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DYNAMIC SUPPLY FROM A COMMON PROPERTY RESOURCE:

WATER DIVERSIONS FROM THE GREAT LAKES.

Nir Beckerl and K. William Easter2

ABSTRACT: The five Great Lakes can be classified as a common property or open

access resource. This is a consequence of the lack of a well-defined system of

property rights governing water use in the lakes. Decisions by interested parties

are interconnected, since withdrawing water from one point may affect water levels

in the entire system. This, in turn, can adversely affect hydropower production and

commercial navigation. Contributing to the complexity of the problem are the eight

U.S. states, two Canadian provinces and the two federal governments. Game theory is

implemented to describe this situation. Several games are constructed to describe

different market structures. Of particular interest is the number of players that

participate in the game, as well as the expectations which they hold. Open-loop

(where players commit themselves to future actions) and closed-loop (where players

do not commit themselves to future actions) are compared for the ten players game

(eight states and two provinces), two players game (U.S. versus Canada) and one

player game (a social planner's solution). It is shown that trying to solve an

open-loop game ignores part of the externalities involved, and thus can

underestimate the social loss involved in these lakes.

KEY TERMS: Common property resources, game theory, water diversions, Great Lakes
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INTRODUCTION

The five Great Lakes, located between the U.S. and Canada, are tied together

by one common outlet to the ocean. When combined, they are the largest fresh

surface water body in the world (20% of the world's fresh water stock, and 95% of

the American continent's). Lake Superior is considered the largest lake in the

world, and Lakes Michigan and Huron are the fifth and sixth largest, respectively

(Task Force, 1985). This enormous body of water, combined with an increasing demand

for water, gives rise to proposals for transferring the water for use outside the

lakes and basin.

Water from the lakes has both stock and flow uses. While the flow uses accrue

only to the parties that withdraw water from the lakes, that is not necessarily true

with respect to the use of water as a stock, which is spread over the whole system.

This situation can be represented as a game, since the outcome of this situation to

each and every player depends not only on his or her actions, but on other players

actions (Becker and Easter, 1989). Since decisions and the benefits and costs to

each player extend over time, the game is a dynamic one. The external effects on

each player come indirectly through the lake level, which influences their uses.

This study concentrates on the two industries that will be the major losers

when lake levels are reduced: commercial navigation and hydropower production.

Damages to lakeshore properties are not included because water diversions decrease

lake levels, while damages to shore property tend to occur during high lake levels.

Other uses of water, i.e., fishing, recreation and wildlife, were found to be less

sensitive, and will only change the results marginally (IJC, 1981).

It is important to understand why game theory should be applied to the Great

Lakes management questions. One approach would be to perform several benefit-cost
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analyses, for several diversion proposals (David et al., 1988, IJC, 1981). However,

the core issue is that, as long as there are a finite number of parties involved in

lake management, a change in lake levels can and probably will bring about changes

in their decisions with respect to how much water to take out of the lake.

Performing a discrete benefit-cost analysis is not the "end of the game," but only

one possible outcome. Thus, the results from benefit-cost analysis could be

misleading.

The dynamic game theory makes a distinction between an open-loop and a closed-

loop equilibria (Clemhout and Wan, 1979). The difference between those two

equilibria is not only in the value of the variables, but in the environment that

they try to describe. The open-loop equilibrium ignores part of the externalities

involved in withdrawing water from the Great Lakes. The result of these two

equilibria will be compared in this paper to determine the importance of this

external cost.

THE GREAT LAKES SYSTEM

The Great Lakes system consists of a series of five major lakes which are

connected by four channels. Flows out of lakes Superior and Ontario are regulated,

while they are not in lakes Michigan-Huron and Erie. The system has a surface water

area of 5,475 square miles. Lake Superior is the furthest to the west while Ontario

is the farthest east. The direction of the flow is from Lake Superior through St.

Mary's River into Lake Huron. Because of the wide connecting channel between Lake

Huron and Lake Michigan, water can flow between these two lakes in both directions.

This flow tends to equalize the lake levels, thus, they are usually considered as

one lake. Lake Huron outflow runs through the St. Clair River and Lake St. Clair,

and the Detroit River to Lake Erie, which drains through the Niagara River to Lake
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Ontario. Lake Ontario outflows pass through the St. Lawrence River to the Atlantic

Ocean.

Currently, there are five major diversions. Two diversions (Long Lake and

Ogoki) divert water into Lake Superior from Ontario, Canada. Another takes water

out of Lake Michigan, through the Chicago diversion, to the Mississippi River. The

Welland Canal connects Lake Erie to Lake Ontario and it bypasses Niagara Falls.

Finally, the New York State Barge Canal takes water from the Niagara River into Lake

Ontario. Besides diversions to and from the lakes, there is also a consumptive use

component which, in contrast to the diversions, is not well documented (Frerich and

Easter, 1988).

While on the average water in equals water out, in reality these components are

not fixed, and thus lake levels change from month to month. The seasonality of the

hydrologic characteristics is reflected in higher lake levels in the spring and

early summer, and a gradual drop during the remainder of the year. The natural

supplies to the lakes are large relative to the range of flows on the connecting

channels, which are remarkably constant. This fact will have an effect later upon

our results, since changes in a given lake will be absorbed by other lakes only

after a long period of time. If there is a long-run change in the water supply to

the lake (i.e., a diversion), the outflow is adjusted in such a way that the system

will reach a new equilibrium after a period of time, with a new steady state lake

level and flows in the connecting channels.

Consumptive water use in the Great Lakes basin will continue to grow as the

population and economy expand. In addition, there will be periodic pressures to

increase water diversions, particularly from the Chicago diversion, when lake levels

are high or river levels are low. However, the future demand for Great Lakes water

involves many uncertainties. If the earth warms up and the upper midwest becomes
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drier, then demand could be greatly expanded. In contrast, abundant rains could

slow the growth in demand to a trickle. Given this uncertainty, this study focuses

on the supply side and assumes that there will be demand for whatever amount is

supplied at $100 per ac. ft. This price for water is on the low side for most water

uses except for agriculture which cannot pay much more than $50 per ac. ft.

COST OF WITHDRAWALS

The major cost of most new diversions or withdrawals is the fixed costs. For

example, fixed costs of diverting 10,000 cfs from Lake Superior to the Missouri

River Basin were estimated at $10 billion while the annual variable costs were

estimated at $10 million. The fixed costs for a relatively small Lake Erie

diversion were estimated to be $3.2 billion (DeCooke et al, 1984 and Banks, 1982).

For this model the fixed costs for new water diversions or withdrawals are based on

the Superior-Missouri River and the Lake Erie transfers amortized over an infinite

time horizon. The operating and maintenance costs are fixed per 1 thousand cfs

costs.

Because of the complexity of the system, a hydrologic response model (HRM) is

used to estimate the external effect of water withdrawals from the Great Lakes

system (Quinn, 1978, Hartmann, 1988). The changes in Lake Superior's hydrologic

component are accounted for in the lower lakes by passing the change, according to

the Lake Superior regulation plan, through the St. Mary's River flow, which is part

of the HRM. Lake Ontario is not considered, however, in the HRM, since it does not

affect anything upstream due to Niagara Falls. Changes in Lake Ontario levels are

derived using the Lake Ontario regulation plan algorithm (plan 1958-D), adjusted by

the effect of the upper lakes. These three simulation models account for the whole

system and result in monthly lake levels and water flows in the connecting channels.
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The key external cost components in this analysis are the effect on the

industries that use the water as a stock; commercial navigation and hydropower

production. In order to simplify the analysis, it was assumed that these costs are

quadratic relative to lake levels. That can be thought of as a Taylor expansion

only over the first two arguments. Before describing the method used to obtain

these costs, several additional assumptions should be mentioned. In order to gain

insight into these two industries, it was assumed that the current diversions and

consumptive use remain the same. In other words, the effect of withdrawing water is

in addition to the existing withdrawals. Moreover, with respect to the commercial

navigation, it was assumed that the demand for shipped goods is totally elastic,

while the supply is totally inelastic. That is, all the costs incurred by lower

lake levels will fall on the shipping industries. Further research is needed,

however, with respect to whether goods can be shipped in alternative ways, and

whether part of the cost can be shifted to the consumers. With respect to the

hydropower production, it was assumed that the demand function is totally inelastic,

but cannot be totally supplied by hydropower generations. That is, every power

capacity loss due to lower lake levels (and lower outflows in the connecting

channels) will result in shifting to higher cost modes. The difference between

these costs is the loss to consumers, which in this case is within the system (Great

Lakes states and provinces).

Navigation on the Great Lakes: Reduced lake levels will increase the cost to the

shipping industries, since ships will have to carry less; and in order to ship the

same quantity, they will have to make more trips. These additional trips are the

loss to the shipping industry. It is implicitly assumed that all the other factors

of production are smoothly adjusted to changing lake levels, thus the only factor
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responsible for the loss is the reduced lake levels.

The loss for the shipping industry was estimated by calculating monthly trip

hours for each state for every lake that the state has access to. The data was

taken from Water Borne Commerce of the United States (WCUS), 1977-1986. Almost 200

million short tons are shipped on the lakes annually. The hourly cost was used to

attach cost to the number of trip hours. In order to obtain the cost in terms of

losses, the base cost was set at the highest lake levels during the period January

1980 to December 1986, and a value of zero cost was attached to it. The cost then

was adjusted to be the additional cost due to reduced lake levels. This additional

cost (loss) vector was regressed on lake level change for that period without a

constant.

(1) Lossi,L,t - a (DLLLt) + b (DLLL,t)2.

Where: NLOSSi,L,t - loss to player i on lake L at time t (navigation).
DLLL,t = decreased lake level at Lake L at time t and;
a,b - coefficients to be estimated.

Hydropower Production on the Great Lakes: Unlike commercial navigation, hydropower

is affected directly by the outflow in the connecting channels. But this outflow

is, in turn, determined by the lake level. As mentioned above, substitutes do exist

for hydropower, but they are more expensive.

Three major areas produce hydroelectric power: upper Michigan at the Sault

Ste. Marie Locks (Michigan and Ontario), the Niagara River Falls to Lake Ontario

(Ontario and New York) and the St. Lawrence River, which is the outflow from Lake

Ontario (Ontario and Quebec). The distribution is much more concentrated than the

one for commercial navigation. In addition, there are fewer states that produce

hydropower, and most of them are located downstream. This is a classic situation in
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which economic efficiency problems occur because of interdependencies.

Data was collected for the different plants on the relationship between the

energy loss and the flows in the connecting channels, as well as the lakes elevation

between 1980 and 1988 (N.Y.P.A., 1989, Ontario Hydro, 1987 and Hydro Quebec, 1988).

However, only the lake level variable is included in the cost equation, since lake

levels and outflows in the connecting channels are highly correlated. The loss is

calculated as the difference between hydropower and the best alternative source

existing for that state, multiplied by the energy loss for that month. The loss

equation can be written as:

(2) PLossi,L,t - c (DLLL,t) + d (DLLLt)2

Where: PLossi,Lt - power loss to player i on lake L at time t.

DLLL,t = decreased lake level L at time t.
c,d - cost coefficients to be estimated.

GAME THEORY MODEL

Much attention has been given to analyzing different market structures by

looking at the dynamics that arise from the interaction amongst different parties.

Game theory provides a method for looking at such dynamic interactions and is

particularly useful for resource extraction problems, where there are interactions

over time among a finite number of players. Some useful applications of this theory

to natural resources where common property or open access is a problem include:

Levhari and Mirman (1981) for the fisheries, Reinganum and Stokey (1985) for

oligopoly extraction of nonrenewable resources, Eswaran and Lewis (1984) for

renewable resources, and Negry (1989) for groundwater mining.

In applying the theory to the Great Lakes problem, we start with the following

transition equation:
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(3) St+l - St - f (Ylt, Y2t.---. Ynt)

Where St is the state variable, Yit is the (lxn) control vector for the n players

for period t. Player i faces the following objective:

c t

(4) Zi - p 0 Jit(St, Yltt-- . Ynt) 0<.<1 Vi e N.
t-O

Where Ji is the payoff function for player i, at time t,9 is the discount

factor and Zi is the discounted objective function. Player i tries to maximize (2)

subject to (1) where SO is given and yi is nonnegative. While the constraints

described above can be estimated, we need a constraint on the way each player j

(where joi) chooses a strategy. This constraint is not obvious, since we are

dealing with expectations and not with stocks of resources. Alternative assumptions

on what player i expects player j to choose, Yjt, will complete the game's

characteristics and determine the equilibrium. Two commonly used assumptions are

found in the literature of dynamic games. First is an open-loop in which players

decide at the beginning of the game on a strategy path given the other player's

expected strategy path. This path is called an open-loop Nash equilibrium, if for

each player, the path that they choose is the optimal one, given the paths that the

other players choose is also optimal. Thus, none of the players have an incentive

to change their strategy, either in the beginning of the game or during the game.

Formally defining an open-loop Nash equilibrium, we get the following extractions

vector set:

(5) Zi*(S, (Y I Y co ) t * co co co co
(5) Zi so, Ylt=0 .tO {z (yl)t-o -- (yi-l)t-O (Yi)t-O' (Yi+l.t=O

,Ynt_ V(Yii) E Y.
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Where {Yi)}t- is any other feasible strategy vector for player i. In other words,

the extraction path will be optimal to every player because we assume that the other

players will not change their strategies. Necessary conditions for this equilibrium

can be derived by solving n current value Hamiltonians. The current value

Hamiltonian for player i is the following:

(6) Hi - Ji (') + Ai f(/),

where A is a costate variable vector attached to the stock. The necessary

conditions are:

aJi(.) af(.)
(7) ayi - Ai ayi Vt

aHi
(8) Ai,t+l - Ai,t = rAi - aSt

(9) St+l - St - f(Yl,y2,....Yn)

where r is the interest rate. These conditions are also sufficient, provided the

concavity of the Hamiltonian in S and y. Since our problem is of an infinite

horizon, the transversality conditions are:

(10) lim ft At > 0 and;
t-e

(11) lim ft StAt = 0
t-*o

Conditions (8) and (9), together with the concavity of the Hamiltonian, are

sufficient for an optimum.

Starting from (6), we get the following:
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(12) A. - t aJi.
Vt

t-t

as-t

Substituting in (5), we get:

(13) aJi - Ai Vt
ayi

Solving the extraction path involves solving difference equations, but if we

are interested in the steady state of the system, we know that in the steady state,

Ass - At+l - At, thus:

aJit /aS t

(14) A -
t r

which is the value of the stock to player i in a steady state. The steady state

extraction rate is then obtained from the steady state costate variable.

The problem with an open-loop equilibrium is its strong assumption that players

solve the game at the beginning of the game, where the solution is a vector of

extraction paths. While the game's equilibrium is consistent at t=O, it relies on

non-credible future behavior, which is not necessarily in the interest of player i

to fulfill. A more reasonable assumption is that players do not commit themselves

only to a time profile of actions, but to a time-state profile, which results in a

decision rule. The decision rule includes the extraction as a function of the given

state at the current time. This kind of equilibrium will be called closed-loop (or

feedback) equilibrium. A closed-loop equilibrium is subgame perfect, which means

that when the game is played by the decision rules of the players, a Nash
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equilibrium is reached at every stage of the game. Thus, the game is time

consistent by definition. The discounted objective function for player i is now

written:

(15) Zi - Z ftJi(St, Ylt ,..., Ynt) VieN
t=o

But unlike the open-loop case yj, where jti is also a function of the state

variable, i.e.,

(16) yi,t - gi(St) VieN, Vt

the Nash equilibrium now will have the property that no player will have an

incentive to change the decision rule given the other player's decision rule, thus:

* * * * *
(17) Zi yl(s) , ) ,...yil() yi() i+() , y.. n(S) 

'* * * *

Zi yl(s),.....yil(s) ,yi(s), Yi+l(s) ,...--,Yn(S) ViN, Vyi(s)

The current value Hamiltonian for player i will be:

(18) Hi St,yl(s),...Yn(s) = Jist,Yl(s),...,Yn(s) +

Aif St,Yl(s),...,Yn(s) Vt, VieN

The Nash equilibrium will satisfy the following necessary conditions (Starr and Ho,

1969):
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* * *

(19) yi - g (S) maximize Hi(S,gl(S ),...,i .... gn(s) Vt , VieN

(20) St+ - St - f(Yl,Y 2,...,yn) Vt

17

(21) At+l - At - rAt i -Z aHi gj* Vt, VieN, VjfieN
as 1 ayj as

Equations (17) and (18) have the same structure as in the open-loop Nash

equilibrium. The summation term in (19) is the basis for the difference between the

two concepts. This interaction term indicates the effect that player i has on the

decision rule of player j's Hamiltonian. Intuitively, the explanation is that:

player i, by knowing how he or she can influence player j's extraction, will take it

into account in his or her maximization conditions. When player i derives the

canonical equation with respect to the stock, he or she notices that St is not only

in his or her Hamiltonian, but in the others as well. Moreover, the sign of

agj* (S)/aS will probably be positive, thus players will extract less when the stock

level goes down. This in turn will offset the losses incurred by player i from

driving the stock down. Therefore, in equilibrium the stock level as well as the

shadow price will be lower in a closed-loop as compared to the open-loop

equilibrium. In a common property or open access resource model, where property

rights are not well-defined, the closed-loop equilibrium seems more appropriate.

Notice that yi and Ai are not functions of time any more, but functions of the

stocks. That is, the decision rules are with respect to stocks without importance

to the time that these stocks are reached.

It should be mentioned at this point that open-loop and closed-loop do not

always differ. Whenever a player cannot manipulate the stock or doesn't want to
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manipulate it, there will not be any change between the two concepts. In the common

property literature, it applies to the two endpoint solutions, namely, the open

access and social planner solutions. In the open access, it is assumed the players

are too small to affect the stock, while in the social planner's problem, it is not

in his or her interest to manipulate the stock. When the number of players is

finite, the two concepts give rise to different equilibrium values

Finally, it is important to realize that a closed-loop equilibrium is a Nash

equilibrium in the sense of a given decision rule, but not in the context of an

extraction path. Therefore, the feedback solutions are not the usual Nash

solutions, but rather non-Nash ones. This occurs because players know that their

action will have an effect on their rivals' action, which implies that the

conjecture variation is no longer zero. Additionally, it is the only conjecture

variation that is consistent with profit maximization, since players will always do

whatever is in their interest to do (i.e., profit maximization). Other conjecture

variations, while sometimes more attractive, are harder to justify on the grounds of

some maximization behavior in a noncooperative sense (see Mason et al., 1988 and

Runge, 1986).

IMPLEMENTING THE MODEL

The parties involved in this game are eight states and two provinces. The

eight U.S. states are: Minnesota, Wisconsin, Michigan, Illinois, Indiana,

Pennsylvania, Ohio and New York, while the two Canadian provinces are Ontario and

Quebec. Thus, we have potential conflicts not only between states and provinces,

but also between countries. Moreover, there are states that have access to more

than one lake. In general, the system has 4 state variables (the lakes), 10 players

(states and provinces) and 17 decision variables (number of players with access to

each lake).

14



In the Great Lakes game, player i on Lake L faces the following problem:

4 co

(22) Max i,L - Z Z Pt Yi,L,t(P-VC) - NLoss(LLL,t) - PLoss (LLLt)
Yi,L L-1 tw0

s.t.

4 17
(23) DLLL,t - yiek,L VK,L - 1,2,3,4 Vi - 1,...,17

K-l -1

(24) LLt_ 0 - LL VL - 1,2,3,4

Here, ek,L is the cross lake coefficient. That is, the effect on all lakes of

a given lake level reduction. This is a 4x4 matrix with unit diagonal components

(that is, the effect of a lake on itself was normalized to 1). While Yi for every

player results in a revenue that is directly related to the quantity sold, the costs

are determined not only by player i, but by the others as well.

The following current value Hamiltonian is:

4 17
(25) Hi,L Y, yL(P-Vc)-NLoss(LL)-PLoss(LL) )+ Ai, (k i- iLe kL )

I~- ' - J "i - i,.ik-1 i '-l

+ pi,L Yi,L

where pi,L is the costate variable associated with the nonnegativity constraint.

The associated Kuhn-Tucker condition for this variable and Yi,L should be satisfied

in equilibrium (Knapp, 1983).

(26) ~i,L Yi,L - ; Yi,L 0° ; i,L > 0

The other first order necessary conditions are the usual ones:
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BH
(27) aHiL =0

i1i,L

(28) i,L ri, - .L
aLL

and the transition equation (23).

In practice, what we require is that the decisions of the states will be

constrained to diversions out of the lake and not diversions into the lake.

Whenever Yi,L equals zero, there will be a positive costate variable, pi,L which is

the effect on player i of a unit of water diverted into the lake.

The fixed costs are not included in the necessary conditions. The outcome,

however, is supposed to cover the amortized value of the fixed cost. If it does

not, then the project is assumed not to be built.

As mentioned above, there are 10 players and 17 decision variables. That means

that some of the players have more than one lake that they have access to and

therefore have more than one decision variable. Thus, whenever players in this game

choose a strategy, they take only part of the other strategies as givens. The

strategies that affect their payoffs are taken into account when they set their

first order conditions for profit maximization. In that case, the associated

condition looks like:

4

(29) NMB -A +Z A
i,L i,L k-l i,K

kfL

where NMB is the net marginal benefit for player i on lake L.

Finally, it is important to understand that the water body dealt with is a

large one. The results of withdrawing water will reach its full impact only after

about 15 years (DeCooke et al., 1984). Moreover, the diversion from different lakes

have an additive effect. In that case, we can separate the effects lake by lake. A
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strategy which is the steady state one will have a costate variable associated with

it, which is a combination of two components--the effect up to 15 years, and the

effect 15 years and beyond.

Let the loss function for an industry i be:

(30) Lossi - li 7LY + 2,i( Ly)2 vi - 1,2

Note that i represents industries and not players, and r is the effect of the

level of diverting ltcfs. If we assume that it takes 180 months to get to the

steady state, the present value of losses to industry i should be:

[,igiy+ 2g i.iY+. .. +. 2 V . 2+ . i (2 L )2 yJ a2i~ 2.i8)2y[ml, ig Y =___180i l 7LY + 2,iy L2 +

r2 for t < 180

r for t > 180

(l+r)1 8 0

or, after some algebraic manipulation:

f r 179 1-t 1 2 2 r 180 2,- ,1 -
(32) PVLoss - y [ t(l+r)1 + iL y [ t (l+r)t ]

+ oc 180 iLY + 2.i (180-)2 y2

r(l+r) 1 8 0

where y is the sum of all diversions adjusted by the cross lake affects and each

player treats his rivals' decisions as givens.

The closed loop equilibrium is calculated by, again, solving a system of
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equations. This time, the coefficients are different, since players take into

account their effect on other players. The effect of other players extractions on

player i himself is implicitly taken into account by solving the set of equations

simultaneously. Recall that every player other than i has a decision rule that

depends on stock. That is:

(33) yj g [S(Yi ...Yi,...,.)]

player i, resets his first order condition based on this information. With respect

to player j he gets:

*

(34) ag < 0
ay i

However, there are several players, thus:

*

(35) . ag < 0
ji ay,

(35) is the "manipulation affect". Every player on the system manipulates the stock

according to (35), since he thinks that he will increase his profit. The

inefficiency increases because every body thinks so. Equation (32) for the closed-

loop solution becomes:

(36) PVLoss- [oc l i L gi gl(Yl' ... 'Yn) + ... + gn (Yl''' Yn)) ] 

[179 1-t 2 * . .
I*[E t(l+r) t]+ 12L [ilg((yl ,Y) gn(Yl 'J'Yn) I* It-O6 ' 1 ^ J" '2,l L [ 

I180 2 1-t
[1 t2 (l+r) +
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80liLL'il i [ gl(Yi'''''Yn)+'''+gn(Yl ) + (0L)

[i-l [gl(Yil... Yn) +.+gn(Y l( y...Yn)] 

r (l+r)
1 8 0

The equilibrium is, thus, computed in two stages. In the first stage, each

player faces the following problem: departing from the open loop equilibrium, how

much more can he extract without affecting his cost and thus, increasing his profit?

The answer is to increase the extraction as long as it will not affect the lake

level. This, in turn, depends on the reaction of the other players to his action.

The second stage is reached when all the first order conditions are solved together

after adjusting the coefficients of the derivative of the payoff matrix (Hessiqan)

according to the manipulation affect. When players are not identical, it is

possible that players will divert less than in open loop after taking into account

their rivals' closed-loop strategies. It is so because only on the second stage,

players actually are taking into account that not only are they playing a closed

loop strategy, but that all of the other players are doing the same.

RESULTS

Based on the physical and hydrological data, as well as the economic indicators,

it is possible to construct the following games: 1) Social Planner's Game (a 1-

player game); 2) U.S. vs. Canada - Open-loop (a two-country game); 3) U.S. vs.

Canada - Closed-loop (a two-country game); 4) Ten Players - Open-loop; and, 5) Ten

Players - Closed-loop.
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The best regression estimates for the impacts of reduced lake level include

only the squared term for the decreased lake level. In general these results were

as good or better than a regression which includes both reduced lake level and the

quadratic term for it. Since we wanted to keep one functional form, we chose to

concentrate on the reduced square term (Table 1). The cross lake affects are given

in Table 2 (these are ratios for the total affect) while the inner lake affect for

the first 15 years is given in Table 3.

Game 1 (Social Planner's Game): The social planner's game is set up so the

discounted net benefit of the whole basin, subject to hydrological and nonnegativity

constraints, are maximized. It is as if all the lake uses in the basin are under

one ownership and all the impacts of diverting lake water are taken into account.

Table 4 gives the solution for 0.4% real monthly interest rate. The socially

optimal diversion is to increase the Chicago diversion by 0.71 tcfs and to build a

new project on Lake Ontario to divert 10.55 tcfs. Since the present value of the

project benefits minus annual variable costs is larger than the fixed cost ($3,200

million), the project passes the economic efficiency test. These discounted

benefits are for an infinite time period, with a constant stream of monthly

benefits. This means, of course, that at higher discount rates and/or lower water

prices, benefits would drop relative to costs and diversions would be less economic.

Surprisingly, a significant part of the supply is being taken from a lake which

produces an important part of the hydroelectric power in the basin. However,

withdrawals from this lake do not affect the upper lakes. In contrast, taking

water from the upper lakes will result in a chain effect that will cost more than

can be compensated for by revenues generated.
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Games 2 and 3 (U.S. vs. Canada: Open-loop/ Closed-loop): In the two country games

there is no difference between the open-loop and the closed-loop solutions (Table

5). The reason is that only the U.S. "wins" in the open-loop game, thus they have

no incentive to further drive down the lake levels because Canada is already not

diverting. Canada could influence the U.S. by extracting water, but they will lose

even more than the U.S. for every inch the lakes drop. Thus, the best strategy for

Canada is to play 0 in both games while the U.S.'s best strategy is to divert 44

tcfs from Lake Ontario. The U.S. gains about $31 billion (excluding fixed costs),

while Canada loses more than $90 billion. The total social loss of $61,457 million

versus $7,981 million benefit for the social optimum solution, clearly indicates the

inefficiency of moving from a one player to a two player game or solution. This is

all based on the highly unlikely assumption that the U.S. could divert and sell as

much water as it wanted at $100/ac. ft. However, the important lesson to be gained

is the distribution of benefits and costs and how they influence the decision.

Games 4 and 5 (Ten Players - Open-loop/Closed-loop): All the diversions in these

games are above Lake Ontario (Table 6). These diversions increase the losses

imposed on the whole basin. The incentive to increase the amount of water diverted

from the Great Lakes as well as a shift in the location of the diversion results

from the location of states around the lakes and the distribution of costs and

benefits of diversions. Lake Erie is a big problem. While a significant part of

the hydropower facilities is located in the outflow from the lake, certain states

such as Pennsylvania, are affected very little by reduced lake levels. This

difference in cost incidence of large diversions causes very large losses for New

York and the two Canadian provinces.

It is important to note that, while there are several states that are diverting
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water (4 in the open-loop game and 5 in the closed-loop game), only Pennsylvania

"wins" while all the others have a negative present value of benefits. This is

exactly the essence of the "tragedy of the Commons." States divert water not

because they will gain something but because they will lose less by doing so. The

difference in the losses results because if they do not divert, some other state

will. If the difference in losses is larger than the fixed cost, the state gains

from building it.

The open-loop and the closed-loop solution is the additional amount of water

diverted from Lakes Superior and Michigan-Huron. This difference is a function of

the cost of impacts on various states as well as the hydrological relationships

among the lakes. The major difference is a diversion from Lake Superior (the

Wisconsin part) as well as the doubling of the diversion from Lake Michigan-Huron by

Illinois and Indiana. The "tragedy" increases since everybody tries to manipulate

the stock (lake levels). The results suggest that the open-loop equilibrium under

estimates the true social loss by 34%. The difference in benefits for binding

agreements to limit state diversions are quite large and can prevent about one-third

of the externality involved in managing the lakes by states and provinces as

compared to the social planner.

SUMMARY AND POLICY IMPLICATIONS

Different market structures can give rise to totally different supply patterns

of water from the Great Lakes. The lakes are characterized by different types of

users. This fact is the core reason for conflicting incentives, which result in

large losses if lake diversions are not regulated. The fact that the big users of

water as a stock are located downstream, can result in large losses if downstream

water rights are ignored.
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Neither Ontario nor Quebec have an incentive to extract large amounts of water.

Thus, the incentive to reach an agreement to restrict water withdrawals rests mainly

with the two Canadian provinces and the States of New York and Michigan.

Formulating the game as an open-loop game does not account for the "strategic

externality," which basically is a weak assumption. Players generally do not

necessarily have a strong incentive to remain in their original strategies if it is

not in their best interest. Thus the closed-loop game is more realistic for open

access resources or what some call the Commons. The benefits of managing an open

access resource become higher when the possibility of "feedback" strategies is

recognized through the open-loop game.

Finally, it should be mentioned that more research is needed with respect to

the demand side, which is ignored in this study. The incorporation of the demand,

however, is much more difficult than the supply because of data problems. The

inadequate demand estimates resulted in diversions from Lakes Ontario, Erie and

Michigan-Huron that are unrealistically large. What the results really show is that

small water diversions or withdrawals from certain lakes, either for use inside or

outside the basin, might pass the economic efficiency test. Yet because of the

unequal distribution of benefits and costs of water diversions among states, several

states and the U.S. federal government may have economic incentives to promote

socially inefficient diversions. In addition, more research is needed on other

types of expectation formation, other than the open- and closed-loops (Mason, et

al., 1988). The best expectations are those that could be verified in reality,

which is very difficult to do.
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Table 1

Cost Coefficients for Water Diversion or Withdrawals
(for Losses in Millions $/in drop in Lake Level)

Michigan-
Superior Huron Erie Ontario

Navigation Hydropower Nav. Hydro. Nav. Hydro. Nav. Hydro.

MN .0036 - -

WI .0015 - .0012 - - -

MI - .007 .007 - .0025 

IL - - .0028 - - -

IN - - .0027 - - - - -

OH - -- - .0050

PA -- - - .0004 - - -

NY - - - - .0004 .033 .00014 .02

ONT .0015 .0061 .0027 - .00046 .033 .0011 .02

Q - -- - - .0022 .0368

Table 2

Cross Lake Coefficients (ratio) for Water Diversion or Withdrawals

Idiver- \ affects | Michigan-
Ision from\ upon I Superior Huron Erie Ontario

Superior 1.00 1.32 .92 1.08

Michigan-Huron 0.31 1.00 .69 .72

Erie 0.15 0.38 1.00 1.02

Ontario 0 0 0 1.00
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Table 3

Monthly Inner Lake Affect for Water Diversion or Withdrawals

(for the first 180 months,
in inches per ltcfs)

Michigan-

Superior Huron Erie Ontario

.0033 .0045 .0032 .0008

Source: IJC (1981).

Table 4
Social Planner's Solution

Lake Level

Diversion A (inches) PV of Net

(tcfs) in Steady State Benefits (million $)

Superior - .13 -5.36

Michigan-Huron 0.71 .58 984.71

Erie -. 28 -113.99

Ontario 10.55 1.59 7115.80

Total: 11.26 -7981.16
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Table 5

U.S. vs. Canada: Open-loop and Closed-loop Equilibria

PV of Net Benefits
Diversion (tcfs) Lake Level A (inches) (Million $)

Open-Loop / Closed-loop Open-loop / Closed-loop Open-loop / Closed-loop

SUP: - 0

U.S. 0 - 0

Canada 0 0

M-H: - 0

U.S. 0 - 0

Canada 0 0

Erie: - 0 -

U.S. 0 - 0

Canada 0 0

Ont: - 6.33 

U.S. 43.95 -31,360

Canada 0 -- 92,817

Total: 43.95 6.33 -61,457
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Table 6

The Ten Players Game
PV of Net Benefits

Diversion (tcfs) Lake Level A (inches) Million $

Open-Loop Closed-loop Open-loop Closed-Loop C

SUP:

MN 0 0 21.98 34.99 -274.10 -694.59

WI 0 8.11 - - -126.90 -151.46

MI 0 0 - -53.30 -135.06

ONT 0 0 - -160.66 -407.11

MH: - - 83.28 127.75 

MI 0 0 - - -1001.82 -1800.47

WI 0 0 - - -131.15 -262.67

ONT 0 0 - - -295.08 -694.46

IL 21.12 42.7 - -- 55.61 31.86

IN 21.12 42.7 -- -55.61 31.86

Erie: -- 108.60 131.63 -

ONT 0 0 - - -69,781.48 -105.432.51

MI 0 0 - - -4647.35 -7,021.66

OH 11.39 11.58 - - -800.33 -1,207.35

PA 148.02 150.55 -- 772.90 841.08

NY 0 0 -- -69,716.42 -105,334.21

ONT: - - 27.79 33.93

NY 0 0 -- -51,079.67 -76,127.00

ONT 0 0 -- -53,514.42 -79,755.67

Q 0 0 -- -98,913.00 -147,415.67

Total: 201.64 255.64 -- -349,834.00 -525,535.09
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