section 2
Name First Last

Current price

Lagged price

Market price

Carryover stocks

Beginning stocks (stocks
from previous period)

Target price

Time index

Random disturbance

Unit storage cost

Discount rate

Marginal substitution of
instability for cost

Pt

Pt-l

6

c

Ct-l

p*

t=l, 2, ..*, T

a

P 1P

P1 IP1

PP IPP

c Ic

cl IC1

PSTAR

IT

E IE

THETA

DELTA

LAMBDA

1 NP

lNP

1 NP

1 NC

1 NC

MT NT

1 NE

The correspondence between the values of a variable and the integers

enables us to express some of the functions in the system as functions of

integer indices. For example, the stocks rule is a function of the market

price and the beginning stocks, ~t(~t, Ct_l) and can be translated to a

function of integer indices, say

C(IPP, IC1, IT) = CIP(IPP), CC(IC1), IT] IC1=l, 2, .... NC

IPP=l, 2, ....NP
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where P(IPP) and CC(IC1) are the price and stocks corresponding to the

integers IPP and IC1 respectively and IT is the time index.

As mentioned in section 1, the computation procedure is basically a

dynamic programming one. Recall from section 1 that the problem is as

follows: A planning period is divided into subperiods t=li 2, ● *., T.

In each period the free market price (it) is determined by the price of

the last period (Pt_l) and by a stochastic disturbance et which has a

known probability distribution (see eq. 1.10 in section 1). The final

price of period t, (Pt), is determined by the free market price (it) and

by the change of stocks (ACt ❑ Ct - Ct-l). The problem is to find stocks

rules [tt(Ct-l, it)] as functions of the beginning stocks (Ct-l) and of

the market price (~t), which minimize

(2.1)

where P: is a target price for period t
L.

Oisa

Aisa

rate

tlisa

unit storage cost per period

weight, which defines a

between instability and

discount rate

desired marginal substitution

cost

and E stands for the expectation operation.

Following the demand and supply model (see section 1.1 above), the

following two functions are defined in

(a) The free market price (PP) at

disturbance (E) and the price

the program:

some period IT, as a function of the

of the previous period (Pi) (see eq.(1.10)).
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This function will
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be denoted by

PPFEP1(E, Pl, IT) .

(b) The final price (P) at some period IT, as a function of the free

market price (PP) and the change of stocks (DC) (see eq. 1.11)).

This function will be denoted by

PFPPDC(PP, DC, IT) .

The planning period in the present notation is from MT to NT (see table

mentioned in section 1, the computation starts with the last period (NT)

the planning period. For each pair of indices IC1, IPP, corresponding

beginning stocks (Cl) and market price (PP), respectively, the program

finds the carryover C(IC1, IPP, NT), which minimizes the objective function

for period NT (i.e. the instability index for period NT, weighted by LAMBDA,

plUS carryover cost (THETJ4times C). Basically, for a given pair (IC1, IPP),

the program runs over all the indices IC = 1, 2, .... NC (which correspond

to different values of carryover): For each of them it computes:

(a) The change of stocks

DC = CC(IC) - CC(IC1)

where: CC(I) is the quantity

(1 = IC or IC1 respectively)

of stocks corresponding to I

1) .

(b) The price

PFPPDCIP(IPP), DC, NT]
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where: P(I) is the price corresponding to the integer index I

(1 = IPP for the market pr~ce PP).

The value of the objective

[ 1

2
PFPPDC - PSTAR *

PSTAR

function for period NT,

LAMBDA + C(IC) * THETA

i.e.:

where PSTAR is the target price.

program then picks up the level of carryover for which the last

expression is minimal. This level of carryover is stored in an array

denoted by C(IC1, IPP, NT).

The minimum value of the objective function for period NT, given

CC(IC1) and P(IPP), is also stored in an array denoted by V(IC1, IPP).

Recall that the market price (PP) is a function of the lagged price (Pi)

and the disturbance (E). The next step is to compute the expectation of V

over E. This is done as follows: For any given value of the integer index

IP1 (IP1 = 1, 2, .**, NP) (correspondingto a lagged price Pl) and IC1

(correspondingto a beginning stocks Cl), the program runs over all the

indices IE and computes:

(a)

(b)

The market price PP

PP = PPFEP1[E(IE), P(IP1), NT]

where E(IE) is the disturbance corresponding to the integer

index IE and P(IP1) is the price corresponding to IP1.

IPP = INDEXP(PP)

where INDEXP is a function which transforms prices into their

corresponding integer indices.
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(c) V(IC1,IPP)*PROBE(IE)

where PROBE(IE) is the probability of the disturbance E(IE).

Finally the program sums all the last expressions for IE = 1, 2, .... NE.

Obviously, the expected value of V is a function of the beginning stocks Cl

and the lagged price P1 (or their corresponding integer indices IC1, IP1)

and it is stored in an array denoted by

EV(IC1, IP1), (IC1 = 1, 2, ...s NC* IP1= 1, 2, .... NP).

It is possible now to compute the optimal carryover

by a similar procedure: Given any pair IC1, IPP (which

rule for period NT-1

are now standing

for

all

and

beginning stocks and market price of period NT-1 instead of NT), run over

indices IC = 1, 2, .... NC (which are now standing for carryover of NT-1)

find the one for which the objective function for the period (NT-1, NT)

is minimized. This is done

For each IC compute:

similarly to period NT as follows:

(a) The change of stocks

DC = CC(IC) - CC(IC1)

(b) The price

PFPPDCIP(IPP), DC, NT-1]

and its corresponding integer index

1P = INDEXP(PFPPDC)
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[ 1PFPPDC - PSTAR
2
* LAMBDA + C(IC) * THETA +

PSTAR
~ + ;ELTA * EV(IC, 1P).

carryover for which the last expression

IPP, NT-l). The minimal value V(IC1, IPP)

Then the program picks up the

is minimal and stores it in C(IC1,

for (NT-1, NT) replaces the V(IC1,IPP) for NT in the same array.

The only difference between NT-1 and NT is that in the latter, the objective

function does not include EV as it does for the first.

Next, the EV(IC, 1P) for (NT-1, NT) is computed exactly as it was

computed for NT and the program is ready to compute the optimal rule for

NT-2 which is done exactly as for NT-1; only the time index is changed.

Period by period it proceeds from NT down to the first period of the planning

period (i.e., MT).

It should be noted that for the computation of the optimal stocks rules

the only information which must be carried from period to period of compu-

tation is the expected value EV of the last period of computation. Hence

there is much saving in memory space. However, the program stores the

stocks rules C(IC1, IPP, IT) of all the periods for the computation of

probabilities. These computations are described in subsection 2.3. Before

going through the probability computations let us describe another stocks

rule which was analyzed in addition to the optimal stocks rule described

above, namely a bounded price rule.

2.2 Bounded price rule. This rule refers to some proposals which

have been proposed for price stabilization and which have a common feature

of considering only price signals as indicators for reserve stocks activity.
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The level of beginning stocks enters

primitive way, i.e., negative stocks

carryover is zero. In particular, a

the bounded price rule only in a

are not feasible, so that the minimal

bounded price rule suggested by

W. W. Cochrane [1] was examined, so it is worthwhile to describe it in

some detail and to relate it to the computational program.

2.2 Bounded price rule. Generally the rule is as follows: Define a range

of prices between a lower and an upper boundary. If the price happens to

be below the lower boundary the rule is: acquire stocks in the quantity

which pushes the price up to the lower boundary. If

be within the range the rule is: do not sell or buy

if the price happens to be above the upper boundary,

out the quantity of stocks which will push the price

boundary. If there are not enough stocks to achieve

the price happens to

anything. Finally,

the rule is: sell

down to the lower

this, then be out of

stocks. A flow chart of the bounded price rule is presented in figure 14.

In this flow chart the boundaries are defined as percentages of target

prices (STAR). B1 and B1 are the percentages of the lower boundary

and the upper boundary respectively. PSTAR1 and PSTAR2 are the boundaries

and IPSTR1, IPSTR2 their corresponding integer indices. DC is the required

change of stocks and BND(PSTARJ,PP,IT) is a function which defines the

change of stocks which is needed when the market price is PP, in order to

change it to PSTARJ. As before, C(IC1,IPP,IT) is the stocks rule.

2.3. Probability computations of prices and stocks. As mentioned in

part I, the most important information for the study of the implications

of any stocks rule in the context of price stabilization is embodied in

the probability distribution of prices and stocks under the application

of the rule. In this subsection the program of probability computation is
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Figure 14. A flow chart of the

Q

IC1=l,NC

price rule

I DC= BQIPSTAR1,P(IPP),IT] I

4,

[ C(IC1,IPP, IT) = CC(IC1]+DC I
I

I A 4

IPP=IPSR1,1PSTR2

“’=’’NC-

Ic .

I Dc = BND[PSTAR2,P(IPP), ITI
I

I

I C(ICI,IPP,IT)=CC( ICI)+DC I

IPP=IPSTR2,NP

{

A

o YFS

I
C(IC1,IPP,IT) =0

I
I

IT= MT,NT

(

I

(
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described. More details can be found in the flow chart of the appendix.

The basic formulae were presented in part I (subsection 2.3). The notation

described in

To this

Actually two

discussed in

2.1 is used here.

part of the program, the stocks rule is given exogenously.

rules were examined, namely: (a) the optimal stocks rule,

subsection 2.1, and (b) the bounded price rule, discussed in

subsection 2.2. The central computation of this part of the program is

the computation of the joint probability distribution of stocks and prices

in any period IT. Let us therefore begin with this. Later on, the mar-

ginal and cumulative probabilities, as well as some instability indices,

will be discussed.

Joint probability distribution of prices and stocks. Recall that

according to the approximative procedure (subsection 2.1 above), price may

obtain only values of

P(IP) IP=l, 2, ....NP

and stocks may obtain only values of

CC(IC) IC=l, 2, .... NC .

The joint probability of stocks and prices in period IT is denoted by

PRBCP(IT, IC, 1P).

PRBCP(IT, IC, 1P) ~ Probability {stocks = CC(IC), Price = P(IP)}

Two stochastic elements are involved in the computation of

PRBCP(IT, IC, 1P), namely:



122

(a) The joint probabilities of stocks and prices of the previous

period (IT-l), i.e.

PRBCP(IT-1, IC1, IP1) IC1=l, 2, .... NC

IP1 = 1, 2, ● ... NP

(b) The probabilities of the stochastic disturbance of period IT,

which is denoted by

PRBE(IE) IE = 1, 2, .... NE

Notice that the assumptions of the model imply that (a) and (b) are

mutually independent. It follows that the probability of the combination

of indices (IC1, IP1, IE) equals the product

PRBCP(IT-1, IC1, IP1) * PRBE(IE).

The following steps are also determined by the

stocks, lagged price and current disturbance:

(a)

(b)

P(IP1) and E(IE) determine the market

PPFEP1(E, Pl, IT):

same combination of beginning

price (PP) by the function

PP = PPFEP1(E, Pl, IT)

which in turn is transformed to an integer index IPP by

IPP = INDEXP(PP)

where: INDEXP(P) is the function which translates price to the

corresponding integer index.

The market price PP (representedby IPP) and the beginning stocks
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(representedby IC1) determine the quantity of carryover by the

stock rule C(IC1, IPP, IT). And this in turn is translated into

the integer index (IC) by

IC = INDEXC [C(IC1, IP1, IT)]

where INDEXC is the function which translates quantities of stocks

into the integer index.

In addition, the change of stocks DC is computed by

DC = CC(IC) - CC(IC1) ,

which, given the market price (calculated in (a) above), determines the

final price by the function PFPPDC and its integer index (1P) by

1P = INDEXP [PFPPDC(PP,DC, IT)] .

In summary, each combination of indices (IC1, IP1, IE) results in a

combination of indices (IC, 1P) and a probability PRBCP(IT-1, IC1, IP1)*PRBE(IE)

attached to it.

However, there might

which results in the same

probability, PRBCP(IT, IC,

be more than one combination of (IC1, IP1, IE)

combination of (IC, 1P), hence to obtain the joint

1P), the program sums all the products

PRBCP(IT-1, IC1, IP1)*PRBE(IE)

corresponding to combinations of (IC1, IP1, IE) which result in the same

(1P, IC). Figure 15 summarizes the above description in a flow chart of the

program which calculates the joint probabilities.
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Using the joint probabilities of stocks and prices, the program pro-

ceeds in calculating the marginal probabilities of prices and stocks,

their cumulative probabilities and some indicators of magnitudes and

instability.

Marginal and cumulative probabilities and some indicators of instability.

The marginal probabilities of prices and stocks are calculated by summing

over the stocks indices and over the price indices respectively. More

specifically, for a certain period IT:

PRBP(IP) = ~pRBcp(IT, Ic, Ip)
IC

PRBC(IC) = ~PRBcp(IT, xc, Ip)
1P

where PRBP(IP) = Probability {Price = P(IP)}

and PRBC(?.C)= Probability {Stocks = CC(IC)}

Using the marginal probabilities, the program then computes the follow-

ing indicators for each period IT:

(1) The mean of price

MWp (IT) = ~pRBp(Ip)*p(Ip)
1P

(2) The standard deviation of price

2 1/2VARP(IT) E {~ PRBP(IP)*[P(IP) - MEANP(IT)] }
1P

(3) Coefficient of variation of price

CVP(IT) = VARP(IT)/MBANP(IT)
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(4) Index of variability around the target price

VIP(IT) = {~ pRBp(Ip)*[P(IP) -pSTM(IT)]2}1’2
1P

(5) Coefficient of variation around target price

CVTP(IT) = VTP(IT)/PSTAR(IT)

(6) Mean of stocks

MEANC(IT) = ~ PRBC(IC)*CC(IC)
IC

(7) Standard deviation of stocks

VARC(IT) = {~ PRBC(IC)*[CC(IC) -MWC(IT)]2}1’2
IC

(8) Coefficient of variation of stocks

CVC(IT) = VARC(IT)/MEANC(IT)

All the above indicators measure the magnitude and variability of price

or stocks in a certain period IT. While the standard deviation and the

coefficient of variation measure the average absolute and relative deviation

around the mean respectively, VIP and CVTP measure the average absolute and

relative deviation of prices

In addition the program

for the whole period from MT

around the target price respectively.

computes for each IT cumulative indicators

through IT. These are:

(9) Discounted instability index

DIIN= ~TCVTp(I)2* l/(l+DELTA)(lT-MT)
I=MT
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(10) Instability index (not discounted)

IIN= fTCVT(I)2
I=MT

(11) Average coefficient of variation around target price

ACVTP = (IIN)l/2/(IT-MT+l)

This is a measure of the average deviation around the target price for

the whole period MT through IT.

(12) Discounted mean of stocks

DMEANC= ~TMEANC(I)*I/(I+DELTA~ (IT-MT+l)
I=MT

(13) Average (non-discounted)mean of stocks

AMEANC= jTMEANC(I)/ (IT-MT+l)
I=Ml’

Finally the program computes the cumulative probabilities of prices

and of stocks by

pRBP(Ip) = jppRBp(I)
1=1

PRBC(IC) = ~cpRBC(I)
1=1

where PRBP(IP) now stands for Probability {Price s P(Ip)}

and PRBC(IC) now stands for Probability {Stocks ~ CC(IC)}.
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3. Application to Grain Reserve Problem

The model and the computation procedure

two sections were applied to two cases, U.S.

denmnstrate the use of the model to obtain a

described in the previous

wheat and world grains, to

set of efficient stock

policies for price stabilization and to evaluate the expected implica-

tions of different stock policies. However, it should be noted that the

empirical work in the present research is very preliminary. No econometric

work has been done to estimate the various parameters of the assumed models.

Those were evaluated by judgment, using information from other studies.

Therefore, the

tive examples.

then the world

3.1 Us.

numerical results should be considered merely as illustra-

te U.S. wheat model is presented first in some detail and

grain model.

wheat model. The order of presentation is as follows:

First, the general assumptions of the model are presented. Second, the

different stocks rules are discussed. Finally, the probability distribu-

tions of prices and stocks under the different policies are analyzed

together with the various indicators which are based on these distributions.

General assumptions

Supply is composed

14/
acreage equation is—

(3.1)

of an acreage equation and a yield equation. The

PLW = 49.10 + 4.37 PWH-1

“In deriving the acreage equation we followed Hoffman [2]. We
reestimated his equation using the same data but deflated the price varia-
bles by the GNP deflator in order to eliminate the effect of general infla-
tion. The equation which was estimated was

PLW = 4367 PWH-1 - 11695 EVW+ 864 RNC - 20043

(continued)
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where PLW is planted area of wheat (million acres) and PWH-1 is wheat

price, lagged one year ($/bushel).

The yield equation is

(3.2) Yw= (32.75+ EPS)O(l.033)(t-75)

where YIJis yield of wheat per planted area (bushel/acre)

EPS is a random variable, assumed to be normally distributed with

zero mean and standard deviation 3.46 (bushel/acre).

From (3.1) and (3.2) the supply equation is

(3.3) Xt = (49.10 + 4.37Pt-l)(32075 + Es)(10033)(t-75)

The demand has

The domestic demand

(3.4)

15/
two components, domestic and export.—

equation is

WLD = 1190 - 83.3P*(lool)@-75)

(footnote 14/ continued)—

where PLW is the planted area of wheat

PWH-1 is wheat price, lagged one year, deflated by GNP deflator
(in $/bushel)

EVW is effective voluntary rate which is a variable representing
government policy (EVW was also deflated by the GNP deflator)

RNC is a range condition index.

For an explanation of the last two variables see Hoffman [2]. Assuming
EW=O and RNC=80, the equation is transformed to (3.1). The yield equation
is based on fitting a logarithmic trend line to a time series of yields.
The standard deviation of EPS was estimated by the deviations from this
line.

“The demand equations are based on equations used in a simulation
study by Sharples and Walker [3].
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The export

(3.4’)

demand equation is

WEX = (1765 - 161.7P +EPS)(l.03) (t-75)

where WLD is domestic demand for wheat (million bushels)

P is the price of wheat ($/bushel)

WEX is wheat export and

EPS is a random variable, assumed to be normally distributed with

a zero mean and a standard deviation of 255 million bushels.

Total demand is the sumof (3.4) and (3.4’).

(3.5) Yt = [1190(1.01]‘t-75) + 1765(1.03)‘t-75)]

- [83.3(1.01)‘t-75) + 161.7(1.03)‘t-75)]Pt

+ Ed(l.03)‘t-75).

In summary, the supply and demand equations (3.3) and (3.5) are a

linear version of the general model assumed in section 1 (equations (1.2)

and (1.5)).

The planning period is defined from 1975 to 1985. The target prices

are assumed to be equal to the “long-run” equilibrium mean prices, i.e.,

prices such that Pt = Pt_l and Est = Edt = O.

Beginning stocks in 1975 are assumed to be zero and the initial

lagged price is assumed to be $4.25 per bushel. These initial values are

used in the probability computations.

It is assumed that annual storage cost (@) is $0.2/bushel and that

the discount rate (6) is 0.05.

In the present experiment, the program calculated the following stocks
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+ 10 percent aroundpolicies: a bounded price rule (BPR) with a range of -

the target price (see subsection 2.2), and a set of price variability

minimization rules (PVM) with different values of A.

Stock rules

Bounded price rule (BPR). The rule was described in subsection 2.2.

Generally, a

Whenever the

of stocks iS

the price is

range of prices is defined in which there is no intervention.

price is below the lower boundary of the range, a quantity

purchased that raises the price to that boundary. Whenever

above the upper boundary of the range, stocks are sold to

reduce the price as much as possible (if there are enough stocks) toward

that boundary. In the present experiment the boundaries were defined to

be plus or minus 10 percent of the target price.

The bounded price rule in 1975 is demonstrated graphically by the

dashed curves (denoted by BPR) in figures 16, 17, and 18, in which change

of stocks (AC) is measured along the vertical axis and market price (~) along

the horizontal one. The lower and upper boundaries are denoted by B1 and B2

respectively. In figure 16 the BPR curve is drawn under the assumption

that there are always enough stocks to sell out when needed (~ > B2). In

figure 17 the BPR curve is drawn under the assumption that the existing

stocks are zero. It is the same curve as in figure 16 but truncated at

AC = O. Similarly in figure 18 the BPR curve is drawn assuming that the

beginning stocks are 500 million bushels. This curve is also identical to

the BPR curve in figure 16 but truncated at AC = -500. This demonstrates

the fact mentioned previously, that the existing stocks affect the stocks

rule only in limiting the feasible negative change of stocks (i.e., selling),

otherwise the BPR depends on price only. This is in contrast to the price
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Figure 16. U.S. Wheat Model
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different beginning stocks.
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Figure 17.

U.S. Wheat Model

PVM rule in 1975

with zero beginning stocks

under different values of X.
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Figure 18.

U.S. Wheat Model

PVM rule in 1975

with beginning stocks of 500 million bushels

under different values of X.
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variability minimization rule (PVM) and depends on both price and quantityi

Price variability minimization rule (PVM). The PVM computation pro-

gram was applied to the U.S. wheat model with several alternative values

of A (rate of substitution of cost for stability). Recall that by chang-

ing A, an efficiency frontier is traced along which mean storage cost

increases as price instability decreases. Experiments were made using two

extreme cases and four intermediate cases. In one extreme case it was

assumed that O = O, i.e., that there is no cost at all. This program gives

the minimal feasible degree of instability that can be obtained if one does

16/
not care about the cost of stocks.— In the other extreme case A = O.

In this case one does not care about instability and the result is, of

course, no intervention, or the “free market” situation. In the inter-

mediate cases, A = 125, 250, 500, and 1000. For the given A and 0, the

PVM rule was computed for each year of the planning period. On request,

the computer can print out the rule for selected years in the form of a

table. In the table, columns correspond to different values of market

prices (Pt) and lines correspond to different values of beginning stocks

(c~-1) (of the specific year). Each box of the table, corresponding to

a pair (it, Ct-l), contains three numbers: the change of stocks (ACt),

the final stocks (Ct), and the resulting price (Pt). The behavior of PVM

for 1975 is illustrated graphically in figures 16, 17, and 18. The curves

in these figures are free hand fittings of data from the computer print-out

tables. In figure 16 the extreme case of PVM (0 = O) (when there is no cost)

is drawn. Change of stocks (AC) is measured along the vertical axis and

market price (~) along the horizontal one. The curves describe the change

of stocks (AC75) as a function of the marke~ price (~75), given alternative

“The value of A does not matter when 6 = O.
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levels of beginning stocks (C74 = O, C74 = 500, C74 = 1000, and C74 = 1400

million bushels). It can be seen easily that as the beginning stocks increase

the change of stocks decreases for any given market price. This is compatible

with the theoretical conclusion in section 1, in which it is shown that

when existing stocks are relatively small, it is desirable to accumulate

more in order to reduce future instability. For comparison, the BPR curve

is drawn in the same figure by the dashed curve. The dotted curve denoted

by S indicates the change of stocks that is needed to equate the price to

the target price. It can be seen that when stocks are relatively small it

pays to accumulate more stocks than are needed to completely stabilize cur-

rent price (i.e., to equate P15 to p~5). However, there is a ceiling on

17/
the amount of stocks,— so in some situations a positive change of stocks

might be desirable, but not feasible, for price stabilization. It follows

that when the quantities of existing stocks are large enough, positive

accumulation will not have a stabilizing effect on future prices but will

have an opposite effect, because it might be impossible to buy stocks in

enough quantity in case the market price is below the target price. Thus,

in figure 16, those parts of the curves corresponding to high levels of

beginning stocks and low market price are below the current stability curve.

The effect of A on the PVM rule is demonstrated in figures 17 and 18

for beginning stocks of zero and 500 million bushels respectively. The

upper curve in each of the figures describes the PVM rule in the case of

no cost (~ = O), and the other curves describe the rule for A = 1000,

A = 500, and A = 250. In addition, the bounded price rule BPR curve is

17/
— The ceiling on the amount of stocks is defined implicitly in the

computation procedure by the values that are assigned to UC and NC (see
section 2),
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drawn and also the complete current

As would be expected, the smaller A

stocks for any given market price.

price stabilization curve (curve S).

is, the smaller is the change of

This is compatible with the reasoning

stated in section 1. Smaller A means that relatively more weight is given

in the objective function to the cost that has to be paid for stabilization,

hence less stocks are accumulated.

Probability distributions of prices and stocks and summarizing

indicators. Using the assumptions of the model, the computer program cal-

culates the probability distributions of prices and stocks in each year

of the planning period under any specific stocks rule, given the initial

values of stocks and lagged price. Based on these distributions, some

summarizing indices are computed. Detailed results of these computations

are not reported here. Instead, the probability distribution of prices

for selected years and some indices computed from the distributions are

presented graphically. But first the magnitudes of stocks under the

different stocks rules discussed above are shown. The initial values are

zero beginning stocks (i.e., C74 = O) and a lagged price of $4.25 per

bushel (~:.e.,P74 = 4.25). The mean accumulation of stocks through time

under the different stock rules is demonstrated graphically in figure 19.
.—

It is clear that the highest rate of accumulation is associated with the

PVM rule with no cost (G=O), and accumulation is reduced when A is reduced.

Mean accumulation under the bounded price rule (BPR) (within a range of

~ 10 percent) is between the PVM with 8=0 and the PVM with A=1OOO. It is

clear that, with certain probability, stocks may be greater or less than

the mean. The standard deviation is an indicator of the dispersion of the

stocks probability distribution. The standard deviations of stocks under
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the various stock policies are given in table 2 for the years 1975, 1980,

and 1985. In general, as the mean of stocks increases through time the

standard deviation also increases in any given stock polciy. Also, in a

particular year, the higher A is, the greater are the mean of stocks and

their standard deviation. However, the greater A is, the smaller the

coefficient of variation of stocks (i.e., the standard deviation divided

by the mean).

Another interesting feature of the probability distribution of stocks

is the probability of being out of stocks, i.e., Prob {C=O}, which is

indicated in table 2 for 1975, 1980, and 1985. In general, as stocks

accumulate through time, the probability of zero stocks decreases under

a given stock policy. In the no-cost PVM case, for example, this proba-

bility is 28% in 1975, 6% in 1980, and 5% in 1985. In the BPR case this

probability is 52% in 1975, 20% in 1980, and 17% in 1985. When the dif-

ferent rules in a particular year are compared, it is clear that the,.

smaller A is, the higher is the probability of zero stocks. In 1975 the

probability of being out of stocks under the PVM rule with 0=0, A=1OOO,

A=500, A=250, and A=125 are 28%, 40%, 44%, 56%, and 75% respectively.

These probabilities in 1980 are 6%, 26%, 41%, 56%, and 76% and in 1985

they are 5%, 24%, 35%, 51%, and 70%.

Let us now turn to the probability distribution of prices. As men-

tioned in section 2, the computer program calculates the cumulative proba-

bility distributions of prices in each year of the planning period follow-

ing an approximation procedure. The results are printed in the form of

tables of cumulative probabilities. Here we present free hand curves

fitted to these probabilities for selected years and stock policies. The
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cumulative probability curves of prices in 1975, 1980, and 1985 are drawn

in figures 20, 21, and 22 respectively. In each of these figures the curve

for the free market (i.e., with no intervention) is denoted by F, the curves

for the PVM are denoted by their corresponding A or Cl,and the curve for the

bounded price rule with a range of ~ 10 percent is the dashed curve denoted

by BP. As mentioned above, these probabilities are conditioned on the

initial values in 1975 of zero beginning stocks and a lagged price of

$4.25 per bushel.

In 1975 beginning stocks are zero with probability one so it is not

possible by any stock rule to reduce prices that are above the target price.

However, prices that are below the target price can be increased by buying

stocks, which is also desirable for future contingencies. In the PVM

no-cost case, the probability of prices below the target price is elimin-

ated in comparison to the free market case (figure 20). There is accumu-

lation in the no-cost case even for some prices above the target price;

therefore for these prices the cumulative probability curve of the no-cost

case is still below that of the free market. However, for prices that

are high enough, these two curves coincide in 1975 because of the fact

that prices cannot be reduced. For PVM cases with cost there is less

stock accumulation than in the no-cost case; hence the cumulation probabil-

ity curves of the first ones are between the curve of the no-cost case

and the free market curve. Also they coincide with the free market curve

before the no-cost case. The PBR cumulative curve in 1975 coincides with

the free market for all prices above the lower boundary. The probability

of prices below that boundary is, of course, zero. The performance of

the various policies in 1975 can be measured by the price instability
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index for that year, which is calculated on the basis of the probability

distributions for that year. As can be seen in table 2, the coefficient

of variation around the target price (CVTP) in 1975 is 47% in the free

market, 29% in the PVM with 0=0, and 29%, 31%, 35%, and 40% in the PVM

with A=1OOO, A=500, A=250, and A=125. The CVTP in the BPR is 27%.

Contrary to 1975 figures, the probability of positive stocks is not

zero in 1980 and 1985. Therefore it is possible also to reduce the price

when being above the target price. It is expected that prices will be

more concentrated in probability around the target price in comparison

to the free market case (figures 21 and 22). The greatest probability

concentration around the target price is achieved in the no-cost PVM case.

As A decreases, the cumulative probability curve is closer to the free

market one. It is interesting to look at the bounded price curves

(figures 21 and 22). According to the stock rule, all prices below the

lower boundary are eliminated, so the probability of price being less than

the lower boundary is zero. However, the possibility of eliminating

prices which are above the upper boundary dependslon the availability of

adequate stocks, which is not certain. Hence, the cumulative probability

of prices above the upper boundary is not one but less than that.

On the average, the degree of price instability is measured by the

coefficients of variation around the target price, CVTP, which are given

for 1980 and 1985 in table 2. In 1985 the CVTP in the free market situa-

tion is 51%; it is 18% In the no-cost PVM case; and it is 26%, 31%, 38%,

and 45% in the PVM cases with A=1OOO, 500, 250, and 125 respectively.

The CVTP in the BPR in 1980 is 20%. The figures for 1985 are 56% in the

free market; 21% in the no-cost PVM case; 28%, 34%, 41%, and 50% when
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A is 1000, 500, 250, and 125 respectively; and 22% in the BPR case.

So far we have considered the performance of the various stocks

policies in specific years. Let us now look at the performance over the

whole planning period. This can be measured by the instability part and

the cost part of the objective function. Recall that the latter is to

minimize

*2

11
1985 pt-pt

1
1985

A ● Mean { Z — * .}+@Mean{ Z C. 1.
t=1975 [ p; J (1+(s)’

where DII stands for the discounted instability and

discounted mean stocks (see section 2), i.e.

(D -n* ]2

t=1975 ‘ (l+d)c

ADII + ODMEANC

DMEANC stands for the

N
‘ t--vt

DII = Mean { Z * 1
}

t
Pt

(l+d)t

DMEANC = Mean { Z Ct
1

}
t (l+d)t

Table 3 gives the values of DII and DMEANC for the different stocks

rules. According to the analysis of section 1 it can be expected that as

A increases, mean stocks increase and instability decreases. In fact, by

changing A, a whole set of efficient combinations of instability (as

measured by DII) and stocks (as measured by DMEAN) is traced. This effi-

ciency frontier is drawn in figure 23, in which storage cost (ODMEANC) is

measured along the vertical axis and price instability (DFF) along the

horizontal one. The slope of this curve at some point equals the value

of A corresponding to that point. The highest degree of instability
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is achieved at the point corresponding to the no-cost case (0=0). The

slope of the efficiency frontier at this point is infinite. On the other

extreme, with no intervention, the cost is zero, the instability is max-

imal along the efficiency frontier, and the slope at this point is O.

The performance of the bounded price rule with a range of -+ 10 percent

over the whole period is also given in table 3 and is plotted in figure 23.

It can be seen that point BPR in this figure is relatively close to the

efficiency frontier. This means that in this experiment the bounded price

rule is almost efficient; however it has the advantage of being a simple

rule that can be easily explained to a nonprofessional.

Another measure of performance that is based on non-discounted values

can be defined by the average coefficient of variations around the target

prices through the whole

by ACVTP, is defined by

planning period. This measure, which is denoted

ACVTP = (i! CVTF’t)l/T
t=l

That is, ACVTP is the geometric average of the coefficients of variation

around the target prices of the various years. Similarly, a nondiscounted

average mean stock was calculated and denoted by AMEANC.

are

the

The ACVTP and AMEANC corresponding to the different stock policies

reported in table 3 and plotted in figure 24. Stated in this form,

free market price instability over the whole period is 51 percent.

Under the cost PVM rule, price instability is 19 percent with average

annual mean stocks of 620 million bushels. Other PVM cases are between

+ 10 percent results inthe two extreme cases. The BPR with a range of -

a price instability of 22 percent and an annual mean stock of 270 million
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bushels. This concludes the discussion on the experiment with the U.S.

wheat model. The world all grains model will be discussed only briefly.

3.2 World grains model. The model is a synthetic one in which

world all cereals are assumed to constitute a composite commodity which

is traded in a single market. It is assumed that supply does not depend

on price, that mean production grows through time at a constant propor-

tional rate, and that production is normally distributed. The supply

18/ ,
equation is:—

(3.10) Xt = (1308 +ss)(1+ .029)(t-75)

where Xt is the quantity produced in year t (in million tons)

es is normally distributed with zero mean and a standard deviation

of 40 million tons.

Demand is assumed to be nonstochastic, linearly dependent on price, and

grows at the same rate

demand equation is:~’

(3.11) Yt =

as the supply, i.e., at 2.9 percent a year. The

(1439 - 1.31PA)(1 + .029)(t-75)

where Yt is the quantity demanded

These assumptions imply that

L

(in million tons).

the mean equilibrium price of the

18/
— The rate of growth was estimated by fitting a logarithmic trend

line to a time series of world grain production in the years 1950-1973.
The deviations from the trend line were used to estimate the standard
deviation.

“The demand equation
price would be 100 and that
to mean production (see the
at this point is -.1.

was synthesized such that the mean equilibrium
the mean equilibrium quantity would be equal
supply equation) and that the price elasticity
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aggregated commodity is 100 for all t and this was also defined to be

the target price. Beginning stocks in 1975 are assumed to be zero.

Storage cost is @ = $7.5 per ton and the discount rate is 6 = .05.

The

1.

2.

stock policies tested were:

Bounded price rule (BPR) with the following alternative ranges:

~ 10 percent of the target price; ~ 20 percent of the target

price; and - 5 percent, + 10 percent of the target price.

Price variability minimization rule (PVM) with the following

alternatives: no cost (i.e., @=O) and A = 2,500, 5,000, 10,000,

20,000, 40,000.

Summary of results

As in the U.S. wheat model, the computation program computes the

cumulative probabilities of prices and stocks for any specific stock rule

for each year of the planning period. In addition, it calculates summary

indicators which measure price instability and magnitudes of stocks. The

various indices have been explained above. The summary results of the

world grain model for selected years are reported in table 4, which is

similar to table 2. The performance of the PVM rules over the whole plan-

ning period under alternative values of A is summarized in table 5, which

is similar to table 3 of the U.S. wheat model.

4. Concluding Remarks and Recommendations for Further Research

The subject of this study is grain price stabilization by means of

a stock policy. The controversy about the desirability of price stability

and who gains or loses from stabilization is not investigated here. It is

taken for granted that price stabilization is desirable. The objective of

the research was to establish an analytical framework within which the
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implications of a stock policy for price stabilization can be analyzed.

For this purpose a price instability index over a period of time was

suggested. A simple economic model of a single storable commodity was

assumed, where both the demand and supply can be stochastic with known

probability distribution. The imposition of any stock rule results in

a probability distribution of prices and stocks and a computation program

was composed which calculates these distributions. The program also com-

putes some summary indicators of price instability and magnitudes of

stocks. In addition, the problem of an efficient stock policy in the

space of price instability and storage cost was analyzed and a procedure

to obtain a set of efficient stock policies was developed. This may

give the policymaker a set of policies to choose from. In addition, the

set of efficient stock policies can be used as a reference to which any

other suggested policy (e.g., a bounded price rule) can be compared.

The use of the procedure was demonstrated by application to two models:

U.S. wheat and world grains. These experiments were made mainly for

illustrative purposes and the econometric basis of the various parameters

assumed is rather poor. However, the numerical results may serve as

indicators to the order of magnitudes which might be involved in price

stabilization schemes. In conclusion, the present study is a preliminary

one and further research is needed. The following points ”shouldbe regarded

as recommended directions for further research and as criticism of the

present study.

1. Structure of the model. At present the model is of a single

commodity. However, cross effects of substitutes are probably important

in the determination of price. Thus, prices of wheat, corn, rice, and
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other grains are not independent but are jointly determined. Aggregation

to a composite product might be misleading for two reasons: First, dif-

ferent grains are not perfect substitutes on the demand side and their

prices do not necessarily move proportionally. Second, even if they were

substitutes on the demand side, they are not so from the supply side. In

particular, the seasons of harvest are different and are important (the

season for corn is different from that for wheat; varieties of wheat have

different seasons and of course the northern and southern halves of the

world have different seasons). In summary, a simultaneous model might be

more

on a

compatible than a

The present model

one-period lagged

single commodity model.

is a simple “cobweb” model in which supply depends

price, and demand depends on current price. How-

ever, a more sophisticated expectation process might prove to be better

and should be tested (e.g., some form of distributed lags).

2. Probability distributions. The form of the probability distrib-

utions of the various random variables in the model, and the magnitudes

of their parameters play an important role in a problem of price stabili-

zation and stocks. Normal distribution is convenient but it may not be

a sufficient approximation. For example, it is argued that the probabil-

ity distribution of yield is not symmetric. In addition, if the model

should be extended to a simultaneous model of different grains, their

joint probability distribution should be investigated.

3. Timing of decisions. In the present formulation decisions are

made once a year. However, information flows continuously throughout the

year and should be used to revise previous decisions. In particular, har-

vest times of the main crops can be appropriate dates for decisions within

the year.
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4. Improving the efficiency of computations. The approximative

procedure used in the present study is a very simple one but it seems to be

inefficient. The probability distributions are approximated by discre-

tionalization and used directly in the computations. However, the dimen-

sionality of the computations is already big even in the simple cases

illustrated above and it will increase steeply with the addition of new

elements such as more commodities and joint distributions. Probably the

solution might be to introduce simulation of the distributions rather

than use the distribution directly. Thus, an improvement of the compu-

tation procedure, in general, is needed in order to handle problems that

are more complex than the one discussed in this research.
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APPENDIX

A FLOW CHART OF THE COMPUTATIONAL PROCRAM

A description of the computations procedure was given in section 2.

In this appendix a flow chart of computations is presented. It is based

1/
on a FORTRAN program which was used in this study.— Some details of the

program have been omitted and slight changes have been introduced in the

flow chart for convenience.

Notes and explanations of the main symbols are forthcoming in the

order in which they appear in the flow chart. Underlined names indicate

functions. A flow chart of the functions is presented at the end. The

numbers in circles o are related to the numbered connectors in the

flow chart.

@ ~ @ Defining the approximation to prices, stocks and stochastic

disturbance.

NP= number of integer indices of price

Po “ value of price corresponding to the first price index

UP “ interval between any two points of price

NC = number of integer indices of stocks

co = quantity of stocks corresponding to the first stocks index

Uc = interval between any two points of stocks

The first do-loop defines a correspondence from integer indices to

prices, P(IP). The inverse correspondence (i.e., from price to indices)

1/
– Printout of a FORTRAN program is available on request.
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is defined by the function INDRXP(P) (all functions are described at the end).

The second do-loop defines a correspondence from integer indices to stocks,

CC(IC). The inverse correspondence is defined by the function INDEXC(IC)

(functionsare described at the end).

EO = number of standard deviations (+ or -) which define the range

of the stochastic disturbance (E)

UE = the interval between any two points of the stochastic dis-

turbance (expressed in standard deviations)

NE = number of integer indices of the stochastic disturbance

The last part of the program before @ defines an approximation to

the standardized normal distribution by a discrete probability function.

PRBE(IE) = the probability that the random disturbance will obtain

the value E(IE)

The correspondence E(IE) from the integer indices IE to values of E

is defined in

(zj~ Q

MT =

NT =

NM’r=

othe first row in the large box before 2 .

first period of the planning period

last period of the planning period

total number of periods

The do-loop in K=l, 2, ,.., NMT defines a series of target prices

PSTAR(KT) KT=l, 2, .... NMT. The function TARGET(IT) must be determined

and set by the user of the program. (An example is given in the description

of the function at the end.)

LAMBDA = A, the desired marginal rate of substitution of instability

for cost



158

THETA = e,

DELTA = 6,

After reading

value of 6 in

IPP =

DC =

IC =

unit storage cost per period

discount rate

DELTA, the discount coefficient 1/1+6) replaces the

the same variable.

Calculation of the optimal stocks rules.

integer index of beginning stocks (Cl), i.e., stocks of

previous period

integer index of free market price (PP)

AC, the change of stocks

integer index of current stocks

PFPPD(PP,DC,IT) = a function which calculates the final price of

time IT, when the market price is PP and the change of stocks

is DC (see description of functions at the end)

C(IC1,IPP,IT) = the optimal carryover, which minimizes the objective

function for beginning stocks CC(IC1) and market price P(IPP)

PRICE(IC1,IPP) = final price after applying the optimal rule, when

the beginning stocks are CC(IC1) and the market price is P(IPP)

V(IC1,IPP) = the minimum

and P(IPP)

@ ~@ Calculation of

value of the objective function, given CC(IC1)

the expectation of V(IC1,IPP)

LAG = an index which indicates whether there is a lagged price

effect in the model (LAG= O if NOT, LAG= 1 if YES)

PPFEP1(E,P1,IT) = a function which calculates the free market

price (PP) at time IT, when the lagged price is P1 and

the disturbance is E (see description of functions at

the end)
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EV(IC1,IP1) = the

stocks are

EV(IC1) = similar

price

expected value of V(IC1,IPP) when beginning

CC(IC1) and lagged price is P(IP1)

to EV(IC1,IPI), but for the case of no lagged

Note that when there is no lagged price effect, EV

the beginning stocks (Cl) and much computation time can

the right-hand side of @ ~@.

@~@ Preparation forprobabili.ty computation.

Clo = beginning stocks of the first period (MT)

Plo = lagged price of the first period

depends only on

be saved by using

PRBCP(J,IC,IP) = joint probability of stocks CC(IC) and price P(IP)

PRBCP(J1,IC1,IP1) = joint probability of stocks CC(IC1) and price P(IP1)

of previous period

Note: When there is no lagged price effect, it is not necessary to

calculate the joint probabilities of stocks and price. However the space

of PRBCP is used for the (marginal)probabilities of stocks and of prices.

PRBCP(*,IC,l) is used for the probability of stocks and

PRBCP(0,1P,2) is used for the probability of prices.

Note also that for the calculation of probabilities of period IT it

is not necessary to remember all the probabilities which have been computed

for

and

one

previous periods but only the ones of IT-1. The use of the indices J

J1 enables one to use a space for only two periods, namely: the current

and the previous one.

J= an index which indicates that the joint probability PRBCP is

that of the current period of calculations. It may obtain

values of 1 or 2:
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/
lif K=l,3,5 . . . where K is the number of the

J=

\2ifK= 2,4,6... current calculation period.

J1 = an index which indicates that the joint probability PRBCP is

that of the previous period. It always obtains the opposite

value of J:

J
2 if J= 1

J1 =

1 lifJ=2

~+@) G’alculationof thejoint probabilities tienthere isa

lagged price effect.

@~@ Calculation of the marginal probabilities of stocks and of

prices in the no-lagged price case. There is no need to calculate the joint

probabilities because in this case only the probability of stocks affects

the probabilities of price and of stocks of the next period.

@h@ Circulations

stocks in the case of lagged

of marginal probabilities of prices and of

price effect.

PRBP(IP1) = marginal probability of P(IP1)

PRBC(IC1) = marginal probability of CC(IC1)

@)->@ Transformation of the marginal probabilities of stocks and

of prices to new variables in the case of no-lagged price. (The marginal

probabilities have been calculated in @ ~~ .)

probabilities of

the marginal one

Calculation of various indicators and of cumulative

prices and stocks. The cumulative probabilities replace

in the corresponding variables (PRBP and PRBC).

MEANC = mean of stocks

VARC = variance of stocks (Later, the standard deviation of stocks

replaces the variance in the same variable.)
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Cvc “

MEANP =

VARP =

IIN =

DIIN =

ACVTP =

DMEANC =

AMEANC =

coefficient of variation of stocks

mean of price

variance of price (Later, the standard deviation of price

replaces the variance in the same variable.)

accumulated price instability index

discounted accumulated price instability index

average coefficient of variation of prices around the target

prices

discounted accumulated mean of stocks

average mean of stocks
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IE=l, NE

IP=l, NP

8

START

1

READ

NP, PO, UP

1

P(IP)=PO+IP”UP

I

! ‘1
IC=l, NC Cc(lc)=co + IC*UC

L

<

I

&

E(IE)=-EO + (I E-l)-UE

Fo=(l/@i7)*ExP[ -E(lE)*02/21

Fl=(I/&G)*Exp {-[ E(lE)-uE/21 “+2/2}

F2=(l/~)”EXP {-[ E[l E) + UE/2]*”2/2]

PRBE(l E)=(UE/2)*[(Fl + FO)/2 + (FO + F2)/2]

I

+

[
SUM=O

I

k

IE=l, NE SUM-SUM + PRi3E(l E)
I

* 4

7) 2

.



K=l,NMT

&
2

READ

MT,NT

c1IT= NT-K+l

KT = IT- MT+l

j PSTAR(KT) = TARGET(IT) I

I WRITE

PSTAR ( IT) /
I

I
I

/7READ
LAMBDA
THETA

d

IP=l,NP
I

EV(IC,IP) = O 14 J

(53

I

I
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v K-l,NMT

IPP=l,NP

IPF-l,NP

mIT - NT-K+l
KT = IT-MT+l

IC1=l,NC

I Vv = 10””30
I

L

I DC - CC(IC)-CCIIC1) I

PF - PFPPDCIP(IPPI,DC, IT]

W - [ [PF-PSTAR(KT)I /pSTAR(KT)) ““2

VVV - W“LAMBDA+CC(lC) OTHETA+DELTAoEV( lC,lPl
1

1
J

c
>

IMC-I
V(IC1,IPP) = Vv Ii-J---l

PRICEIIC1,IPP) - F I I I=lc I

c(IC1.IPP.KTI - CC(I) I I w - Vvv
F=PF I

I 1
i

I
IC-MC,NC

,
*

. -1

II
t

DC - C(IC1,IPP,KT)C CIICII
I

I

DWRITE

IC1-l,NC C(IC1,IPP,KTI

DC
PRICE(IC1,IPP

I L I

IC=MC,NC

IC1=l,NC

1 IP1-l,NP

[
EV(IC1,IPII = O

“ PP--IEIIE),O,ITI

PP. = lEllELPOPI LIT]
IPP - INOEXP(PPI

IPP - -IPP)
EV(ICII - EVIICII+VIICI, IPPI”PRBE(IEI

EV(IC1, IP1) - EvllCl,lPll+VllCl,lPPl+PR8EllEi IE-l,NE
4

m *

IP1=l,NP
M t

ICI=l,NC

L
IC1.l,NC

I i

K-i .NMT 4

. . ..
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6
5

IIN=DIIN

= ACVTPEAMEAN

= DMEAN =0

oREAD

C1O,P1O

“’=lNCI ‘P’”lNPG
k

i
I 1

IC1 = INDEXC(C1O)

iPl = INDEXP(P1O)

NO

i-

YES

I I

3

PR13CP(2,1C1,1P1 )=1
PRBCP(2,1C1,1)=4

PRBCP(2,1P1,2)=1

s I
I

I

QIT - MT+ K- 1

KT = IT- MT+l

L---r-J
J = lNT(K/2)

J = J*2

r YES NO

7

J-1 J-2

J192 J1-1

1

i

1“
J

I k
{

L8

i

07
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NO YES
*

IE=l,NE

IE=l,NE
<IP1=l,NP

1

I PP=~l[E(lE),P(lPl ),lT]

IPP - INDEXP(PPI I
L I

IC1-1.NC I

1 IC = INDEXCICIIC1,IPP, KT)I

I

1 DC= C(IC1,IPP, KT)-CC(IC1) I

I 1P= INDEXPIPFPPOC(PP, OC,ITI)—.

I PRBCP(J, IC, 1P) = PRBCP(J, IC, 1P)

+PRBE(IE)’PRBCP( J1, IC1, IP1) I

7
IC1-l,NC

IP1=l,NP

IE-l, NE

&8

IT1 = IT-1

+

I IC - wIC(IC1,IPP,KT)I
I

I
*

I DC= C(IC1,IPP,KTI-CC( IC1) I

I 1P= INOEXPIPFPPOC(PP,DC, IT) I

I PRBCP(J,IC,l) = PRBCP(J,IC,l)

+ PRBE(IE)’PRBCPIJ1, IC1,l) I

r
T

I IPRBPIIP1)=O

PRBC(IC1) - pRBCP(Jl,lCl,l)

I ~

r
PRBP(IP1) - PRBCPlJl,lpl,21

IC1=l,NC

PRBP(IP1)- PRBP(IPII
+PRBCP(Jl,lcl,lpl)

1
w

F&-1 IC1-l,NC

I IP1-1.NP

IP1=l,NP

611
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Q11

I
+

f

Ic

MEANC-MEANC + CC(IC1)*PRBC(ICI)

VARC-VARC + CC(IC1)””2”PRBC( IC1)

E PREC(ICII-PRBC(IC1 ) + PRBC(I)

I J
IP1=2,NP

A J

IG

MEANP-MEANP + P(IP1)”PRBPIIP1]

VARP=VARP + P(IP1)””2’PREP( IPII

r t

I= IP1- 1

PRBP(IPII-PR8P( IP1) + PRBPIII

4 4

0WRITE

P(I),PRBP(II

C(I), PRBC(I)

1

VARC-SORTIVARC - MEANC’”2)

VTP-SCIRTfVARP - 2“MEANP’PsTARIKTI +PsTAR(KT)**2]

VARP-SORT(VARP - MEANP*”2)

CVC-VARC/MEANC

CVP-VARP/MEANP

CVTP-VTP/PSTAR(KT)

DIIN-DIIN + CVTP*”2” DELTA”*(IT1 - MT + 1)

II N-I IN+ CVTP””2

ACVTP=S(IRT(IIN) / (IT1 - MT+ 1)

DMEANc-DMEANC + MEANc-DELTA. *(lTl - MT + I)

AMEANc-[AMEANC* (IT1 - MTI + MEANC] / (IT1 - MT+ 1)

I

I

1

T
6

K.l,NMT

t

r
YES

913

I
,

i

1

I IT,-,, I v

I ‘“””” t---JI-J
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Functions.

INDEX P(Pj, INDEX (C)

These functions define the correspondence

to integer indices.

TARGET, PF PPDC, PPF EP

from prices and stocks

These three functions should be supplied by the user of the program

according to the specification of the demand and supply model. The

functions which are presented here are examples which are based on the

following simple linear model. We denote by small letters parameters,

the numerical values of which are inserted in the program.

Demand function:
‘IT

= (ao- alPIT + Ed)(1 + gd)‘lT-MT)

Supply function: (IT-MT)
‘IT = (bo+blplT_l + Es)(l + gs)

Ed and Es are distributed normally with zero mean and standard

deviations ss and Sd respectively.

TARGET(IT)

This function defines a series of target prices. In the present

example the target prices are defined as the long-run equilibrium prices

(i.e., PIT = PIT-l) .

PFPPDC(PP,DC,IT)

This function defines the relation between

in period IT, the change of stocks (DC) and the

the free market price

final price (PFPPDC).

(PP)
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PPFEP1(E,P1,IT)

This function defines the determination of the free market price

(PPFEP1) at period IT, by the lagged price (Pi), and the composed

disturbance (E). SD and SS are the standard deviations of the demand

and supply, respectively, at period IT.

s = SD + SS is the composed standard deviation at time IT.
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TARGET(IT)

?

PKT = IT-MT

*

AO=aO’’(l+gd)**KT

Al ‘al*(l+gd)**KT

BO= bO*(l+gJ**KT

BI = bl ●(l+gJ**KT

*

TARGET=-
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INDEXP(P)

A
r- = (P- Po)/uP

IN DEXP= INT(F) ,

NO YES

I 1

$

INDEXP= INDEXP+l
I

IN DEXP= INDEXP+2
J

I I

4

INDEXC(C)

Q
F = (C-CO) /UC

INDEXC = INT(F)

NO YES

I 1

1

INDEXC = INDEXC+l INDEX = INDEXC+2
1

I I

I
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PFPPDC(PP,DC,IT)

o
I Al = al’(l+gd)**(lT-MT)

I
1

I PFPPDC = PP+DC/Al I

(5)
PPFEP1 (E, PI, IT)

-

KT = IT-MT

I AO=aO*(l-igd)**KT

Al = al ●(l+gd)**KT

I SD= sd’(l+gd)**KT

I

1
}

BO=bQ*(l+gJ**KT

B1 =b, *(l+gJ**KT

SS = s6*(l+gJ**KT

+

[
s = SIMS 1i .

pFEPl = AO-BO-Bl*Pl+E’$j
Al
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