
Staff Papers Series

Staff Paper P91-28 July 1991

A Simple Procedure to Evaluate Ex-ante Producer Welfare
Under Price Uncertainty

by

Yacov Tsur

Department of Agricultural and Applied Economics

University of Minnesota
Institute of Agriculture, Forestry and Home Economics

St. Paul, Minnesota 55108



A Simple Procedure to Evaluate Ex-ante Producer Welfare
Under Price Uncertainty

Yacov Tsur

Department of Agricultural and Applied Economics, University of Minnesota

1994 Buford Avenue, St. Paul, MN 55108

Abstract

We propose a simple and tractable procedure for evaluating

producer welfare under price uncertainty. These properties are

achieved at the cost of assuming constant absolute risk aversion,

where risk attitude depends on the stock of wealth but not on the

flow of income. Numerical examples corroborate the procedure's

properties; the validity of the constant absolute risk aversion

case as an approximation is discussed.
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A Simple Procedure to Evaluate Ex-ante Producer Welfare
Under Price Uncertainty

1. Introduction

The welfare consequences of choices made by risk averse producers under

conditions of uncertainty are basic components of benefit-cost evaluations of

policies that are intended to change the uncertainty conditions, e.g., price

stabilization, and have therefore attracted research. The (small but growing)

literature in this vein deals primarily with (i) extending welfare measures to

situations of risk aversion and uncertainty and (ii) developing practical

means to evaluate these measures (Newbery and Stiglitz, Chavas and Pope, Just

et al., Pope et al.). The first task has been explored in considerable

detail; if anything, too much may have been accomplished as the literature

offers a multiplicity of measures: the Compensating Variation (CV), the

Equivalent Variation (EV) and the Certainty (money) Equivalent (CE). CV and

EV are borrowed from demand analysis, whereas CE is unique to situations

involving uncertainty.

The second task- the evaluation of these welfare measures -has received

less attention. The traditional approach is to approximate CV and EV by the

producer surplus, calculated as the area to the left of the ex-ante output

supply function (Pope and Chavas have shown that this is a legitimate

approximation in most cases). Another procedure, proposed by Larson, produces

an exact evaluation of CV and EV. These procedures rely, in one way or

another, on the ex-ante output supply and/or input demand functions. Without

some restrictions on risk preferences, these functions tend to be quite

complicated and often are unmanageable for empirical work; as a result,

applications are scarce. The complexity of the evaluation task is further

exacerbated by the multiplicity of indices, as the three indices may have

different values.

The present paper attempts to develop a simple and practical mean to
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evaluate producer welfare under price uncertainty. With this goal in mind, we

consider a particular specification of risk preferences, namely, constant

absolute risk aversion where the farmers' risk attitude depends on the stock

of wealth but not on the flow of income. This leads to a considerable

simplification of the evaluation task: the "multiplicity problem", mentioned

above, is avoided, as the three welfare indices are equal in this case, and

the ex-ante functions are simplified considerably, which facilitates their

utilization in empirical applications.

We begin, in Section 2, by specifying the sources of uncertainty and

defining changes in uncertainty. Section 3 summarizes the producer decision

model and the associated welfare measures. The evaluation procedure is

described in Section 4 and is implemented numerically in Section 5. The

validity of the constant absolute risk aversion case as an approximation of a

general risk preferences structure is discussed in the closing section, which

also comments on the use of the analysis in empirical works and suggests

extensions.

2. Uncertainty Sources and Changes in Uncertainty

We present the analysis in the simple case of a single output, where only

the output price is uncertain; the more general case of multiple outputs with

uncertain input, as well as output, prices is discussed in the Appendix.

The uncertainty is represented by the distribution of the output price,

which is assumed to be completely characterized by the vector B - (,a2 ,...)

of the mean, variance, and higher moments. A change in uncertainty, i.e., in

the output price distribution, is thus represented by a change in 8. Each

such change consists of (i) a distribution-preserving shift (DPS) and (ii) a

mean-preserving spread (MPS) or shrink (MPSH). A DPS affects only the mean

and is represented by the parameter m. A MPS (MPSH) involves changes in the

variance and higher moments; its effect on the variance is represented by the
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parameter s.

A random price P' is a DPS of P if the distribution of P' is identical to

that of P + m for some scalar m. The concept of MPS is defined in Rothschild

and Stiglitz; P is a MPSH of P' if P' is a MPS of P. Intuitively speaking, P'

is a MPS of P if both P' and P have the same mean but the distribution of P'

has more weights in the tails. Alternatively, P' is a MPS of P if both have

the same mean and P' is riskier than P in the sense that risk averse

individuals prefer P to P' and are willing to pay a positive amount to move

from P' to P. Rothschild and Stiglitz have shown that these two definitions

are equivalent.

We consider compound DPS/MPS shifts of the form

P(m,s) d P + m + (Z-z), (1)

where P(m,s) is a compound DPS/MPS of P, m is the DPS parameter, Z is a random

2 d
variable distributed independently of P with mean z and variance s , and -

denotes "has the same distribution as".

Example 1: Let P and Z be two independent gamma variates with parameters

(a,,) and (7,P), respectively. The distribution of P is characterized by

6 - (,,oa2), where p - a= and a - aS 2 . The variable P + Z is distributed as

Gamma(a+-y,), and P(m,s) - P + m + (Z-p ) is a compound DPS/MPS for which the

distribution is characterized by 6(m,s) - (p+m,o2+s2 ) where pj- -y and

2
s2- (+a),2.

Example 2: Let P be a N(a,r 2) variate truncated from below at d > 0, and

let Z be N(p ,s2 ) distributed independently of P. The distribution of P is
z

2 E(a) 2
characterized by B - (p,a2 ...), with p - E(P) - r ( + a, 2a Var(P) -

l-Q(d)
r21, + d +(d) ( + (d) } , and d - (d-a)/r (see Appendix). Thus,

l-v(d) l-(d))

P(m,s) - P + m + (Z-a ) is a compound DPS/MPS with the moment vector

(m,s) - (+mo+s ,...).6 (m, s) - (p+M, a +S..,



4

3. Firm's Decisions and Welfare Measures

We consider a supplier of a single product who faces uncertain product

price P (see Appendix for the.general case). The conservatively minded

risk-averse producer follows the time-honored tradition of maximizing expected

utility of wealth (not having been informed yet of some sophisticated,

non-expected utility modes of decision-making). Furthermore, the producer's

risk attitude, as represented by the absolute risk coefficient, depends solely

on the endowed wealth, Wo. The profit, to be realized at the end of the

period, is given by n - PY - C(Y), where Y is the (planned) output and C(Y) is

the variable cost of producing Y, as determined by the production technology.

Because the absolute risk coefficient, A, depends only on Wo and not on

profit, the utility of wealth can be specified, without further loss of

generality, as

U(n) - 1 - e-A(W) (2)

The firm is a taker of a price distribution, 0(m,s). The ex-ante supply

function, Y(O(m,s),Wo), is the output level that maximizes E(U(P(m,s)Y-C(Y)))

and satisfies

E{U' (fn((m,s),Wo)) [P(m,s)-C' (Y(6(m,s),Wo))]} - 0, (3)

where E(-) denotes expectation with respect to the price distribution 8(m,s),

U'(x) - aU(x)/ax, and

H(e(m,s),Wo) - P(m,s)Y(8(m,s),Wo) - C(Y(8(m,s),Wo))

is the ex-ante profit. Due to fixed supplies of some production inputs, such

as land, output cannot exceed the upper bound Y. Thus Condition (3) holds

only if 0 < Y(e(m,s),Wo) < Y; otherwise, Y(6(m,s),Wo) - 0 or Y as the solution

of (3) is non-positive or exceeds Y, respectively.

The indirect expected utility of wealth

V(9(m,s),Wo) - E{l - e-A(Wo)n( (ms)Wo)} (4)

constitutes a non-monetary measure of the well-being of a producer endowed
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with Wo who operates under output price uncertainty characterized by 8(m,s).

A corresponding monetary measure is the certainty equivalent profit,

fn(O(m,s),Wo), defined by

U(n(I(m,s),Wo)) - V(6(m,s),Wo), (5)

which is the income level that leaves the producer indifferent between

receiving it with certainty and earning the random profit n(8(m,s),Wo).

A change in the output price distribution from 81 to 82 causes the

welfare change V(02,Wo)-V(01,Wo). In view of (5), a monetary measure of this

welfare change is the Certainty Equivalent (CE) index
A A

CE - n(82,Wo) - H( 1,Wo).

The compensating variation (CV) and the equivalent variation (EV) indices

associated with this change are the income levels satisfying respectively

V(i ,Wo+EV) - V(82,Wo) and V(82,Wo-CV) - V(1 ,Wo). The three welfare indices

are equal in the present case of constant absolute risk aversion (see, e.g.,

Pope et al.).

By differentiating both sides of (5) with respect to m, recalling (3) and

(1), we obtain
A

an(8(m,s),Wo)/am - y(9(m,s),Wo) h(9(m,s),Wo),

where

h(O(ms),Wo) -E(U'(8(m,s),Wo))

U'(n(e(m,s),Wo))

This result, which does not depend on specification (2), is the uncertainty

analog of Hotelling's Lemma. For the constant absolute risk aversion utility

-A(Wo)1(ms,Wa)J) AR(m,s,Wos(2), E(U'(')) - AE(e -W (m'sW), and U' ((m,s,Wo)) - Ae ; since

(5) implies E(e-A( W )n( m sW ) ) e-A ( m sW ) it follows that

h(8(m,s),Wo) - 1 identically for all values of 8 and Wo. This leads to the

following (well-known) result:

Property 1: Under specification (2),

ms /m y((mWo. (6an(8(ms),Wo)/am - y(8(m,s),Wo). (6)
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4. The Evaluation Procedure

To facilitate notation, we suppress the argument Wo and write m,s instead

of 6(m,s); e.g., A stands for A(Wo) and n(m,s) is the short-hand notation of

In((m,s),Wo). As I(m,s) - P(m,s)Y(m,s) - C(Y(m,s)) - (P+m+Z-p )Y(m,s) -

C(Y(m,s)), we obtain, recalling (2) and after some algebraic manipulations:

E(U(n(m,s))) - 1 - exp(-A[(m-pz)Y - C(Y) - logM(-AY)/A]], (7)

where M(-) is the moment generating function of P+Z (assumed to exist).

Evaluating (7) at the ex-ante supply, Y(m,s), and using (5), gives

n(m,s) - (m-z )Y(m,s) - C(Y(m,s)) - logM(-AY(m,s))/A. (8)

Differentiating both sides of (8) with respect to m and using (6) yields

Y(m,s) - Y(m,s) + m - - C'(Y(m,s)) + 81ogM(-AY(m,s))/a(-AY) )ams .
z Yams

Since aY(m,s) > 0 for 0 < Y(m,s) < Y (see, e.g., Sandmo), we can conclude:
8m

Property 2: Under specification (2) and provided the solution of (9) lies

between 0 and Y, the ex-ante supply Y(m,s) satisfies:

alogM(-AY(m,s)) + m - A - (Y(m,s)) - 0, (9)
8(-AY) z

where C'(Y) - aC(Y)/aY is the marginal cost function.

Property 2 provides a practical means to evaluate the ex-ante supply

Y(m,s) under various uncertainty conditions, e(m,s). It requires only

information on the marginal cost function, which is a technological relation

independent of the uncertainty, and on the distribution of P+Z. With these

data, the ex-ante supply of a grower with a risk coefficient A is obtained as

the value Y(m,s) that satisfies (9). Given the solutions Y(m,s) under

O(mlsl) and O(m2,s2), Eq. (8) is applied to evaluate n(ml,s1) and n(m2 ,s2 ),

and thereby to obtain CE - I(m2,s 2) - n(ml,s 1 ).
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5. Examples

Assuming a constant return to scale production technology, i.e., C(Y) -

c-Y, where the constant unit production cost c depends only on input prices,

we evaluate the CE measure associated with the price distributions specified

in Section 2.

Example 1: P and Z are independent gamma variates with parameters (a,h)

and (7,5), respectively, and P + Z is distributed as Gamma(a+7,P). The

moment generating function of P + Z is given by

M(-AY) - [1 + AY] ' ( 7)

The compound DPS/MPS price P(m,s) - P + m + (Z-p ) has a gamma distribution

characterized by e(m,s) - (p+m, 2+s2), where p - afi, a - a A2, p - 7 and

s2- 782< (a + y)~s 2- 7y2. Using Property 2 and noting that alogM(-AY)/aY - ( + AY' we
1 + AYL 6

obtain, for all p +c > m > c-p:

Y(ms) - + m c . + m -c (10)
Ap(pz + c - m) Aa2 pz+ c m

provided the right-hand side of (10) does not exceed the production capacity

Y; otherwise, Y(m,s) - Y. To understand the restriction p +c > m, note that

m - p is the lower support of the distribution of P(m,s). Thus, if this

condition is violated, i.e., m - p z c, then P(m,s) - c > 0 under all possible

realizations of P(m,s). This guarantees a non-negative profit regardless of

the actual realization of output price and pushes production to the maximum

level Y. If the other restriction, m > c-p, is violated, i.e., if p + m < c,

then the average output price cannot exceed the unit production cost, i.e.,

E(P(m,s)} < c, implying that the expected profit is negative; a risk averse

producer will prefer not to produce under such unfavorable conditions.

Note that s affects Y(m,s) via pz since pz - 7_ - s2/p ps2/2a. A

2 2change in z , leaving p and a2 unchanged, implies a change in s and vice

versa.

Applying (8) gives, for p + c > m > c - p and provided Y(m,s) < Y:
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n(m,s) - - (( + z)log (p + m - c)) (11)

Aa2 z

The f-levels associated with the boundary cases Y(m,s) - Y or 0 are l(m,s) -

(m-p -c)Y + A- log(l+AY) or 0, respectively. The welfare change associated

Aa

with the uncertainty change 0(ml,sl)-~ ((m2 ,s2) is evaluated by CE -

n(m2 ,s2) - I(ml,s 1). Table 1 presents values of n(m,s) and Y(m,s) for various

combinations of s and A.

Table 1

Example 2: P is a N(a,r2) variate, truncated from below at d > 0, and Z

is N(p ,s2 ) distributed independently of P. It is verified in the Appendix

that the moment generating function of P + Z takes the form:

M(-AY) - 1 - (ad+rAY) exp ( 2+ s2)AY/2 - (a + pz)AY) ,

1 - (a) 

where 4(') is the standard normal distribution function and 
d - (d-a)/r.

Applying (8) gives

22 2 2 1 -, f 1 - b(d+TAY(ms)) /

n(m,s) - (m+a-c)Y(m,s) - (r2+s2)Y(m,s) A/2 - -log[( 4( A ). (12)

Using Property 2 and noting that

alogM(-Ad+Y(m,s)) ((2+s2)AY(m )) (+)Am,s) + a +p,

8(-AY) 1 - t(d+rAY(m,s))

we define Y(m,s) as the solution of

o (d+rAY(m,s)) 2 2 (m,s) + a - cY(m,s)) - m, (13)

1 - a(d+rAY(m,s))

provided this solution lies between 0 and Y. Plugging Y(m,s) back into (12)

yields l(m,s). Table 2 presents values of Y(m,s) and I(m,s) for m - 0 and

various MPS changes s and risk coefficients A.

| Table 21

Commodity programs, when they exist, usually involve support 
prices that

truncate the commodity price distribution from below. It is interesting to

evaluate effects of changes in the support price on the planned 
output supply

and on growers welfare. A change in the support price affects both the mean

and the variance (as well as higher moments) of the output price and can be
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approximated by a compound DPS/MPS shift.

In the present example, the support price is represented by d. Recalling

that p - E{P) - r -() + a and a2 - Var{P) - r2{ + d (d)

2 1-(d) 1-~(d)

( 0(d) ^ ,it is straightforward to calculate the changes Ap and Ao2 in p

l-¢(d)
2 2 2

and 2 caused by a change Ad in d. One then sets m - Ap and s - A 2o and

applies (13) and (12) to calculate Y(m,s) and n(m,s). The changes in ex-ante

output supply and in welfare that occur due to the shift in the support price

are Y(m,s)-Y(O,O) and n(m,s)-n(0,O), respectively.

6. Concluding Comments

This paper develops a simple and tractable procedure to evaluate ex-ante

producer welfare under price uncertainty. Implementation of the procedure

requires knowledge of the variable cost function, the output price

distribution and the absolute risk coefficient. The cost function is a

technological relation independent of the uncertainty, and can be estimated

using input/output data (or some other engineering technique). Information on

the price distribution can be obtained from observed past prices.

The absolute risk coefficient can be estimated empirically. Property 2

is conducive for such a task, as it can be used to specify a regression model

of output supply (the dependent variable) as a function of the absolute risk

coefficient and the parameters of the output price distribution (the

independent variables); (see Eq. (9) and its specializations to Eqs. (10) and

(13) in Examples 1 and 2). The formulation of this regression model is

completed by specifying the absolute risk coefficient as a parametric function

of wealth and other socio-economic characteristics of the farmer and by adding

error terms that account for data measurement errors and noisy output.

Alternatively, for a group of producers whose risk coefficients are bounded

between two values, the procedure provides the corresponding bounds on welfare
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changes that result from a change in uncertainty, e.g., due to a change in the

support price of a commodity program.

The simplicity and tractability properties are not costless, as they

require the assumption that risk aversion depends on endowed wealth and not on

one-period profit. Where farming is capital intensive, a considerable amount

of capital is accumulated by growers over the years (in addition to savings)

and one-year profit comprises a fairly small portion of the farm's net worth.

It is reasonable to assume that in this case the psychological motives

determining the farmers' attitude toward risk are affected more by the stock

of wealth than by the flow of income. The assumption that risk attitude is

dependent on wealth and not on income therefore can serve as a plausible

approximation. For growers whose wealth accumulation is negligible and their

ability to continue farming (or to maintain a basic existence level) depends

on their year-to-year income realizations, this assumption may not be valid.

Extensions of the analysis to situations involving input price

uncertainty and multiple outputs are outlined in the Appendix. The numerical

examples reveal that output and welfare are quite sensitive to the form of the

price distribution. Thus, in an empirical context, it is important to relax

the assumption regarding the price distribution; a possible approach entails

using empirical distribution functions based on price data. We leave this

task for the future. Other future extensions will incorporate yield

uncertainty and intertemporal considerations.



Appendix

(a) Input Price Uncertainty and Multiple Outputs: Let x - (x 1 ,x 2, ... ,x) be

the n-dimensional vector of input quantities and r - (rl,r2 ,...,r ) the

n-vector of input prices. Let Yk(x) be the production function of the k-th

output and Pk the corresponding output price, k-l,2,...,K (additive

separability of inputs and outputs is assumed). The uncertainty is

represented by the joint distribution of (K+n)-dimensional price vector

(P1' 2,P2...,PKrlr2 ...,r n). A change in uncertainty is represented by

compound DPS/MPS shifts of the form

Pk(mk'k) Pk + mk + Zk-Ak' k-1,2,..... ,K,(A
d(Al)

ri(mK+iSK+i) - ri + mK+i + (ZK+i-pK+i), i-1,2,...,n,

where mk (resp. mK+i) are scalars and Zk (resp. zK+i) are random variables

with mean pk (resp. AK+i) and variance s2 (resp. s i), k-1,2,...,K (resp.
Ki k-l K (resp.

i-l,2,...,n).

The ex-ante input demand functions, xi(m,s), i-1,2,...,n, are determined

so as to maximize expected utility of profit and satisfy

E{e'AII(m's)(XKPk(mksk)aYk(x(ms))/axi ri(mK.isKi, K+i)]} -2).
+ + ' *'*' ~(A2)

w-here n(m,) - k(mk,sk)Yk(x(ms)) - E lri(mK+i SK+i)x (ms). The

certainty equivalent profit, I(m,s), is defined by

e-An(ms) E( e-An(ms)) (A3)

By differentiating both sides of (A3) with respect to mk and mK+i, and

recalling (A1-2), we obtain

ai(m,s)/amk - Yk(x(m,s)), k-l,2,...,K.
(A4)

ai8(m,s)/amK+i - -xi(m,s), i-1,2,...,n.

From (Al), l(m,s) - Xkl(mk-pk)Yk(x(m,s)) + Xk-(pk+zk)Yk(x(ms)) 

X-l (K+i- K+i )xi(ms) - i l(ri+zK+i)xi(m,s). Thus,
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E{ e A(m 's)) - exp(-A[XK (mk -k)Yk(x(m,s)) - l(mK+i-K+i)x (m, s)])x

E{ exp[ -A[l(pk+zk)yk(x(ms)) - EI (ri+ZK iXmS.)]n}

-exp(-A[ :Q(ml k)Yk(x(m's)) - ((mi-^ ii s) - logM(-Ag)/A])tEexp(-A[ .(mkp+k)Yk(x(m's)) i ril(mK+i )xi(m's )·

where M is the moment generating function of the (K+n)-dimensional random

vector (Pl+zl ... ,K K +l' r+ZK + . .r+zn) and g - (Y(x(m,s)),-x(m,s)) is

the (K+n)-dimensional netput vector. Thus, (A3) implies:

l(m,s) - zKl(mk-k)Yk(x(m,s)) - il(mK+ipK+i )i(m,s) - logM(-Ag)/A. (A5)

Differentiating (A5) with respect to mj and using (A4), we obtain

o -i . i/8m; ){Xkl(1xmk k)8Yk(x(m s)/8xi - (mK+i-"K) +

+ (K 1(alogM/8(-AY))3Y(x(ms)/8 xi - )logM/8(Axi)]}, j-1,2,...,K+n, (A6)

where the derivatives of logM are evaluated at -A(Y(x(m,s)),-x(m,s)). As

(A6) must hold for all j-1,2,...,K+n, and axi/amj changes with j, the term

inside the curly braces must vanish for each i. Thus, the ex-ante input

demands must satisfy:

0 - kl(mk- k)aYk(x(m,s)/x i - (mK+i-K+ ) +

(K (alogM/a(-AYk))aY(x(m,s)/axi - alogM/a(Axi)), i-l,2,...,n. (A7)

Given the production technology, as represented by the production functions

Yk' k-l,2,...,K, and the price distribution, as represented by M, the ex-ante

input demands, xi(m,s), i-1,2,...,n, can be found as the solutions of Eqs.

(A7). These are then plugged back into (A5) to determine l(m,s).

If only the output prices are uncertain, then M - E(exp(-AY-(P+z) +

Ax~r)} -eAx-r)} - e Mp z(-AY), hence log(M) - Ar-x + Mp+(-AY); also mK+ - K+i 

0, all i. Thus, (A5) changes to:

l(m,s) - f.-l(mk-k)Yk(x(ms)) - ni r.x.(m,s) - logMp+(-AY(x(m s)))/A

- 5 (mk-'k)Yk(x(m,s)) - C(Y(x(m,s))) - logMp+z(-AY(x(m,s)))/A, (A8)

where C(-) is the cost function defined by: C(q) - Min r-x, subject to Y(x) <

q. Differentiating with respect to mj and using (A4), we obtain
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0 - k-l(mk - k ' C(Y(ms))/Yk + logMp+z(-AY(ms))/a(-AYk)) Yk(m,s)/amj,

j-l,2,...,K, (A9)

where Y(m,s) - Y(x(m,s)). As this relation must hold for all j and

aYk(m,s)/amj changes with j, the bracketed terms must vanish for all k, i.e.,

mk - k - aC(Y(m,s))/aYk + logMp+z(-AY(ms))/a(-AYk), k-1,2,...,K. (A10)

Given the production technology, as summarized by the cost function C(-), and

the output price distribution, as represented by Mp+z, the ex-ante supplies

Yk(m,s), k-1,2,...,K, are found as the K roots of Eqs. (A10). These are

plugged back into (A8) and determine fi(m,s). Note that in the single output

case, where K=l, Eq. (A10) specializes to Eq. (9).

(b) Truncated Normal Distribution: Let X be a standard normal variate

truncated from below at d, with the density function f(x) - O(x)/4(a) for x >

d and f(x) - 0 otherwise (O and $ are respectively the standard normal density

and distribution functions). Then

M (t) E etX - f 1 1 -x2/2 txdMX(t) - Ele -- e e dx

d-1-~(a) 2r

1 -t/2 1 -f(x-t)2/2 t2/2 l-D(a-t)

l-a(d) a l-(a)

The mean and variance of X are given by: E(X) - Mx(0)/at -- () and
l-~(d)

Var(X) - aMx()/at - (E(X))2 - 1 + ad (d) - () ) 
l-(d) l-~(d)

If P is N(a, 2 ) truncated from below at d then P d rX + a, with d a

(d-a)/r. Thus, M(t) - E{et(-X+)} - etaMx(tr) - exp(ta + t2r /2)l-(at)
l-~(a)

If Z ~ N(# ,s2) and is independent of P, thenz

Mp+ (t) - Mp(t)-MZ(t) - exp(t(a+M )+t2(T2+s2)/2) 1-±(a-7t)

Evaluating at t - -AY provides the moment generating function of Example 2.
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Table 1

Welfare measures n(m,s) and ex-ante supply Y(m,s) (in parentheses) for various

combinations of MPS (s2) and risk aversion (A), with m - 0, c - 2,

P - Gamma(4,1) and Z - Gamma(-,l).

A s 0 1 2 3 4

0.001 2770.59 2552.13 2430.79 2353.30 2299.46
(1000.00) (666.67) (500.00) (400.00) (333.33)

0.01 275.26 253.41 241.28 233.53 228.14
(100.00) (66.67) (50.00) (40.00) (33.33)

0.1 25.72 23.54 22.327 21.55 21.01
(10.00) (6.67) (5.00) (4.00) (3.33)

1.0 0.77 0.55 0.43 0.35 0.30
(1.00) (0.67) (0.50) (0.40) (0.33)

* 2
s = Var(Z) - y, since 9-1.
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Table 2

Welfare measures n(m,s) and ex-ante supply Y(m,s) (in parentheses) for various

combinations of MPS (s
2) and risk aversion (A), with m - 0, c -2, P ~ N(4,4)

truncated from below at 0, and Z - N(0,s ).

A\s 20 1 2 3 4

0.001 612.72 453.22 265.75 160.01 103.14

(589.69) (450.47) (268.42) (161.74) (104.16)

0.01 61.27 45.32 26.57 16.00 10.31

(58.97) (45.05) (26.84) (16.17) (10.42)

0.1 6.13 4.53 2.66 1.60 1.03

(5.90) (4.50) (2.68) (1.61) (1.04)

1.0 0.61 0.45 0.27 0.16 0.10

(0.59) (0.45) (0.27) (0.16) (0.10)


