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SPLINE FUNCTIONS: THEIR USE

IN ESTIMATING NON-REVERSIBLE RESPONSE

In this paper specification of non-reversibilities in estimable

polynomial relations is considered in terms of spline functions.

Wolffram, Houck, and Trail et al. have recently suggested techniques to

estimate non-reversibility in linear supply response functions. Houck

proposed an alternative to Wolffram’s technique of modeling complete

non-reversibility. Train et al. posited that complete non-reversibility

was an inappropriate specification of the nature of supply response

asymmetry. They offered a partial non-reversibility specification and

estimation procedure, the Modified Wolffram. This paper does not discuss

or present any of the theoretical underpinnings for non-reversible

response, rather the focus here is exclusively on illustrating the use

of spline functions for modeling this phenomenon.

The objectives of this paper are: (1) to introduce the concept of

spline functions; and (2) to account for complete and partial

non-reversibility with spline functions. This paper illustrates this

approach using a supply response example. The sections in this paper

correspond to the above objectives: the first section introduces

splines functions; the second section concerns the specification of

complete non-reversibility; the third section discusses partial

non-reversibility; and the final section concludes the paper.

Spline Functions

Spline functions enable modeling of changing parameter structure in

regimes when the switching point between regimes is known. Each regime
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is characterized by a n-th degree polynomial and continuity up to the

(n-1)-th derivative can be required at the switching points. Figure 1

illustrates the response structure for a first degree polynomial function

(i.e., linear) when the response is known or assumed to change at switching

points PI and P2.

Spline functions have recently been introduced to the econometrics

literature by, for example, Poirier, Buse and Lim, and Suits et al. Poirier

describes spline functions and provides several applications. Buse

and Lim prove that spline functions are a special case of restricted

least squares. Suits et al. demonstrate that by imposing continuity

restrictions spline functions can be fitted by ordinary regression

methods.

The following time series model with three different parameter

th
regimes for a j degree polynomial is used to demonstrate the continuity

restrictions of spline functions.

(1) Yt = [ao+~bjP~] D
‘1
t + [al+~ (bj +cj)P~] D

‘2
+ [a2 +

j o j ‘1

~(bj+c. +d.)Pj]DT+c, j=12 3
JJt

999
j ‘2 t

t
wheret=t .,t ..t ..T; the switching points occur at tl and t2; Dt

i+l
o 12

i

is equal to one when ti ~ t < t and zero elsewhere; for all j, c, is
i+l J

the change in response on PJ
t ‘hen ‘1 5 t < ‘2’ and ‘j ‘s ‘he ‘esponse

j from (bj + Cj) when t2 ~ t ~T.change on P
t

A spline function is continuous at each of the switching points.

For a cubic spline this requires that:
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Figure 1. Structural Change at Switching Points PI and P2

in a Relation Between Y and P.
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3

al +1 (bj +c. )Pj = a

3
(2’) ~+~b. Pj, or

j=l J ‘1 j=l J tl

(2)
al

=ao_~cpj

j
jtl, and

(3)
a2

=al-~d Pj forj=l,2,3.

j
jt2’

Continuity of the first derivative at the switching points can be

imposed on the above cubic function and this requires that z.

(4’)
~ jb pj-l

j tl ‘~j(b. +c. ) Pj-l, Or

j
t,

.13J

(4)
c1

= -2c2Pt -3C3P: , and
1 1

(5)
‘1

= -2d2Pt -3d3P~ .
2 2

The restrictions for continuity

-1

of the second derivative are $

(6)

(7)

C2 = -3c3pt1’ and

‘2 ‘~d3pt2”

5, 6, 7) on equation (1) producesImposing restrictions (2, 3, 4,

the following estimable equation: (See Suits et al. for a slightly

different approach to obtain this result.)

(8) Y=a.o
2 3

- Pt )3 [D
‘2

t + blpt + b2pt + b3pt
- c3(Pt +D;]

1 ‘1 2

- d3(Pt - P )3 [D:2] +&t.
‘2
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The continuity restrictions of the spline functions at switching

points enable the estimable equation to be a function of six variables

(including the constant) compared to twelve variables in the original

specification. If the

then C3(”)3 and d3(”)3

be shown by accounting

original specification of equation (1) was quadratic,

would be replaced by C2(0)2 and d2(-)2. This can

for the continuity restrictions. A similar corres-

pondence applies to a linear specification of the model.

Specification of Complete Non-reversibility

Specifying non-reversible response with spline functions requires

that all of the continuity restrictions on the derivatives at the switching

points can not be imposed. In the following specification of complete

non-reversible response in price (P), a switching point is defined as a

point where movements in price reverse direction. In figure 2 Pt , P ,
1 ‘2

Pt are the prices at switching points for a complete

3

, and Pt4

non-reversible specification in a linear model.

For exp~sitional purposes, consider the following model of

non-reversible response in a n-th degree polynomial function.

(9)
‘1

Yt = [a. + ~ bjP~] Dt + [al + 1 (bj + cj) p~l D
‘2

+[a+
‘1

2
j o j

~bjp~] D~3+ [a3+~ (b. +c.
‘4+ dj) P:] Dt +[a-t

JJ 4
j 2 ~ 3

~b,Pj]DT +&t,j =1...n,

j
Jt

‘4

where t = t ..tl..t2..tt4.t4..T; switching points are at tl, t2, t3, t4;
o

t
Dt

i-i-1
is equal to one when t _ ‘i+~<t<

1
and zero elsewhere;

i
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Figure 2. Complete Non-reversible Response to Price
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Dt’ D:;, and D;4
‘2 ‘4

designate regimes when P is increasing; Dt and Dt reflect
t’
o 1 2

P decreasing regimes (Pts pt-l); for all j, cj rePresents the

‘2
price response in Dt , dj represents the change in response in

-1
&

J-

‘2
to D. ; and if price response is hypothesized not to change in

2

change in

Dt4 relative
‘3

this period,

‘1
then d. = O.

J

The continuity restrictions on equation (9) are

(10’) al+ ~ (bj + Cj) Pj = a + ~ b.Pj , or

j ‘1 0 j J ‘1

(lo) al = a. -j;l T:l ‘

(11)
a2 = al

+ ~ C,P: ,
j=l 32

(12)
a3

=a2-~(c. +d)Pj, and
j=~ J j t3

(13) a4 =
a3 + ~ (cj + dj)P~ .

j=l 4

Imposing these continuity restrictions on equation (9) yields

(14’) Yt=ao ‘+ ~ b.P: +

[ II

~c. (Pj Pj ) D~~ +~c j (Pj “

1

-p:)
jJ jJt-tl

j ‘2 1

Dt3 - t2 ‘1
1

.-

+ ~ cj[(Pj -Pj)+ (P:- Pj)]+~dj(P;-p; )

‘2 ~ ‘3 j 3

Dt4

[

+ ~ c,[(Pj --Pj)+(PJ - ‘;)l+~d, (pj --Pj)

‘3
j J t2 tl ‘4 3

j J t4 t3
J

DT +St, for j = l...n.
‘4
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Equation (14’) can be simplified by noting that

t<t

t
i+l

(P: - ~
i+l _Pj)D. ‘1 ~pj- Pj ) , where

‘i k = ti+l k
k-1

i

~ (o) indicates sununation of negative values. Also inDt and D~
‘3

—

t
2 4

i+2
‘i+2 _

(P; - Pi ) Dt = ~ (p&p~_@inc epk’pk-~inD~i+20
i+l i i+l k = ti+l i+l

Hence, the following is an estimable form of complete non-reversible price

response in a polynomial function.
.

k = to+l
J

‘1
[P:- -

J

P; ~]_ + E for j = l...n.
t’

k= t3+1

Equation

a n-th degree

restrictions.

linear model)

(14) can be used to estimate complete non-reversibility for

polynomial function without imposing any further continuity

For example, the case of a first degree polynomial (i.e., a

with d, = O (response to falling price is hypothesized the
J.

same throughout the observation period) results in the following estimable

equation:

(15) Yt = a. +blPt + Cl
[ 1i ‘Pk-pk,+)-+‘t
1k=to+l J

where bl is the response to rising price and bl + c1 is the response to

falling price. Regardless of the number of price increasing and price

decreasing regimes, equation (15) specified a complete non-reversible
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relationship between price (P) and output (Y).

Hypotheses concerning complete non-reversibilities can easily be

accepted or rejected by simple F tests on the c: parameters in equation (14)

and (15), For example the null

can be tested by restricting c
j

that complete non-reversibility

J

hypotheses that price response is reversible

= d =Oforallj. These results indicate
j

can be specified by spline functions and

estimated by simple estimation procedures.

For illustrative purposes equation (15) is applied to the non-reversible

data supplied by Wolffram. This data is reproduced in the first two

columns of table 1.

ated with the spline

using ordinary least

Yt = -30.0

The coefficients are

The third column in table 1 contains the data associ-

variable in equation (15). The estimated equation

squares is

t
+ 5.0Pt - 2.0( ~ (Pk - Pk-l)_).

k=to+l

as specified by Wolffram and the R2 = 1.0, These

results indicate that price response is 5.0 when price increases and is

(5-2) = 3 when price decreases.

Continuity restrictions can be

points for second degree and higher

example, the continuity restriction

imposed on the derivatives at switching

order polynomial functions. For

on the first derivative at the switching

points for a quadratic function is (using equation (9) when d. = O):
J

c1 = -2C2 Pti ‘ ‘r C2 =
-cl
mt

i

where P
ti

refers to price at each respective switching point. In this

case the estimable equation is:
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Table 1. Wolffram’s Data for Complete Non-Reversibility

and the Associated Spline Variable

‘tpt k:’’-’’-’)]
20 10 0

35 13 0

29 11 -2

44 14 -2

59 17 -2

44 12 -7

35 9 -lo

70 16 -lo

90 20 -lo

84 18 -12
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(16)
2

[

!?2- P2
Yt = a. { ; (p -pk_l)_- ( t t,)Dt2+ blpt + b2pt + c1 ~=t +1 k

P
o

‘1
‘1

P’ - P’

+( ‘2
P2-P2 t4 P: -P’

‘l) Dt3+(t2
P

‘l)D +( ‘3)

‘2
‘2 Pt ‘3 P

3

1

‘3

P’ -P2 P2 -P2

+( ‘2 ‘l) DT+(t4 ‘3) D; } -t-Et.

P ‘4 P 4

‘4 ‘4

Dt4

‘3

--l

In this equation only four parameters (ao, bl, b2, Cl) are estimated. If

the continuity restriction were twtimposed the C2 would also be estimated

as in equation (14). Equation (16) can be simplified or rearranged in

a variety of ways for computation in regression packages.

Specification of Partial Non-reversibility

Trail et al. suggested that non-reversibility on the supply side

should be considered in a partial context. Partial non-reversibility is

defined here as price response being less (or more) elastic whenever price

is below a prior maximum price (Ptm). This specification is illustrated

in figure 3. The Ptm’s in this figure are P ~ p , P , and P , and
‘1 ‘2 ‘3 ‘4

are also defined as switching points. Equation (9) can be modified to

account for partial non-reversibility in the following way for a n-th

degree polynomial:

(17)
‘1 ‘2 ‘3

Yt = [a. + ~ bjP~] Dt + [al + ~(b. + Cj)p~l D + [ao+~b.Pj] D

j o jJ ‘1
jJtt2

‘4
+ [a2 + ~(bj +Cj) P~l Dt + [a. + ~ bjp~l D: + Et, j = 1, n,

j 3 j 4

where t=to. ..t ...t ...t ...t
1234

...T. switching points occur at tl, t2, t3,
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Figure 3. Partial Non-reversible Response to Price
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t i+l ‘1
and t4; D are as defined before; D Dt3 T. and D designate regimes

‘i
to‘

‘2 ‘4

where current price is equal to the maximum price (pt = ptm and t = tin);

Dt2 ‘4and D++ reflect the regimes when current price is less than the maximum
‘1 ‘3

price (Pt~ Ptm , t >

the regimes when Pt <

all regimes when Pt =

The requirements

are:

(18) al = a. -1

j

and

(19) a2 = a. -1

j

tin);c. reflects the change in price response for
J

P
tm

; and note that the intercept is the same for

Ptm and t = tm.

for continuity of the function at switching points

Pj=a
Cj tl

o-~c,Pj ,sinceP =P =PtinDt2,

j
J ‘2 ‘1 ‘2 m ‘1

Pj=a -~c,Pj ‘4, since P =P=P inD.
Cj t3 0 j J ‘4

‘3 ‘4 ‘m ‘3

The continuity restrictions in equations (18) and (19) simplifies

equation (17) to the following:

(20)
‘2 ‘4

Yt = a. + ~ bj P:+ [~ cj (Pi - pi )] Dt + [~ cj (p: - p: )] Dt + Et.

j j 1 lj 3 3

This specification indicates that the spline variable is (p; - p~m) when

P <P
t–tin

For

(21)

where bl

for t > tm, and zero (0) when Pt = Ptm for t = tm.—

a linear response function equation (20) simplifies to

Yt = a. + blPt + Cl(pt - Ptm)tLtm + Et,

+ c1 is the response to price when current price is below the

maximum past price.
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Equation (21) was applied to the Train et al. data which reflected

partial non-reversibility. This price and quantity data is reported in

the first two columns of table 2. The third column contains the data

reflecting the spline formulation. The calculated response function is

Yt = 2.0+ 2.0Pt - l.o(Pt - Ptm)t>tl”,

which is the same as the Train et al. equation except for a different

value of the intercept because of the differences in specification. These

results indicate that the response to current maximum prices is 2.0 and

that the response to price is (2.0 - 1.0) = 1.0 when price is below the

maximum price.

As with complete non-reversibility, continuity restrictions can be

imposed on the derivatives of second and higher degree polynomials. This

is not pursued here since it is a direct extension of the methodology used

in the previous section.

Concluding Comments

This paper used spline functions to specify for estimation partial

and complete non-reversibilities in polynomial relations. In both cases

the spline variable is easily computed and any hypotheses concerning

non-reversibilities is simply tested by standard statistical procedures.

This spline function approach to modeling non-reversibilities is very

flexible and can be readily extended to account for other changes in

response when the switching points between regimes are known or hypothe-

sized to exist. The analysis in this paper did not include other explana-

tory variables and these variables can be directly included in the model.

If the response to these additional variables is hypothesized to change
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Table 2. Train et al. ‘s Data for Partial Non-reversibility

and the Associated Spline Variable.

Y P
t t

(Pt - Ptm)t’tm

20 9 0

30 14 0

23 7 -7

20 4 -lo

27 11 -3

2.5 9 -5

30 14 0

34 16 0

29 11 -5

38 18 0
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at prespecified switching points then spline variables can be similarly

defined to account for this change in response. Poirier discusses the case

of interaction between variables associated with changing response. A

final comment: Splines are only defined within the estimation range, and

assumptions on parameter structure are required for extrapolation.
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