Staff Paper Series

APPLICATION OF INPUT-OUTPUT METHODOLOGY FOR LOCAL COMMUNITY IMPACT ANALYSIS: SWINE PRODUCTION IN REDWOOD COUNTY, MINNESOTA

Ilona A.M.A. Jahae and Lanie C. van Staalduinen

DEPARTMENT OF AGRICULTURAL AND APPLIED ECONOMICS
UNIVERSITY OF MINNESOTA
college of agriculture
ST. PAUL, MINNESOTA 55108

APPLICATION OF INPUT-OUTPUT METHODOLOGY FOR LOCAL COMMUNITY IMPACT ANALYSIS: SWINE PRODUCTION IN REDWOOD COUNTY, MINNESOTA

Ilona A.M.A. Jahae and Lanie C. van Staalduinen

Staff Papers are published without formal review within the Department of Agricultural and Applied Economics.

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability. public assistance status, veteran status, or sexual orientation.

Information on other titles in this series may be obtained from: Waite Library, University of Minnesota, Department of Agricultural and Applied Economics, 1994 Buford Avenue, 232 COB, St. Paul, MN 55108, U.S.A.

ACRNOWLEDGEMENTS

In the scope of our study in Agricultural Economics at the Wageningen Agricultural University, the Netherlands, we have worked on this project at the University of Minnesota, U.S.A. We would like to thank Dr W.F. Lazarus and Professor W.R. Maki of the Department of Agricultural and Applied Economics and Dr ir A.J. Oskam of the Department of General Agricultural Economics at the Wageningen Agricultural University for the advice and guidance they offered throughout this project. The comments of Professor G.W. Morse on an earlier draft of this paper are gratefully acknowledged. Remaining errors are the responsibility of the authors.

TABLE OF CONTENTS

SUMMARY 1
1 INTRODUCTION AND PROBLEM SETTING 2
2 HOG INDUSTRY IN MINNESOTA 3
2.1 Hog farms and sizes 3
2.2 Production and marketing 4
2.3 Economies of size 5
3 DETERMINATION OF ECONOMIC IMPACTS: AN INPUT-OUTPUT APPROACH 8
3.1 Background input-output technique 8
3.1.1 Basic structure of an input-output model 8
3.1.2 Different types of input-output models 9
3.1.3 Multipliers 11
3.2 Impact analysis 13
4 RESULTS 16
4. 1 Redwood county 16
4.1.1 Direct effects 16
4.1.2 Indirect effects 17
4.1.3 Induced effects 18
4.1.4 Total effects 19
4.2 Minnesota state 21
4.2.1 Direct effects 21
4.2.2 Indirect effects 22
4.2.3 Induced effects 22
4.2.4 Total effects 23
5 CONCLUSIONS AND RECOMMENDATIONS 26
REFERENCES 29
Appendix A: The Redwood county economy before construction of a large hog operation, 1985 A-1
Appendix B: The Minnesota economy before construction of a large hog operation, 1985 B-1

SUMMARY

In Redwood county (Minnesota) a controversy is brewing about a permit to build a 1200 sow unit (farrow-to-finish). Opponents are concerned about the environmental risks and the demise of the family farm. Proponents want to be able to adopt high technology to stay competitive. The Redwood county board has to make a decision, weighing all the costs and benefits involved with this proposed hog unit.

The analysis done in this paper, used input-output technique to measure the economic impact of placing the proposed hog unit on the economy of Redwood county and Minnesota state. An inputoutput model is an accounting system showing economic transactions between business, households and governments. Given predicted changes in final demand it can estimate employment, income, industry output and value added. However, these predictions are only a small part of the consequences involved with the new unit. Therefore, this paper can only be seen as an additional information source for local people and decision makers and does not have the pretention to give a complete determination of all costs and benefits involved.

Minnesota is the third ranked hog producing state in the U.S. Hog production in Minnesota is concentrated in the south. The number of hog farms is declining, while the average size is increasing. Operations which produce 2,000 head per year or more, show the fastest growth. Larger hog units have advantages in producing and marketing their hogs.

To determine the impacts of the new unit in the hog industry on other industries, the static regional input-output model IMPLAN (IMpact analysis for PLANning) used multipliers which consider direct, indirect (changes in related industries) and induced effects (due to changes in income and population). IMPLAN assumes linear production functions, unlimited resources and no time dimension. The production function of the hog industry in IMPLAN was adjusted, because the new unit will operate more efficient than an average farrow-to-finish unit in southern Minnesota. Estimated changes in final demand, in respectively the hog and transportation industry, were used to determine the direct, indirect and induced effects on county and state level.

Building this 1200 sow unit in Redwood county will increase final demand, total industry output, employee income, proprietors income, total value added and the number of jobs and population on both levels. The total value added in Redwood county will increase with 1.5550 million dollars (1991) and in Minnesota with 1.9030 million dollars (1991). The jobs will increase with this new unit respectively 18 and 26 , and the population with 45 and 52.

There is controversy brewing in Redwood county (as in many other counties) in Minnesota as this county received an application for a permit for a large swine production unit of 1200 sows. Opposition groups fear the demise of the small family farm and are concerned about the environmental risks associated with handling large amounts of swine wastes from the single location. Proponents of larger units want to be free to adopt high technology systems to stay competitive with other areas and states. The decision will fall to environmental officers, zoning boards and county commissioners, who must weigh the demographic, economic, social and environmental issues (Lazarus and Koehler, 1992). Therefore it is important to answer the following question: what are the costs and benefits of placing this large swine operation in Redwood county?

Placing this new large hog operation in Redwood county could have the following consequences:

- Pollution of ground water, surface water and soil;
- Nuisance from odors;
- Declining real estate prices of neighbors;
- Declining hog prices as a result of the increased hog supply;
- Advantages for neighbor hog producers; the bigger the output of an industry, the better its markets and its services usually are;
- An increase in (local) employment, output, income and demand in the hog sector and other sectors.

The best way to determine all costs and benefits is to carry out a cost - benefit analysis. Such an analysis requires very specific data which were not available. The analysis done in this paper, uses input-output technique to measure the economic impacts of placing the proposed hog unit. It is an easy way to predict changes in employment, income and industry output as a result of placing this new hog unit. However, it only measures a small part of the consequences and therefore, this paper can only be seen as an additional information source for local people and decision makers and does not have the pretention to give a complete determination of all costs and benefits involved.

Chapter two will give a short review of the hog industry and discusses the economies of size of hog operations in Minnesota. Chapter three will explain briefly the basic principles of inputoutput technique and will discuss the assumptions and data used in the impact analysis. In chapter four the results of the impact analysis for Redwood county and Minnesota state will be described. Chapter five discusses the conclusions and further recommendations.

2 HOG INDUSTRY IN MINNESOTA

2.1 Hog farms and sizes

Minnesota is the third ranked state producing hogs in the U.S. Iowa and Illinois are first and second. Hog production in Minnesota is concentrated in the southeast and southwest. The regional distribution of hog production for 1990 is presented in Figure 2.1.

All Hogs

Figure 2.1 Regional distribution of Minnesota hog production in number of head, 1990 (USDA NASS, 1991)

The number of hog operations declined from 20,800 in 1982 to 14,000 in 1991 (see Table 2.1). The average inventory on all farms reporting hogs was 214 head in 1982, compared to 350 head in 1991.

Table 2.1 Minnesota number of hog operations and number of hogs and pigs

Year	Number of hog farms	All hogs and pigs on farms
		1,000 head
1982	20,800	4,470
1987	16,042	4,500
1991	14,000	4,900

Source: USDA hogs and pigs report 1992 and USDC, 1987 Census of Agriculture, Minnesota.

Table 2.2 shows the number of Minnesota hog farms by size groups and percent change. The number of farms with small inventories are declining and the fastest percent growth is for the 2,000-4,999 category.

Table 2.2 Number of Minnesota hog farms by size groups

inventory	1978	1987	\% change
$1-99$	14,733	7,053	-52
$100-199$	4,590	2,709	-41
$200-499$	4,623	3,812	-18
$500-999$	1,281	1,717	34
$1,000-1,999$	385	577	50
$2,000-4,999$	82	157	92
$5,000>$	9	17	89
Total	25,703	16,042	-38

Source: USDC Census of Agricultural Minnesota, 1982 and 1987

2.2 Production and marketing

Hog production includes three types of enterprises:
(1) Farrow-to-finish operations; all phases of slaughter hog production are carried out in one enterprise, (2) feeder pig production; pigs are produced and sold to another enterprise for finishing to slaughter weight, and (3) feeder pig finishing; pigs are bought from other producers and fed to slaughter weight.

The farrow-to-finish operation is the major type of enterprise in Minnesota (Lazarus, 1990).

Table 2.3 gives an indication of the hog production, marketings and prices for Minnesota for the years 1986-1990. The production of hogs (in 1,000 Lbs) in 1990 shows an increase of 16 percent compared to the production in 1986. Marketings in 1990 give a 18.5 percent increase compared to 1986.

Table 2.3 Minnesota hog production, marketings and prices 1986-1990

Year	Production	Marketings ${ }^{1}$
	Price per 100 Lbs	
1,000 Lbs.	Dollars	

1986	$1,479,217$	$1,460,285$	50.70
1987	$1,620,532$	$1,596,416$	51.80
1988	$1,739,084$	$1,719,578$	43.10
1989	$1,786,655$	$1,824,077$	43.60
1990	$1,714,520$	$1,730,811$	55.20

1 Excludes interfarm sales.
Source: USDA NASS, 1991

Hog marketing in Minnesota, just like in the other States of the U.S, is dominated commonly by the direct cash sale of hogs on a liveweight basis by individual producers to packing plants and country buying stations. This has been the trend for many years,
in contrast to sale through terminal or auction markets. Direct selling has been encouraged by the relocation of packing plants from terminal market points to areas of high density hog production, by good highways and road transportation. Improved market information and communication technology contributed also.

Hogs are sold on the basis of individual packer base price bids, with premiums or discounts for specified variations in weight and/or quality. Base prices can fluctuate from day to day and may vary somewhat from one packing plant or buying point to another, even within a relatively small geographic area. Prices may also show some variation between geographic regions, as well as seasonal and cyclical changes (Futrell, 1990). Packers award premiums to producers who can produce larger quantities and are more able to deliver consistent quantities. For many small pork producers which operate independent (i.e. using different genetics, nutrition, management and marketing practices) it is difficult to deliver a consistent uniform product. Producers in Minnesota, frequently sell lighter hogs to one packer and heavier ones to another. The quality (light) hogs are sold to packers as Hormel, Farmstaed, Montfort and Morrell, located in the southern part of Minnesota. Heavy hogs are sold to Iowa Beef Processors (IBP plants) in the northern part of Iowa (Lazarus, 1992).

2.3 Economies of size

Some people feel that the only way they can make it in the swine industry is to become larger. But are large units more efficient and/or profitable?

Economies of size reveal the costs to produce a unit of product associated with increasing use of some or all the inputs and is a major issue for hog producers and all associated business. Suppliers of inputs and services, marketing agencies and slaughter plants will all be affected by shifting economies in the production sector.

On average, larger hog operations can have advantages on the production side and in marketing their hogs. Larger units are more able to effectively gain access to capital, consistent genetics, technology and markets. They can spread their costs of the resources over a larger produced volume of pork. As a result of more available capital, larger units are allowed to build more adequate systems to invest in animal welfare techniques and control the health of their employees. For instance, larger units are able to use the all-in/all-out system, that promotes high health of the hogs with reduced reliance on antibiotics (Lazarus and Koehler, 1992).

A study of van Arsdall and Nelson (1985) compared the economies of size of different farm sizes in the North central part of the U.S. which includes southern Minnesota. Table 2.4 presents the outcome of this study for different sizes of farrow-to-finish units.

Table 2.4 Farrow to finish hog production costs and returns, North Central 1983, in dollars/cwt

	140	300	$\begin{aligned} & \text { Annu } \\ & 650 \end{aligned}$	$\begin{aligned} & 1 \text { es } \\ & 1,600 \end{aligned}$	3,000	10,000
Gross income						
Market hoge	44.19	44.80	44.52	44.59	44.65	44.56
Cull sows	2.21	2.47	2.37	2.32	2.26	2.34
Total	46.40	47.27	46.89	46.91	46.91	46.90
Variable cash costs ${ }^{1}$						
Feed	31.65	31.54	31.52	30.70	29.39	28.04
Other	7.69	7.05	7.31	6.96	6.42	8.59
Total	39.34	38.59	38.83	37.66	35.81	36.63
Fixed cash costs ${ }^{2}$	4.01	3.29	2.38	1.65	1.22	1.04
Total cash costs	43.35	41.88	41.21	39.31	37.03	37.67
Returns over cash costs	3.05	5.39	5.68	7.60	9.88	9.23
Unpaid labor ${ }^{3}$	9.43	6.35	4.04	4.00	3.33	1.08
Cash costs plus unpaid labor	52.78	48.23	45.25	43.31	40.36	38.75
Returns over cash costs and unpaid						
labor	-6.38	-0.96	1.64	3.60	6.55	8.15
Capital costs ${ }^{4}$						
Replacement	7.71	7.35	6.29	6.14	5.05	4.58
Interest	3.89	3.26	2.75	2.60	2.14	1.90
Total	11.60	10.61	9.04	8.74	7.19	6.48
Total all costs	64.38	58.84	54.29	52.05	47.55	45.23
Returns over total costs	-17.98	-11.57	-7.40	-5.14	-0.64	1.67

Source: van Arsdall and Nelson, 1985.
${ }^{i}$ Variable cash expenseg: Purchases for immediate use plus farm produced inputs including; feed, veterinary services and medicines, custom services, energy (fuel and oil), bedding, repairs, hired labor, marketing costs and interest on operating capital.
${ }^{2}$ Fixed cash expenses: a) Personal property, real estate taxes, property insurance rent and general business overhead costs (telephone, office supplies, liability insurance etc.) and b) Interest and principal payments on debt. These expenses are determined by equity position.
${ }^{3}$ Unpaid labor: Opportunity cost -what unpaid workers could earn in other activities- is the most realistic way to prices unpaid labor. Unpaid workers in small operations are assigned the same relatively low wage rates as their counterparts; those in larger operations are valued according to the higher wage rates paid to employees in these operations.
${ }^{4}$ Capital costs: Investments include outlays for depreciable assets such as machinery, equipment, buildings and breeding stock. The capital investments cost are measured in terms of their current replacement costs. Investments in depreciable assets fall into three subcategories: (a) hog buildings and equipment, (b) breeding stock and (c) general purpose machinery, equipment.

Larger hog operations have an advantage compared to smaller operations by having an improved feed conversion rate (more knowledge) plus lower feed prices (discount because of large quantity purchases) and more efficient use of other variable inputs. Larger units have higher returns over cash costs and higher returns over cash costs plus unpaid labor. If the capital costs are also included, the returns are less negative in larger units than in smaller operations.

Economies of size are substantial and continue to increase for operations producing more heads of hogs. A large size alone, however, is no assurance of success. Performance varies greatly among hog producers both in physical and economic performance and among operations of both similar and different sizes (van Arsdall and Nelson, 1985).

Besides the advantages of larger hog operations, very large units (400-1200 sows) must be managed more intensely and cost effective, otherwise high production costs will lead to elimination. When the labor is large enough, one should allow one or more individuals to spend most of their time managing. In general, detailed records are more profitable and easier to implement in larger units.

Larger units can have more problems with environmental issues. But if environmental legislation becomes more restrictive and severe in the future, larger units might be more able to invest in waste management systems, because of their access to capital (Lazarus and Koehler, 1992).

3 DETERMINATION OF ECONOMIC IMPACTS: AN INPUT-OUTPUT APPROACH

3.1 Backqround input-output technique

3.1.1 Basic structure of an input-output model

An input-output model is an accounting system showing economic transactions between business, households and governments. The transaction table comprises four basic elements: (1) interindustry transactions, which show the purchases of individual industries from one another, (2) final demands, which are all purchases by sectors other than the producing industries, (3) primary input purchases and the corresponding income payments to their owners: households, businesses and government agencies, and (4) individual industry purchases from input-supplying industries outside the area (imports).

After a transaction table has been constructed for a given year, a table of technical coefficients or direct requirements (inputs) can be developed from it (matrix $A_{i j}$). The standard notation for the technical coefficients, $A_{i j}$, is,

$$
A_{i j}=x_{i j} / X_{j} \quad i, j=1, \ldots, n
$$

Where $X_{i j}$ is the sales by sector i to sector j, and X_{j} is the total purchases of sector j. A column of $A_{i j}$ represents a special type of production function. The technical or direct coefficients embody most of the simplifying assumptions of input-output analysis: constant and linear production functions. The assumptions will be discussed in 3.2 .

Leontief developed a method of determining the total output requirements resulting from a final demand change using matrix algebra techniques. In matrix notation,

$$
X=A X+Y
$$

where X is the vector of total outputs, A is the matrix of direct coefficients, and Y is the vector of final demands. The above may also be written as,

$$
(I-A) X=Y
$$

where I is the identity matrix. The next step is to find the Leontief inverse by inverting the (I - A) matrix. The result is a matrix of total requirement coefficients. Each entry represents the output required both directly and indirectly from each row sector per dollar of deliveries to final demand by each column sector. So finally,

$$
X=(I-A)^{-1} Y
$$

When an interindustry flows table is converted into a direct and indirect coefficients table it becomes an operational analytical tool with a wide variety of uses: measuring the economic interdependence of the region's industrial structure, providing a set of multipliers, calculating the effects on the economic activity in individual regions of changes in the level and pattern of national demand, evaluating economic impact, and as a technique for long-run projections and forecasts (Richardson, 1972).

3.1.2 Different types of input-output models

Open or closed

An input-output model can be open or closed. The difference is that in an open model the households are considered exogenous while in a closed model the households are included (i.e. endogenous) in the interindustry matrix. In other words, a model is open if some inputs to production are considered not reproducible in the accounting period, for example labor. By contrast, if a model assumes that all inputs can be reproduced during the accounting period, it is called closed (Toyomane, 1988).

A closed system takes into account the demand factors as well as supply factors. Final demand is not given but is determined simultaneously with other supply variables (total output requirements in each industry). When a set of variables is solved simultaneously, all interactions among the variables are taken into consideration in the solution. Thus, by solving final demand and output requirements simultaneously, the closed system takes into account both the impact of demand on supply and that of supply on demand. Figure 3.1 shows the interactions of demand and supply.

Figure 3.1 Relation between supply and demand

The equilibrium output levels calculated from a closed system incorporate not only the outputs required to meet a given final demand but also the outputs required to meet the change in final demand which is induced by changes in production and income. The open system is capable of evaluating only the direct and indirect effect on the output requirements (Yan, 1969).

Static or dynamic

In summary, an input-output model is static if it lacks capital formation processes and describes interindustry relationship only as a one-shot equilibrium pattern of flows of commodities and services. A dynamic model, on the other hand, explicitly incorporates capital stock into the system, and determines the levels of total outputs of commodities and services over some extended period of time while taking capital formation into account.

The input-output technique is originally intended for shortterm analysis, as the assumption of fixed coefficients indicates. However, using variable coefficients instead, it is also possible to apply the technique to medium- and long-term forecasting. Several types of input-output applications can be identified with respect to whether and how coefficients are variable:
(1) Static formulations. This original and dominant type uses constant coefficients and projected changes in final demand. It is only suitable for short-run analysis;
(2) Comparative static, exogenous formulations. This type is characterized by variable coefficients, which are projected exogenously for some point of time in the future. Changes in final demand for the year are also given. This type can be used for medium- to long-term forecasts;
(3) Comparative static, endogenous formulations. When an inputoutput model is embedded in a larger modeling framework, which contains variables that the standard input-output model lacks, it may be possible to vary coefficients endogenously within the expanded model. Final demand may also be endogenously given;
(4) Dynamic formulations. Dynamic input-output models are in principle more appropriate for longer-run predictions. It should be noted however, that input and capital coefficients in the standard dynamic model are also held constant. Therefore "dynamic" formulations do not automatically qualify for long-term forecasting unless their coefficients vary over time (Toyomane, 1988).

Regional or interregional

The initial development of input-output theory, and early empirical work in interindustry analysis, was national in scope. Since the end of Wold War II, however, there has been a great deal of interest in regional economic analysis.

There are a number of variations of input-output analysis at the regional level which can be classified in a number of ways. One major distinction is between interregional models and regional models. In the former, a single model includes more than one region, while regional models are similar to national models except that they cover a smaller geographic area. Interregional input-output models have been used primarily for the study of
regional balance of payments and interregional trade flows. The primary use of regional models however, has been in making local or regional impact studies. Local and regional impact studies are designed to measure the direct, indirect and induced income and employment effects of changes in final demand in one or more sectors of the local or regional economy. This is done by computing output, income and employment multipliers.

A further distinction can be made between balanced regional models and what have been called pure interregional models. A balanced regional model is constructed by desaggregating a national input-output table into its component regional. The pure interregional model is implemented by aggregating a number of regional tables, and the latter may or may not include all the regions in the national economy. The two models should not be viewed as alternatives but as complements. The Leontief balanced regional model is particularly useful for determining regional implications of national projections, and the pure interregional model for determining national implications of regional projections. The economic system is described in both cases in terms of interdependent industries and of interrelated regions. While interregional input-output models are more complex than national or regional models, the basic principles of input-output analysis remain unchanged (Richardson, 1972).

3.1.3 Multipliers

The notion of a multiplier rests upon the difference between the initial effect of a change in final demand and the total effects of that change. Total effects can be calculated either as direct and indirect effects, or as direct, indirect, and induced effects. Direct effects are simply the production changes equal to the immediate final demand changes. Indirect effects are production changes in backward-linked industries caused by the changing input needs of directly affected industries (additional purchases to produce additional output). Induced effects are the changes in regional household spending patterns caused by changes in household income (or income and population), generated from the direct and indirect effects (Alward et al., 1992).

Multiplier Type I

The Leontief Inverse is a matrix of Type I multipliers. The direct effects (produced by a change in final demand) plus the indirect effects divided by the direct effects. Increased demands are assumed to lead to increased employment and population, with the average income level remaining constant (Alward et al., 1992). The direct and indirect changes are obtained by multiplying each column entry in the standard inverse matrix (i.e. households excluded) by the supplying industry's
corresponding household row coefficient from the direct coefficients table, and summing the row multiplications (Richardson, 1972).

Multiplier Type II

The sum of the direct, indirect, and induced effects divided by the direct effects yields Type II multipliers. This is done for a model which is closed with respect to households. Households are brought into the transactions matrix as an industry and the resulting matrix is inverted in the same manner as the open model. The total requirements coefficients for the closed model, therefore, include induced effects in addition to direct and indirect effects. Since households are defined as a production sector, the relationship between changes in final demand and household expenditures is linear, in the same way as industrial production functions are linear. The assumption is that an increase in output will raise income levels, and therefore increase household spending proportionately. Population is assumed stable. Thus, if household income doubles, all household purchases (input to the household sector) will also double (Alward, 1992). This multiplier tends to over-estimate economic impacts, because a smaller fraction of marginal income increase is spent on consumption, and because high income groups have higher propensities to import (Richardson, 1972).

Multiplier Type III

The Type III multiplier compares direct, indirect, and induced effects to the direct effects generated by a change in final demand. The Type III (open model) induced effect are quite different from the induced effects of a Type II multiplier. To minimize the over-estimation that occurs with a linear consumption function, Type III estimates induced effects based on the changes in employment and population. The resulting multipliers are typically five to fifteen percent smaller than Type II multipliers. To estimate induced effects, direct, and indirect effects are converted to changes in employment based on each sector's employment-to-output ratio. Employment change is then multiplied by the region's population-to-employment ratio, converting it into population change. Population change is multiplied by average regional per-capita consumption rates by sector to estimate the regional household consumption generated by the initial final demand changes. This change in household consumption is treated as an additional set of final demand changes and are multiplied by the Leontief Inverse matrix to generate the first round of induced (additional direct and indirect) effects (Alward et al., 1992).

3.2 Impact analysis

An impact analysis of building a new hog operation of 1200 sows on the local economy of Redwood county and on the state economy of Minnesota was done using the static regional inputoutput model IMPLAN. This model was developed by the USDA Forest Service and it provides a data base for constructing a 528industry transactions table for any county or combination of counties in the U.S., using economic statistics for 1985. IMPLAN calculates impacts of an industry on other industries by means of a set of multipliers. The Leontief Inverse calculated in IMPLAN is an open model, that is, household consumption is included as a component of final demand rather than as an industry. Two types of multipliers are provided, Type I and Type III, for the following impact measures: Industry Output, Personal Income, Total Income, Value Added, and Employment.

An impact analysis can be accomplished in the model construction phase (i.e. adding or removing industries, changing production functions or import/export trades) or by 'shocking' the model economy with changes in final demand. This research used a combination of both.

Any static input-output modeling system, such as IMPLAN, contains a number of assumptions:

1. Industries produce commodities using fixed recipes (linear production functions). There is no substitution of inputs and an increase of n times in inputs leads to an increase in n times in gross output;
2. Resources (including labor) are unlimited;
3. There is no time dimension. All changes are assumed to be average annual change. This implies the following:
a. there is no new technology,
b. trade relationships are static,
c. there are no relative price changes,
d. there are no structural changes.

The assumption of fixed factor proportion can be justified on the ground that, under given technology, there is only one 'best input combination' and once a certain combination is adopted, it will be retained for a while.

The assumption of the unlimited resources implies that the primary factors have no opportunity costs. This means that, for example, workers could not earn more in other activities as they do now, so they have no alternatives. In most cases this assumption is hard to justify but in this project it should not be such a problem. There are only 6 hired workers involved to run the proposed hog unit. They are "low educated", available and will get their best wages.

This paper considers the effects on the short-term. As mentioned before a static input-output model can be used for short-term analysis.

The proposed 1200 sow unit will finish 24,000 hogs per year. According to the estimated figures (see Table 3.1), this unit will operate more efficient than the average unit in Redwood county and Minnesota state as will be discussed below. Therefore the production function has to be adjusted in IMPLAN. The figures of the base year data of number of employees, payroll, taxes, total industry output and proprietors income, are replaced by estimated figures of the new unit. After the model has estimated the multipliers, an impact analysis is done using the estimated gross revenue and hauling figures as a change in final demand in the hogs, pigs and swine industry and in the motor freight transport industry, respectively.

The figures of the new unit, used in the IMPLAN model are presented in Table 3.1 and are given in 1991 and 1985 dollars. To put the figures in 1985 terms, they are divided by the 1991 GNP deflator of 135 and multiplied by the 1985 deflator of 110.9.

Table 3.1 Estimated figures of the 1200 sow unit

	$1991 \$$	$1985 \$$
Gross Revenue	$2,846,675$	$2,338,491$
Hauling	43,937	36,093
Proprietors income	805,705	661,871
Taxes	45,717	37,555
Payroll	160,000	131,437
Hired workers $\#=6$		

Source: Lazarus, 1992

Table 3.2 presents figures of an average farrow-to-finish unit and the proposed unit. The figures indicate that the proposed unit is expected to use less labor per sow (1 full-time worker for 200 sows) than an average unit (1 worker per 100 sows) and will wean 5 pigs more per sow per year. As discussed in chapter two, feed and veterinarian costs per Cwt will decrease as the farm size increases.

Table 3.2 Figures of an average farrow-to-finish unit in Minnesota and the proposed unit, 1991

	Average unit	Proposed unit
Number of sows	109	1200
Pigs weaned/sow/year	15	20
Number of sows/employee	100	200
Feed costs/Cwt	$\$ 24.92$	$\$.75$
Veterinarian costs/Cwt	$\$ 1.73$	$\$ 19.53$

[^0]The original data of Redwood and Minnesota economy (before construction of the 1200 sow unit) are presented in Appendix A and B respectively. The data base consists estimates of sectoral activity for:
a. Employment: The number of people a given industry employs.
b. Value added: Costs added to the intermediate costs of producing goods and services (to form the producer price) are considered value added. There are four components of value added:

* Employee compensation (e.g. wages and salaries);
* Proprietary income (includes self-employed income); * Indirect business taxes (e.g. sales and excise taxes); * Other property income (e.g. interest and corporate profits).
c. Industry output: The total value of all production for an industry during the year.
d. Final demand: Purchases for final use or consumption.

4.1 Redwood county

4.1.1 Direct effects

Table 4.1 shows the direct effects of the impact analysis in million dollars of 1991.

The direct effects appear only in industry 7 (hogs, pigs and swine) and industry 448 (motor freight transport). An increase in Final Demand (FD) of 2.8467 million dollars (1991) in industry 7 causes a similar increase in the Total Industry Output (TIO). TIO is the total value of all production for an industry during the year. Total Industry Output is equal to the Total Industry Outlay, i.e. the sum of a column in the interindustry matrix, plus the associated Value Added and Imports.

This increase in TIO makes the total payroll costs (wages and salaries and benefits) paid by local industries rise with 0.1749 million dollars. This is called the Employee Compensation Income (ECI). The income from self employment in this county will grow with 0.8197 million dollars.

Total Income (TI) is the sum of the Employee Compensation Income (ECI) and Proprietary Income (PI). The Total Value Added (TVA), the amount added to the intermediate costs goods and services, is the sum of Employee Compensation Income (ECI), Proprietary Income (PI), Indirect Business Taxes, and other Property Income. The TVA of the direct effects of the 1200 sow unit is 1.0419 million dollars. Employment (E) contents the number of jobs (annual average) required by a given industry, including self employed.

Table 4.1 Direct effects of the 1200 sow unit on Redwood county (\$MM 1991)

| Industry | FD 1 | TIO 2 | ECI 3 | PI 4 | TI | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 Hogs, pigs and swine | 2.8467 | 2.8467 | 0.1600 | 0.8057 | 0.9657 | 1.0115 | 6.00 |
| 448 Motor fr. transport | 0.0439 | 0.0439 | 0.0149 | 0.0140 | 0.0289 | 0.0304 | 0.59 |
| Total direct | 2.8906 | 2.8906 | 0.1749 | 0.8197 | 0.9946 | 1.0419 | 6.59 |

Change in population $=17$
1 Final Demand
${ }^{2}$ Total Industry Output
${ }^{3}$ Employee Compensation Income
4 Property Income
5 Total Income
6 Total Value Added
7 Employment

* in numbers

IMPLAN calculated an increase of 6 jobs in the hogs, pigs and swine industry and 0.59 in the motor freight transport industry. A direct increase of 17 in the population can be seen as the members of the families of the 7 new employees (employees included).

4.1.2 Indirect effects

The indirect effects contain the changes that appear in all the industries that are connected with the hogs, pigs and swine industry and the motor freight transport industry. Both direct and indirect linkages are considered.

For instance, industry B makes no purchases from industry A, but does purchase inputs from industry C. This industry C purchases inputs from industry A. Hence, if the output from industry B expanses, industry A will benefit in the second round of purchases.

The interactions become very complex and interwoven as the various rounds of spending and respending evolve, because the industries in IMPLAN are very desaggregated.

Table 4.2 gives the most striking indirect effects in million dollars of 1991.

Table 4.2 Indirect effects of the 1200 sow unit on Redwood county ($\$$ MM 1991)

Industry		FD	TIO	ECI	PI	TI	TVA	E^{*}
7	Hogs, pigs and swine	0.0000	0.3035	0.0170	0.0860	0.1030	0.1079	0.64
12	Feed grains	0.0000	0.0611	0.0013	0.0150	0.0163	0.0179	0.46
13	Hay and pasture	0.0000	0.0164	0.0004	0.0038	0.0040	0.0045	0.12
26	Agricult. forest	0.0000	0.0215	0.0071	0.0021	0.0091	0.0097	0.66
332	Farm equipment	0.0000	0.0173	0.0045	0.0032	0.0077	0.0078	0.17
448	Motor fr. transport	0.0000	0.0387	0.0131	0.0123	0.0254	0.0269	0.52
461	Other wholesale tr.	0.0000	0.1049	0.0461	0.0173	0.0634	0.0761	1.36
463	Other retail trade	0.0000	0.0095	0.0038	0.0015	0.0052	0.0060	0.21
464	Banking	0.0000	0.0554	0.0186	0.0099	0.0285	0.0299	0.71
465	Credit agencies	0.0000	0.0093	0.0090	-0.0007	0.0083	0.0088	0.28
490	Accounting, audit.	0.0000	0.0055	0.0023	0.0011	0.0034	0.0034	0.14
491	Eat/drinking place	0.0000	0.0049	0.0011	0.0005	0.0016	0.0024	0.12
493	Auto repair	0.0000	0.0139	0.0026	0.0038	0.0063	0.0066	0.16
506	Other medical	0.0000	0.0095	0.0073	-0.0012	0.0061	0.0061	0.13
	Other indirect	0.0000	0.0972	0.0159	0.0310	0.0474	0.0520	0.98
	Total indirect	0.0000	0.7686	0.1501	0.1856	0.3357	0.3658	6.66

Change in population $=17$

- in numbers

Besides the indirect effects in the hogs, pigs and swine industry and the motor freight transport industry themselves, a considerable increase in the TVA of a part of the wholesale
industry takes place. Predictably, there is also an increase in the industry of feed grains. Because a new operation requires new investments and capital, the banking industry shares an increase in income and employment too.

There is an increase in the population amount of 17. Note that industries 465 and 506 show a decrease in Property Income. The reason for this is that the capital consumption allowance for these industries is bigger than the remaining cash flow (after the substraction of taxes, payroll etc.). Also, the figures are averages of 1985 and at that time it could be the case that those industries were not in good shape.

The indirect effects of building a 1200 sow operation in Redwood county will increase the TVA of this county with 0.3658 million dollars and will create jobs for 7 people in different industries. The indirect effects do not change the final demand because the households are still considered exogenous (multiplier Type I).

4.1.3 Induced effects

The induced effects take into account the repercussionary effects of secondary rounds of consumers spending in addition to the direct and indirect interindustry effects (multiplier Type III).

Table 4.3 gives a summary of the industries which are mostly affected.

Table 4.3 Induced effects of the 1200 sow unit on Redwood county (\$MM 1991)

Industry		FD	TIO	ECI	PI	TI	TVA	E^{*}
461 Other wholesale tr.	0.0212	0.0304	0.0110	0.0041	0.0151	0.0180	0.32	
463 Other retail trade	0.0616	0.0627	0.0250	0.0096	0.0346	0.0390	1.39	
491 Eat/drinking place	0.0246	0.0263	0.0061	0.0027	0.0089	0.0129	0.64	
503 Doctors and dentists	0.0122	0.0122	0.0055	0.0030	0.0085	0.0085	0.16	
505 Nursing and protec.	0.0061	0.0061	0.0041	-0.0002	0.0039	0.0040	0.22	
512 Religious organiz.	0.0028	0.0028	0.0012	0.0005	0.0018	0.0016	0.10	
527 Household industry	0.0018	0.0018	0.0010	0.0009	0.0744	0.0018	0.14	
\quad Other induced	0.0723	0.0953	0.0284	0.0280	0.0163	0.0615	1.42	
	Total induced	0.2026	0.2376	0.0823	0.0486	0.1309	0.1473	4.39

Change in population ${ }^{*}=11$

* in numbers

Considering also the income expansion due to successive 'rounds' of consumer spending (i.e. households endogenous = industry 527), many industries who are not direct or even indirect related to the hog industry gain.

Especially a part of the retail trade and the 'eating and
drinking' industry are provided with more employment possibilities. A change of 11 in the population takes place, when considering the induced effects.

All the industries together will increase the TVA of the county with an amount of 0.1473 million dollars, and 4.39 people can be employed, additionally to the base year (1985) situation in Redwood county.

4.1.4 Total effects

Table 4.4 gives a summary of the total effects (the sum of direct, indirect and induced effects) of building the new 1200 sow unit in Redwood county.

Table 4.4 Total effects of the 1200 sow unit on Redwood county (\$MM 1991)

	Industry	FD	TIO	ECI	PI	TI	TVA	E^{*}
1	Dairy farm products	0.0006	0.0050	0.0002	0.0027	0.0029	0.0029	0.10
7	Hogs, pigs and swine	2.8467	3.1503	0.1771	0.8917	1.0687	1.1193	6.64
12	Feed grains	0.0001	0.0612	0.0013	0.0150	0.0163	0.0179	0.46
13	Hay and pasture	0.0000	0.0164	0.0004	0.0038	0.0041	0.0045	0.12
26	Agricul. forestry	0.0000	0.0217	0.0071	0.0021	0.0091	0.0097	0.67
74	Maintenance and rep.	0.0000	0.0091	0.0026	0.0019	0.0045	0.0046	0.11
332	Farm equipment	0.0001	0.0174	0.0045	0.0033	0.0077	0.0078	0.17
448	Motor fr. transport	0.0449	0.0853	0.0289	0.0271	0.0560	0.0593	1.14
454	Communications, exc.	0.0054	0.0136	0.0043	0.0044	0.0086	0.0102	0.10
461	Other wholesale	0.0211	0.1298	0.0571	0.0214	0.0784	0.0941	1.68
463	Other retail trade	0.0616	0.0723	0.0287	0.0111	0.0399	0.0449	1.60
464	Banking	0.0049	0.0618	0.0207	0.0110	0.0318	0.0334	0.79
465	Credit agencies	0.0012	0.0116	0.0113	-0.0010	0.0103	0.0110	0.35
470	Real estate	0.0055	0.0207	0.0009	0.0131	0.0140	0.0177	0.13
488	Legal services	0.0032	0.0130	0.0052	0.0047	0.0100	0.0100	0.17
490	Accounting, audit.	0.0007	0.0075	0.0032	0.0016	0.0047	0.0047	0.20
491	Eat/drinking place	0.0246	0.0312	0.0073	0.0032	0.0105	0.0153	0.76
493	Auto repair	0.0062	0.0212	0.0039	0.0058	0.0096	0.0101	0.24
503	Doctor and dentists	0.0122	0.0122	0.0055	0.0030	0.0085	0.0085	0.16
505	Nursing and protec.	0.0061	0.0061	0.0041	-0.0002	0.0039	0.0040	0.22
506	Other medical	0.0023	0.0122	0.0094	-0.0015	0.0078	0.0078	0.17
512	Religious organiz.	0.0028	0.0028	0.0012	0.0005	0.0016	0.0016	0.10
527	Household industry	0.0018	0.0018	0.0010	0.0009	0.0018	0.0018	0.14
	Other total	0.0412	0.1127	0.0213	0.0283	0.0504	0.0539	1.41
	Total	3.0932	3.8969	0.4072	1.0539	1.4611	1.5550	17.63

Change in population $=45$

* in numbers

The largest total effects can be traced in part of the wholesale trade, part of the retail trade, the banking industry and the 'eating and drinking' industry, and of course in the hogs, pigs and swine industry and motor freight transport industry.

Compared to the situation in Redwood county, before construction of the 1200 sow unit, 18 employees could be added, divided over several industries. Though, most of the jobs would be created in the hogs, pigs and swine industry itself.

All affected industries together show an increase of TVA with 1.5550 million dollars. The Total Income increases with 1.4611 million dollars. About seventy-two percent of this TI increase is contributed by PI increase.

The Total Final Demand change will increase with 3.0932 million dollars and TIO will increase with 3.8969 million dollars. Notice a decline in the PI of industries 465,505 and 506. The population will increase with 45 people in Redwood county.

The total effects of FD, TIO, ECI, PI, TI and TVA are shown in Figure 4.1. The total effects of the TVA in Redwood of the industries which are mostly affected are shown in Figure 4.2. Apperently in some industries, the change in TVA is very small, but the dollars involved are appreciable. Figure 4.3 presents a graphic illustration of the change in employment and population due to direct, indirect and induced effects in Redwood county.

Figure 4.1 Total effects Redwood county

Figure 4.3 Total effects Employment and Population in Redwood county divided in direct, indirect and induced effects

4.2 Minnesota state

4.2.1 Direct effects

Table 4.5 presents the direct effects of the impact analysis for Minnesota state in million dollars of 1991.

The direct effects for Minnesota appear in industry 7 and 448 and are almost the same as for Redwood county (Table 4.1). There is only a small difference in the ECI and PI figures at county - state level, due to the difference of the estimated multipliers. The data is based on the state average, instead of the average of Redwood county.

Table 4.5 Direct effects of the 1200 sow unit on Minnesota state (\$MM 1991)

Industry		FD	TIO	ECI	PI	TI	TVA	E^{*}
7 Hogs, pigs and swine	2.8467	2.8467	0.1600	0.8057	0.9657	1.0115	6.00	
448 Motor fr. transport	0.0439	0.0439	0.0158	0.0130	0.0289	0.0304	0.59	
Total direct	2.8906	2.8906	0.1758	0.8187	0.9946	1.0419	6.59	

Change in population ${ }^{*}=13$

* in numbers

Notice that the population change in the state is smaller than the population change in Redwood county (Table 4.1). This is also due to the fact that the multipliers are based on state
averages.

4.2.2 Indirect effects

Table 4.6 gives a summary of the indirect effects of the proposed 1200 sow unit on the whole economy of Minnesota state in million dollars of 1991. The results indicate that the TVA and E figures yields the largest increase for the feed grains, other wholesale, banking and real estate industries.

The population will increase with 19 people and all industries together will increase the TVA of the state with 0.4553 million dollars and Employment with 9 people.

Table 4.6 Indirect effects of the 1200 sow unit on Minnesota state (\$MM 1991)

	Industry	FD	tio	ECI	PI	TI	TVA	E*
	oducts	0.0000	0.0282	0.0015	0.0149	0.0163	0.0167	0.55
12	Feed grains	0.0000	0.1037	0.0024	0.0253	0.0278	0.0303	0.78
13	Hay and pasture	0.0000	0.0317	0.0007	0.0072	0.0079	0.0086	0.23
21	Oil bearing crops	0.0000	0.0149	0.0005	0.0055	0.0061	0.0065	0.14
26	Agricul. forestry	0.0000	0.0172	0.0057	0.0016	0.0073	0.0078	0.53
74	Maintenance and rep.	0.0000	0.0107	0.0032	0.0021	0.0052	0.0054	0.12
332	Farm equipment	0.0000	0.0158	0.0040	0.0030	0.0071	0.0072	0.16
446	Railroads and rel.	0.0000	0.0122	0.0062	0.0007	0.0069	0.0072	0.11
448	Motor fr. transport	0.0000	0.0386	0.0139	0.0114	0.0253	0.0268	0.51
456	Electric gervices	0.0000	0.0335	0.0055	0.0119	0.0174	0.0198	0.12
461	Other wholesale	0.0000	0.1074	0.0503	0.0146	0.0649	0.0778	1.39
463	Other retail trade	0.0000	0.0119	0.0050	0.0016	0.0066	0.0074	0.26
464	Banking	0.0000	0.0466	0.0173	0.0067	0.0240	0.0251	0.60
465	Credit agencies	0.0000	0.0097	0.0089	-0.0001	0.0088	0.0093	0.30
467	Insurance carriers	0.0000	0.0212	0.0074	-0.0007	0.0067	0.0079	0.21
468	Insurance agents	0.0000	0.0049	0.0018	0.0011	0.0029	0.0030	0.10
470	Real estate	0.0000	0.1001	0.0044	0.0650	0.0694	0.0855	0.58
471	Hotels and lodging	0.0000	0.0035	0.0013	0.0005	0.0019	0.0022	0.10
478	Miscell. repair shop	0.0000	0.0079	0.0023	0.0026	0.0049	0.0051	0.21
490	Accounting, audit.	0.0000	0.0060	0.0024	0.0013	0.0038	0.0038	0.16
491	Eat/drinking place	0.0000	0.0060	0.0015	0.0005	0.0021	0.0029	0.15
493	Auto repair	0.0000	0.0135	0.0029	0.0033	0.0061	0.0065	0.15
	Other medical	0.0000	0.0217	0.0108	0.0032	0.0139	0.0140	0.30
	Other indirect	0.0000	0.1952	0.0362	0.0270	0.0629	0.0685	1.4
	Total indirect	0.0000	0.862	0.1961	. 210	0.4062	0.455	. 2

Change in population ${ }^{*}=19$

* in numbers

4.2.3 Induced effects

Building a 1200 sow unit in Redwood county 'trickles its way down' to other industries. Due to the fact that the 'new' employees are spending their payrolls, also industries such as
wholesale, real estate, retail and eat/drinking place gain profits. Table 4.7 gives a summary of the induced effects in million dollars of 1991. For all industries the number of jobs will increase with 10 and Total Value Added with 0.4060 million dollars.

Table 4.7 Induced effects of the 1200 sow unit on Minnesota state (\$MM 1991)

	Industry	FD	TIO	ECI	PI	TI	TVA	E*
454	Communications	0.0097	0.0145	0.0049	0.0044	0.0093	0.0108	0.11
461	Other wholesale	0.0243	0.0344	0.0162	0.0046	0.0208	0.0250	0.45
463	Other retail trade	0.0813	0.0834	0.0357	0.0108	0.0465	0.0523	1.87
464	Banking	0.0054	0.0130	0.0049	0.0018	0.0067	0.0071	0.17
465	Credit agencies	0.0016	0.0058	0.0052	-0.0001	0.0051	0.0055	0.18
467	Insurance carriers	0.0222	0.0262	0.0093	-0.0009	0.0084	0.0097	0.26
468	Insurance agents	0.0007	0.0063	0.0023	0.0015	0.0038	0.0040	0.14
470	Real estate	0.0396	0.0698	0.0030	0.0454	0.0484	0.0595	0.41
471	Hotels and lodging	0.0051	0.0066	0.0026	0.0010	0.0035	0.0039	0.18
472	Laundry, cleaning	0.0027	0.0032	0.0010	0.0011	0.0021	0.0021	0.11
474	Portrait and photo.	0.0026	0.0026	0.0007	0.0009	0.0017	0.0017	0.12
477	Beauty and barber	0.0022	0.0022	0.0009	0.0010	0.0018	0.0019	0.12
479	Services buildings	0.0012	0.0019	0.0010	0.0004	0.0013	0.0015	0.13
480	Pers. supply serv.	0.0006	0.0023	0.0015	0.0005	0.0019	0.0019	0.13
488	Legal services	0.0037	0.0093	0.0040	0.0032	0.0071	0.0071	0.12
490	Accounting, audit.	0.0011	0.0040	0.0017	0.0009	0.0026	0.0026	0.11
491	Eat/drinking place	0.0335	0.0380	0.0095	0.0033	0.0128	0.0186	0.93
493	Auto repair	0.0078	0.0101	0.0022	0.0024	0.0046	0.0049	0.11
503	Doctors and dentists	0.0225	0.0228	0.0124	0.0034	0.0159	0.0161	0.30
504	Hospitals	0.0286	0.0286	0.0141	0.0016	0.0157	0.0157	0.56
505	Nursing and protect.	0.0063	0.0063	0.0035	0.0005	0.0040	0.0040	0.22
506	Other medical/health	0.0077	0.0094	0.0046	0.0013	0.0060	0.0061	0.13
508	Colleges/universit.	0.0046	0.0047	0.0026	0.0002	0.0028	0.0028	0.18
512	Religious organiz.	0.0038	0.0038	0.0022	0.0000	0.0022	0.0022	0.13
515	Social services	0.0028	0.0028	0.0018	0.0000	0.0018	0.0018	0.10
527	Household industry	0.0022	0.0022	0.0013	0.0009	0.0022	0.0022	0.17
	Other induced	0.1734	0.2699	0.0581	0.0588	0.1172	0.1350	2.33
	Total induced	0.4958	0.6841	0.2072	0.1489	0.3562	0.4060	9.77

Change in population ${ }^{*}=20$

* in numbers

4.2.4 Total effects

A summary of the total effects of building a new 1200 sow unit on the economy of Minnesota state are presented in Table 4.8 .

The largest total effects can be traced in industry 7, 448, 461, 463, 470 and 491. All industries together will increase Total Value Added with 1.9030 million dollar and the number of jobs with 26. The total population will increase with 52 people in Minnesota.

Table 4.8 Total effects of the 1200 sow unit on Minnesota state ($\$ M M$ 1991)

	Industry	FD	TIO	ECI	PI	TI	TVA	E*
1	Dairy farm products	0.0010	0.0315	0.0016	0.0166	0.0183	0.0186	0.61
7	Hogs, pigs and swine	2.8467	2.8467	0.1600	0.8057	0.9657	1.0115	6.00
12	Feed grains	0.0000	0.1043	0.0024	0.0254	0.0279	0.0306	0.79
13	Hay and pasture	0.0000	0.0318	0.0007	0.0072	0.0079	0.0088	0.23
21	Oil bearing crops	0.0000	0.0155	0.0005	0.0057	0.0063	0.0067	0.15
26	Agriculture, forest.	0.0000	0.0175	0.0058	0.0016	0.0074	0.0079	0.54
74	Maintenance/repair	0.0000	0.0140	0.0041	0.0027	0.0069	0.0071	0.16
332	Farm equipment	0.0000	0.0159	0.0040	0.0030	0.0071	0.0072	0.16
446	Railroads and rel.	0.0004	0.0136	0.0069	0.0009	0.0078	0.0080	0.13
448	Motor freight trans.	0.0453	0.0883	0.0319	0.0261	0.0580	0.0612	1.18
450	Air transportation	0.0101	0.0146	0.0049	0.0017	0.0066	0.0072	0.10
454	Communications exc.	0.0097	0.0256	0.0085	0.0078	0.0163	0.0191	0.19
456	Electric services	0.0119	0.0544	0.0088	0.0192	0.0281	0.0320	0.19
461	Other wholesale	0.0243	0.1419	0.0665	0.0192	0.0857	0.1029	1.84
463	Other retail trade	0.0813	0.0962	0.0407	0.0124	0.0531	0.0598	2.13
464	Banking	0.0054	0.0596	0.0222	0.0085	0.0307	0.0321	0.77
465	Credit agencies	0.0016	0.0156	0.0141	-0.0002	0.0139	0.0147	0.48
467	Insurance carriers	0.0222	0.0474	0.0167	-0.0016	0.0151	0.0177	0.48
468	Insurance agents	0.0007	0.0112	0.0041	0.0026	0.0067	0.0071	0.24
470	Real estate	0.0396	0.1698	0.0074	0.1104	0.1178	0.1450	0.99
471	Hotels and lodging	0.0051	0.0101	0.0039	0.0015	0.0055	0.0061	0.27
472	Laundry, cleaning	0.0027	0.0034	0.0011	0.0011	0.0022	0.0023	0.11
474	Portrait and photo.	0.0026	0.0026	0.0007	0.0009	0.0017	0.0017	0.12
477	Beauty and barber	0.0022	0.0022	0.0009	0.0010	0.0018	0.0019	0.12
478	Miscel. repair shop	0.0000	0.0089	0.0026	0.0028	0.0054	0.0057	0.23
479	Services buildings	0.0012	0.0026	0.0013	0.0006	0.0018	0.0019	0.17
480	Pers. supply serv.	0.0006	0.0035	0.0022	0.0007	0.0029	0.0029	0.20
481	Computer/data proc.	0.0000	0.0072	0.0033	0.0018	0.0050	0.0051	0.10
482	Management/consult.	0.0000	0.0058	0.0027	0.0011	0.0038	0.0039	0.10
486	Other business serv.	0.0010	0.0061	0.0027	0.0012	0.0039	0.0040	0.14
488	Legal services	0.0037	0.0155	0.0066	0.0052	0.0118	0.0118	0.20
490	Accounting, audit.	0.0011	0.0100	0.0041	0.0022	0.0063	0.0063	0.26
491	Eat/drinking place	0.0335	0.0439	0.0110	0.0038	0.0147	0.0217	1.07
493	Auto repair	0.0078	0.0236	0.0050	0.0057	0.0107	0.0113	0.27
503	Doctors and dentists	0.0225	0.0230	0.0125	0.0034	0.0161	0.0162	0.30
504	Hospitals	0.0286	0.0286	0.0141	0.0016	0.0157	0.0157	0.56
505	Nursing and protect.	0.0063	0.0063	0.0035	0.0005	0.0040	0.0040	0.22
506	Other medical/health	0.0077	0.0309	0.0155	0.0045	0.0198	0.0200	0.43
508	Colleges/universit.	0.0046	0.0049	0.0027	0.0002	0.0029	0.0029	0.18
512	Religious organiz.	0.0038	0.0038	0.0022	0.0000	0.0022	0.0022	0.13
515	Social services	0.0028	0.0028	0.0018	0.0000	0.0018	0.0018	0.10
516	US postal service	0.0015	0.0090	0.0067	-0.0012	0.0055	0.0055	0.16
527	Household industry	0.0022	0.0022	0.0013	0.0009	0.0022	0.0022	0.17
	Other total	0.1447	0.3646	0.0590	0.0634	0.1226	0.1407	2.62
	Total	3.3864	4.4369	0.5792	1.1778	1.7569	1.9030	25.59

Change in population ${ }^{*}=52$

* in numbers

Figure 4.4 shows the total effects (FD, TIO, ECI, PI, TI and TVA) on the economy of Minnesota state. Figure 4.5 presents the increase in Total Value Added in the industries which are mostly affected. Although for some industries the bars in the figure are
are very small, the involved amount of dollars is worth mentioning.

The change in employment and population is illustrated in the graph of Figure 4.6. The total effects are divided in changes due to direct, indirect and induced effects.

Figure 4.4 Total effects Minnesota

Figure 4.5 Total effects Total Value Added of the most affected industriea Minnesota state

Figure 4.6 Total effects Employment and Population in Minnesota state divided in direct, indirect and induced effects

5 CONCLUSIONS AND RECOMMENDATIONS

The input-output model IMPLAN was used for evaluating output, income and employment repercussions in the short run, on county and on state level, caused by the expansion of the hog industry in Redwood county by building the proposed 1200 sow unit.

The conclusions drawn from this economic impact study are bound by the assumptions of IMPLAN. If these assumptions do not apply, the conclusions may be invalid. In this research the symplifying assumptions (linear production functions, unlimited resources and no time dimension) of IMPLAN could be justified. The results turned out to be reasonable. For instance, the increase in employment in various industries, as described in Chapter four, can be legitimized. For example, one additional employee in the eat and drinking sector in Redwood can be easily accomplished, just like the additional employees in other industries.

In general, according to Maki (1992), the validation of IMPLAN is quite reasonable. This statement is based on various facts. The model predicted very well during the years it has been used in many cases. Frequently validation checks at local information sources take place, to confirm and update the data, used by IMPLAN. A historical evaluation is also part of the validation of the model (Maki, 1992).

Table 5.1 presents the total direct, total indirect, total induced and the sum of these effects of building the 1200 sow unit for Redwood county.

Table 5.1 All total effects 1200 sow unit Redwood county ($\$ M M$ 1991)

Effects	FD 1	TIO 2	ECI 3	PI 4	TI 5	TVA 6	$\mathrm{E}^{\text {™ }}$	$\mathrm{P}^{\text {8 }^{*}}$
Total direct	2.8906	2.8966	0.1749	0.8197	0.9946	1.0419	6.59	17
Total indirect	0.0000	0.7680	0.1501	0.1856	0.3357	0.3658	6.66	17
Total induced	0.2026	0.2376	0.0823	0.0486	0.1309	0.1473	4.39	11
Total	3.0932	3.8969	0.4072	1.0539	1.4611	1.5550	17.63	45

1 Final Demand
${ }^{2}$ Total Industry Output
${ }^{3}$ Employee Compensation Income
4 Property Income
s Total Income
6 Total Value Added
7 Employment
${ }^{8}$ Population
*in numbers

Table 5.2 sums all total effects which appear in the state Minnesota as a result of building the farrow to finish unit in

Redwood county.

Table 5.2 All total effects 1200 sow unit Minnesota ($\$ \mathrm{MM}$ 1991)

Effects	FD	TIO	ECI	PI	TI	TVA	E^{*}	P^{*}
Total direct	2.8906	2.8966	0.1758	0.8187	0.9946	1.0419	6.59	13
Total indirect	0.0000	0.8622	0.1961	0.2102	0.4062	0.4553	9.23	19
Total induced	0.4958	0.6841	0.2072	0.1489	0.3562	0.4060	9.77	20
Total	3.3864	4.4369	0.5792	1.1778	1.7569	1.9030	25.69	52

* in numbers

Notice that the direct ECI and PI figures from Redwood county and Minnesota differ slightly. This is due to the fact that the multipliers are estimated respectively on county averages and state averages. This is also the reason why the change in population (P) is not the same for the direct effects.

Also, one should be reminded that especially on state level the Type III multipliers involve a slight underestimation. This underestimation is less on county level (Maki, 1992).

Figure 5.1 and Figure 5.2 shows which part of the increase of the economic figures in Minnesota state is caused by the changes in the economic figures in Redwood county.

Figure 5.1 Total effects Redwood county and Minnesota state

Figure 5.2 Total effects Employment and Population Redwood county and Minnesota state

Recalling the assumptions of IMPLAN and the justifications, the following conclusions can be derived: Building the 1200 sow unit in Redwood county will cause an increase in all the
mentioned economic figures (FD, TIO, ECI, PI, TI, TVA, E and P), for the economy of Redwood county and the economy of the state Minnesota.

Because this results are only a part of the issues involved with the building of this unit, this conclusions can only be used as additional information to the county commissioners and environmental officers, to make their decision of allowing the building of this 1200 sow unit.

To make a complete analysis (cost-benefit), also issues as ground-water and/or surface-water contamination, declining prices of surrounding real estate, nuisance from odors etc., should be taken into account. Due to time restrictions and high costs, issues like these could not be estimated in this project.

Alward, G., et al., The IMPLAN companion guide, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul, 1992.
Arsdall, R.N. and K.E. Nelson, Economies of size in hog production, ERS, Washington D.C., 1985.
Futrell, G.A., The U.S. Pork Industry: How it compares with Canada and Denmark, Iowa State University, Iowa, 1990.
Lazarus, W.F., Midwest pork producers' business characteristics, performance and technology, Department of agricultural and Applied Economics, University of Minnesota, St. Paul, 1990.
Lazarus, W.F., Personal Communication, March 1992.
Lazarus, W.F. and B. Koehler, Large swine units - What are the issues?, in: Minnesota Pork Journal, February 1992.
Maki, W., Personal Communication, April 1992.
Miernyk, W.H., The elements of input-output analysis, Random House Inc., New York, 1965.
Olson, K.D. and L.L. Westman, 1991 Annual Report of the Southeastern Minnesota Farm Business Management Association, Department of Agricultural and Applied Economics, University of Minnesota, St. Paul, 1992.
Richardson, H.W., Input-output and regional economics, Halsted Press, New York, 1972.
Toyomane, N., Multiregional Input-Output Models in Long-Run Simulation, Kluwer Academic Publishers, Dordrecht, 1988.
USDA, NASS Hogs and Pigs, United States Department of Agriculture National Agricultural Statistics Service, Washington D.C., various issues.
USDA, NASS Minnesota Agriculture Statistics 1991, United States Department of Agriculture National Agricultural Statistics Service, St. Paul, 1991.
USDC, 1982 Census of Agriculture: Minnesota, United States Department of Commerce: Bureau of the Census, Washington D.C., 1984.

USDC, 1987 Census of Agriculture: Minnesota, United States Department of Commerce: Bureau of the Census, Washington D.C., 1989.

Yan, C., Introduction to input-output economics, Holt, Reinehart and Winston Inc., New York, Principles of Economics Series, 1969.

Appendiz λ The Redwood county economy before construction of a large hog operation, 1985

Indus try	Base Year Final Demand (MWS)	$\begin{gathered} \text { Base Year } \\ \text { T10 } \\ \text { (MM\$) } \end{gathered}$	Employee Comp Income (MMS)	Property Income (MM\$)	Total PoW Income (MM\$)	Total Value Added (MM\$)	Employment Number of Jobs)
1 DAIRY FARM PRODUCTS	9.8200	10.0491	. 4864	5.3178	5.8042	5.9170	
2 POULTRY AND EGGS	9.3629	9.8421	. 2066	2.2142	2.4208	2.4730	939.
3 RANCH FED CATTLE	5.9748	8.9853	. 1398	1.5014	1.6412	1.7511	57.
4 RANGE FED CATTLE	3.0052	. 4710	. 0057	. 0762	. 0819	. 0876	4.
5 CATTLE FEEDLOTS	13.5256	14.0882	. 2169	2.2904	2.5072	2.6780	102.
6 SHEEP, LAMBS AND GOATS	. 30.4974	. 5944	. 0062	. 0967	. 1028	. 1098	5.
7 HOGS, PIGS AND SWINE	30.4693	36.1868	. 5739	6.1091	6.6830	7.1381	213.
8 OTHER MEAT ANIMAL PROOUCT	. 2969	. 36.4544	. 0063	. 0752	. 6.0816	.0871 .081	213.
9 MISCELLANEOUS LIVESTOCK	. 2679	. 6707	. 0158	. 1704	. 1862	. 1905	7.
11 FOOD GRAINS	9.8272	10.1666	. 3084	3.3992	3.7076	3.8703	143.
12 FEED GRAINS	13.7310	15.8454	. 3433	3.8872	4.2305	4.6346	146.
13 HAY AND PASTURE	. 7342	1.0936	. 0213	. 2502	. 2715	. 2997	10.
18 VEGETABLES	3.8923	4.0425	. 1791	1.9797	2.1588	2.1962	136.
19 SUGAR CROPS	. 8927	. 9298	. 0418	. 4643	. 5061	2.5163	33.
20 MISCELLANEOUS CROPS	17.4264	. .4592	. 0137	. 1524	. 1661	. 1682	33. 9.
21 OIL BEARING CROPS	17.8310	18.8420	. 6174	7.0461	7.6635	8.1764	218.
23 GREENHOUSE AND NURSERY PR	. 1759	. 3803	. 0111	. 1319	7.653 .1430	8.1484 .1480	218.
24 FORESTRY PRODUCTS	. 3724	. 3724	. 0090	. 1220	. 1310	. 14886	7.
26 AGRICULTURAL, FORESTRY, F	. 0163	1.4987	. 4870	. 1471	. 6341	. 6760	56.
66 NEW RESIDENTIAL STRUCTURE	6.1710	6.1710	1.4150	. 8964	2.3114	2.3619	70.
67 NEW INDUSTRIAL AND COMMER	10.3608	10.3608	2.8900	1.7449	4.6349	2.3619 4.7051	146.
68 NEW UTILITY STRUCTURES	1.7694	1.7694	. 5310	. 3381	. 8691	. 8832	27.
69 NEW HIGHWAYS AND STREETS 70 NEW FARM STRUCTURES	1.9303 .6067	1.9303 .6067	. 4810	. 2679	. 7489	. 7684	22.
72 NEW GOVERNMENT FACILITIES	.6067 .8124	.6067 .8124	.1730 .2520	. 0970	.2700 .3800	. 2723	8.
73 MAINTENANCE AND REPAIR, R	1.1381	1.4807	. 3100	. 2191	. 5291	. 3898	12.
74 MAINTENANCE AND REPAIR OT	2.3463	3.8939	1.0740	. 8392	1.9132	1.98006	15.
75 MAINTENANCE AND REPAIR OI	. 0000	. 0001	. 0330	. .0330	. 0000	.9000 .0000	55.
103 PREPARED FEEDS, N.E.C	4.8224	4.9022	. 3450	. 3295	. 6745	. 6914	13.
164 MILLWORK 168 PREFABRICATED WOOD BUILDI	. 6701	1.0805	. 2900	. 0736	. 3636	.3731	10.
172 WOOO PROOUCTS, N.E.C	. 8391	. 8409	. 2110	. 0521	. 2631	. 2667	10.
200 NEWSPAPERS	. 4072	9.2091	. 4180	. 0676	. 2466	. 2521	19.
205 COMMERCIAL PRINTING	. 1555	. 2869	. 0810	. 0589	. 1399	. 1435	4.
267 CONCRETE BLOCK AND BRICK	.3188	. 3285	. 0070	. 1191	. 1261	. 1424	4.
268 CONCRETE PRODUCTS, N.E.C	. 2572	. 2580	. 1830	. .0673	. 1157	. 1424	4.
269 READY-MIXED CONCRETE	. 4220	. 4296	. 0070	. 1442	. 1512	. 1643	4.
279 NONMETALLIC MINERAL PROOU	. 0486	. 0496	. 0170	-. 0017	. 0153	. 0170	1.
332 FARM MACHINERY AND EQUIPM	3.7392	4.7500	1.2250	. 8853	2.1103	2.1429	58.
361 MACHINERY, EXCEPT ELECTRI	3.3583	3.4009	1.6770	. 2140	1.8910	2.1.9428	58.
362 ELECTRONIC COMPUTING EQUI	62.1398	80.1612	21.4140	1.6524	23.0664	23.6440	618.
412 TRAVEL TRAILERS AND CAMPE	. 8767	. 8848	. 1850	. 0467	. 2317	23. 2349	10.
413 MOBILE HOMES	2.6527	2.6529	. 6600	. 3630	1.0230	1.0341	48.
419 SURGICAL AND MEDICAL INST	6.3695	6.6482	2.2860	1.4193	3.7053	3.7583	80.
447 LOCAL, INTERURBAN PASSENG	1.0914	1.4377	. 5220	. 3342	. 8562	. 8695	45.
448 MOTOR FREIGHT TRANSPORT A	4.4560	8.2496	2.7860	2.6274	5.4134	5.7232	134.
454 COMMUNICATIONS, EXCEPT RA	2. 1238	3.7811	1.1750	1.2313	2.4063	2.8275	35°.
455 RADIO AND TV BROADCASTING	. 3209	2.8381	. 8220	. 7231	1.5451	1.6081	31.
456 ELECTRIC SERVICES	. 9.9111	2.0903	. 3310	. 7492	1.0802	1.2313	9.
457 GAS PROOUCTION AND DISTRI	$\begin{array}{r}1.9307 \\ \hline 1567\end{array}$	3.5622	. 2870	. 5827	. 8697	1.0228	10.
461 OTHER WHOLESALE TRADE	14.9685	28.2863	. 12.1630	.1658 4.6625	. 3288	. 3556	4.
462 RECREATIONAL RELATED RETA	14.9685 .1583	20.2063	12.4260 .0260	4.6625 .0620	17.0885 .0880	20.4956	446.
463 OTHER RETAIL TRADE	23.2409	25.6995	10.2230	3.9564	14.1794	15.0906	692
464 BANKING	8.6625	12.7996	4.2960	2.2763	6.5723	15.9606 6.8937	692.
465 CREDIT AGENCIES	1.4025	2.7809	2.7220	. 23367	2.4853	0.8937 2.6382	104.
466 SECUR ITY AND COMMNCDITY BR	. 0926	. 0937	. 0230	. 0311	. 0541	. 0558	1.
467 INSURANCE CARRIERS	. 0619	. 0815	. 0210	. 0050	. 0260	. 0305	1.
468 INSURANCE AGENTS AND BROK	1.1391	1.1854	. 4150	. 2972	. 7122	. 7453	31.
469 ONNER-OCCUPIED DWELLINGS	3.5996	3.5996	. 0000	2.2530	2.2530	2.6962	0.
470 REAL ESTATE 471 HOTELS AND LOOGING PLACES	2.0987 .1305	4.7501 .3065	. 2090	3.0147	3.2237	4.0549	37.
472 LAUNDRY, CLEANING AND SHO	. 1305	. 3065	. 1080	. 0567	. 1647	. 1849	10.
473 FUNERAL SERVICE AND CREMA	1.1447	1.1741	. 1600	. 3765	. 5365	. 4083	25.
474 PORTRAIT AND PHOTOGRAPHIC	. 4336	. 4376	. 1610	. 1210	. 2820	. 2887	25.
476 WATCH, CLOCK, JEWELRY AND	. 1937	. 1937	. 0670	. 0655	. 1325	. 1342	9.
477 BEAUTY AND GAREER SHOPS	. 7813	. 7813	. 3160	. 3539	. 6699	. .6754	51.
478 MISCELLANEOUS REPAIR SHOP	. 0124	. 3801	. 0990	. 1319	. 2309	. 2461	12.
479 SERVICES TO BUILDINGS	. 2265	. 3703	. 2470	. 0204	. 2674	. 2833	30.
482 MANAGEMENT AND CONSULTING	. 0247	. 1458	. 0470	. 0024	. 0494	. 0496	4.
484 EQUIPMENT REPAIR AND LEAS	. 0210	. 1776	. 0820	. 0241	. 0949	.0953 .1210	3.
485 PHOTOFINISHING, COMMERCIA	. 0635	. 1273	. 0850	. . 0029	. .0821	. 0881	3.
486 OTHER BUSINESS SERVICES	. .0624	. 2440	. 1230	. 0337	. 1567	. 1606	7.
488 LEGAL SERVICES	5.0973	8.0634	3.2520	2.9134	6.1654	6.1759	128.
489 ENGINEERING, ARCHITECTURA	. 0239	. 41722	. 2040	. 0495	. 2.2535	. 2614	9.
491 EATING AND DRINKING PLACE	.3945 8.9076	1.7543 11.5265	.7340 2.6780	$\begin{array}{r}.3717 \\ \hline .1870\end{array}$	1.1057	1.1101 5.6704	56.
493 AUTOMOBILE REPAIR AND SER	2.4572	3.9338	2.6700 .7120	1.1879	3.8659 1.7876	5.6704 1.8790	343.
495 MOTION PICTURES	. 1098	. 2989	. 0730	. 0242	. 0972	1.8790	7.
498 BOWLING ALLEYS AND POOL H	. 3343	. 3343	. 1380	. 0082	. 1462	. 1558	19.
501 MEMEERSHIP SPORTS AND REC	. 4568	. 4883	. 1760	. .0046	. 1714	. 1760	17.
503 DOCTORS AND DENTISTS	4.3577	4.3590	1.9690	1.0721	3.0411	3.0632	70.

505 NURSING AND PROTECTIVE CA	7.4888	7.4888	5.0590	-. 2495	4.8095	4.8636	325.
506 OTHER MEDICAL AND HEALTH	. 7625	1.1163	. 8560	. .1386	. 71714	4.8036	325.
507 ELEMENTARY ANO SECONDARY	. 9356	. 9356	. 3890	. 0676	. 4566	. 4566	39°
511 LABOR AND CIVIC ORGANI2AT	1.0071	1.0071	. 7040	-. 2233	. 4807	.4807	38.
512 RELIGIOUS ORGANIZATIONS	1.1300	1.1300	. 4720	. 1828	. 6548	. 6578	48.
513 OTHER NONPROFIT ORGANIZAT	. 0426	. 0500	. 0100	. 0163	. 0263	. 0263	4.
514 RESIDENTIAL CARE	6.2544	6.2544	3.2930	. 3649	3.6579	3.6579	214.
515 SOCIAL SERVICES, N.E.C.	5.3008	5.3050	3.2720	. 2109	3.4829	3.4843	214.
516 U.S. POSTAL SERVICE	. 3312	1.3731	. 9520	-. 1086	. 8434	. 8434	30.
525 GOVERNMENT INDUSTRY	45.2098	45.2098	25.1720	20.0378	45.2098	45.2098	985.
527 HOUSEHOLD INDUSTRY	. 6508	. 6508	. 3640	. 2868	. 6508	45.6508	68.
Population $=$ Total 18900.	392.0287	479.0702	128.7145	96.7779	225.4925	238.9596	7468.

Appendix B The Minnesota state economy before construction of a

 large hog operation, 1985| Industry | Base Year Final Demand (MHS) | $\begin{gathered} \text { Base Year } \\ \text { T10 } \\ \text { (MMS) } \end{gathered}$ | Employee Comp Income (MMS) | Property Income (MM\$) | Total Pow Income (MMS) | Total Value Added (MMS) | Empl oyment Number of Jobs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 DAIRY FARM PRODUCTS | 625.9182 | 1575.2720 | 81.3866 | | | | |
| 2 POULTRY AND EGGS | 148.4323 | 781.7648 | 81.3866 17.4197 | $\begin{aligned} & 828.4668 \\ & 174.8662 \end{aligned}$ | $\begin{aligned} & 909.8534 \\ & 192.2858 \end{aligned}$ | 927.5296 | 37389. |
| 3 RANCH FED CATTLE | 130.6723 | 644.3031 | 10.7677 | 106.9172 | | 196.4315 125.5662 | 7156. |
| 4 RANGE FED CATTLE | 140.6345 | 52.8470 | . 0.8372 | 8.3498 | 117.6849 9.1869 | 125.5662 | 4062. |
| 5 CATTLE FEEDLOTS | 140.6777 | 642.5985 | 10.4480 | 103.9124 | 114.3604 | 9.8316 122.1486 | 425. |
| 6 SHEEP, LAMBS AND GOATS 7 HOGS, PIGS ANO SWINE | 762.4936 | 28.8904 1299.4370 | .4567 29.9247 | 4.5419 218.0569 | 4.9986 | 12.3380 5.3390 | 4674. |
| 8 OTHER MEAT ANIMAL PRODUCT | 762.4937 4.2645 | 1299.4370 63.4770 | 21.9247 1.0410 | 218.0561 | 239.9808 | 256.3240 | 7661. |
| 9 MISCELLANEOUS LIVESTOCK | 16.4703 | 39.9380 | 1.0048 | 10.3521 | 11.3941 | 12.1701 | 442. |
| 11 FOOD GRAINS | 361.7258 | 398.1599 | 12.9010 | 132.3025 | 11.0872 145.2035 | 11.3423 151.5761 | 404. |
| 12 FEED GRAINS | 1049.2510 | 1328.6340 | 30.7076 | 324.0213 | 1454.7289 | 151.5761 388.6120 | 5599. |
| 13 HAY AND PASTURE 16 FRUITS | 58.7769 | 106.3292 | 2.2813 | 24.1206 | 354.7289 26.4018 | 388.6120 29.1439 | 12231. |
| 18 VEGETABLES | 9.8563 120.2700 | 12.1899 162.6208 | .7680 76729 | 7.5842 | 8.3522 | 8.4308 | 702. |
| 19 SUGAR CROPS | 82.7311 | 153.5798 | 7.6729 7.4054 | 79.1724 76.1861 | 86.8454 | 88.3478 | 5455. |
| 20 MISCELLANEOUS CROPS | 9.6114 | 13.2596 | 7.4054 .7378 | 76.1861 7.6763 | 83.5915 8.4141 | 85.2796 | 5496. |
| 21 OIL BEARING CROPS | 317.2269 | 550.8270 | 19.2164 | 204.8170 | 224.0314 | 8.5199 239.0273 | 462. |
| 22 FOREST PRODUCTS | 3.6141 24.6753 | 4.6667 | 19.2184 .1897 | 20.8170 1.9699 | 224.0334 2.1596 | 239.0273 2.2009 | 6385. |
| 23 GREENHOUSE AND NURSERY PR | 24.6753 | 45.5359 | 1.5003 | 15.6176 | 17.1179 | 17.7151 | 875. |
| 24 FORESTRY PROOUCTS | 52.6259 | 52.8222 | 1.4433 | 17.1413 | 18.5846 | 21.0813 | 844. |
| 26 AGRICULTURAL, FORESTRY, F | 3.1035 2.6786 | 6.4048 88.1242 | . 3962 | . 7781 | 1.1743 | 1.2777 | 530. |
| 27 LANDSCAPE AND HORTICULTUR | 150.9752 | 238.3922 | 116. 2347 | 7.9701 32.0005 | 37.2854 | 39.7475 | 3293. |
| 28 IRON ORES | 1625.6390 | 1626.6090 | 116.2347 237.2568 | 32.0005 355.8185 | 148.2352 | 156.9712 | 8827. |
| 32 GOLD ORES | 11.7030 | 13.1038 | 237.2568 4.9498 | 355.8185 -2.2423 | 593.0753 2.7075 | 707.8829 | 7453. |
| 35 METAL MINING SERVICES | . 0862 | 13.5826 .587 | 4.9498 .3462 | -2.2423 -.1340 | 2.7075 .2122 | 4.3517 | 139. |
| 38 METAL ORES, NOT ELSWHERE | . 5484 | . 6788 | . 3142 | .1340 -1374 | . 2122 | . 2934 | 7. |
| 40 BITUMINOUS AND LIGNITE MI | 2.8413 | 5.7286 | .31868 2.1888 | . . .5635 | .1768 2.7503 | . 27540 | 5. |
| 41 NATURAL GAS | 1.3218 | 15.7983 | 2.1868 1.9546 | 3.56351 | 2.7503 5.6476 | 2.7503 | 44. |
| 42 CRUDE PETROLEUM | 1.2184 | 15.7983 36.1425 | 1.9546 4.3640 | 3.6931 8.2455 | 5.6476 12.6094 | 6.9453 | 310. |
| 44 DIMENSION STONE | 3.1348 | 3.2702 | 4.3040 | 8.2455 .7631 | 12.6094 | 15.5068 | 726. |
| 45 CRUSHED AND EROKEN LIMEST | 34.3001 | 35.5618 | 13.5084 | 7.8831 | 21.6780 | 1.7694 22.4904 | 58. |
| 46 CRUSHED AND BROKEN GRANIT | 9.2833 | 9.6295 | 13.5084 2.9676 | 7.8850 2.4603 | 21.3934 5.4279 | 22.4904 | 367. |
| 47 CRUSHED AND BROKEN STONE, | 7.6112 | 8.4767 | 2.9676 3.0922 | 1.9261 | 5.4279 5.0183 | 5.7228 5.2769 | 90. |
| 48 CONSTRUCTION SAND AND GRA | 62.3807 | 65.0909 | 25.5671 | 11.8321 | 37.3992 | 5.2769 40.2889 | 86. |
| 50 BENTONITE SAND | 26.6103 1.0359 | 27.7930 | 9.8934 | 4.8650 | 14.7584 | 16.0110 | 253. |
| 58 MISC. NONMETALLIC MINERAL | 5.6481 | 1.2428 5.8242 | . 3419 | . 2276 | . 5695 | . 5966 | 13. |
| 66 NEW RESIDENTIAL STRUCTURE | 1701.0510 | 1701.0510 | 414.1250 | 222.9995 | 3.1245 | 3.3442 | 82. |
| 67 NEW INDUSTRIAL AND COMMER | 2840.2530 | 2840.2530 | 414.9433 846.5253 | 222.1999 | 637.1432 | 651.0753 | 19296. |
| 68 NEW UTILITY STRUCTURES | 478.6216 | 478.6216 | 846.5253 156.0813 | 424.0620 | 1270.5870 | 1289.8200 | 40024. |
| 69 NEW HIGHWAYS AND STREETS | 553.6569 | 453.6569 | 156.0813 140.9464 | 79.0185 | 235.0998 | 238.9011 | 7304. |
| 70 NEW FARM STRUCTURES | 172.2367 | 172.2367 | 140.9464 50.8133 | 73.8636 25.8385 | 214.8100 | 220.4011 | 6310. |
| 72 NEW GOVERNMENT FACILITIES | 236.5469 | 236.5469 | 50.8133 73.9850 | 25.8385 36.6630 | 76.6518 | 77.2884 | 2271. |
| 73 MAINTENANCE AND REPAIR, R | 236.5419 .2119 | 421.5585 | 73.9850 90.9478 | 36.6630 59.6955 | 110.6481 | 113.5046 | 3494. |
| 74 MAINTENANCE AND REPAIR OT | 468.9053 | 1058.5140 | 314.8436 | 59.6955 205.2487 | 150.6432 520.0923 | 157.6419 532.9523 | 4271. |
| 75 MAINTENANCE AND REPAIR OI | 24.7875 | 36.6853 | 314.8436 9.5843 | 205.2487 7.3994 | 520.0923 16.9838 | 532.9523 | 14951. |
| 77 AMMUNITION, EXCEPT FOR SM | 507.1926 | 540.0734 | 246.58438 | 7.3994 12.1732 | $\begin{array}{r} 16.9838 \\ 258.2670 \end{array}$ | 16.9838 | 477. |
| 79 SMALL ARMS | 1.1574 | 1.1806 | 246.0938 .3952 | 12.1732 .0626 | 258.2670 .4578 | 260.9686 5348 | 6135. |
| 80 SMALL ARMS AMMUNITION | 121.2310 | 128.6599 | 50.2391 | 1.44421 | .4578 51.6812 | .5348 61.0695 | 22. |
| 81 OTHER ORDNANCE AND ACCESS | 267.2378 | 275.1476 | 151.6598 | 1.4421 15.0172 | 51.6812 166.6770 | 61.9695 | 1225. |
| 82 MEAT PACKING PLANTS | 1273.9250 | 1577.9440 | 151.6598 167.9399 | 15.0172 | 166.6770 | 167.1509 | 3448. |
| 83 SAUSAGES AND OTHER PREPAR | 132.3192 | 151.9848 | 22.9394 | 2.0906 | 170.0305 | 175.3015 | 6295. |
| 84 POULTRY DRESSING PLANTS | 558.5590 | 661.6819 | 22.6048 84.1000 | $\begin{array}{r} 8.5361 \\ 21.9335 \end{array}$ | 31.1410 | 31.8256 | 851. |
| 85 POULTRY AND EGG PROCESSIN | 277.6305 | 681.6819 288.855 | 84.1000 34.0893 | 21.9335 7.6278 | 106.0334 | 108.6595 | 4190. |
| 86 CREAMERY BUTTER | 172.1673 | 189.7785 | 8.8299 | . .18278 | 41.7171 8.6456 | 43.1193 9.1895 | 2028. |
| 87 CHEESE, NATURAL AND PROCE | 964.6667 | 1162.9110 | 86.9341 | 35.2011 | 122.6456 | 9.1895 | 355. |
| 88 CONDENSED AND EVAPORATED | 412.2991 | 494.8678 | 49.2863 | 35.2011 64.9360 | 122.1351 | 125.5787 | 3104. |
| 89 ICE CREAM AND FROZEN DESS | 45.1385 | 58.2936 | 49.2863 9.8219 | 64.9360 | 114.2223 | 115.9415 | 1255. |
| 90 FLUID MILK | 317.3339 | 470.4185 | 9.81 .1733 | 4.0408 58.7168 | 13.8626 119.8901 | 14.2716 | 402. |
| 91 CANNED AND CURED SEA FOOD | 10.5922 | 10.7726 | 1.8310 | $\begin{array}{r} \\ \hline 1.2824\end{array}$ | 119.8901 3.1135 | 121.8854 3.1668 | 1928. |
| 93 CANNED FRUITS AND VEGETAB | 240.1248 | 244.3053 | 44.1956 | 23.8322 | 3.1135 68.0278 | 3.1668 69.6637 | 52. |
| 94 DEHYDRATED FOOO PROOUCTS | 9.8700 | 9.9607 | 1.6404 | 1.1360 | 2.7764 | 69.6637 2.8458 | 1197. |
| 95 PICKLES, SAUCES, AND SALA | 40.5175 | 43.0013 | 5.0265 | 4.2890 | 9.3155 | 9.5643 | 175. |
| 96 FRESH OR FROZEN PACKAGED | 36.3039 | 37.3903 | 5.6975 | 2.0507 | 7.7483 | 7.8819 | 175. |
| 97 FROZEN FRUITS, JUICES AND | 186.2146 | 188.3946 | 32.4746 | 8.5920 | 41.0666 | 42.4314 | 133. |
| 98 FROZEN SPECIALTIES | 279.1909 | 284.6510 | 49.1422 | 27.4051 | 76.5474 | 78.48336 | 2053. |
| 99 FLOUR AND OTHER GRAIN MIL | 363.9296 | 372.3062 | 38.6545 | 47.6270 | 76.5414 | 78.4636 88.4613 | 2053. |
| 101 CEREAL PREPARATIONS | 151.2828 6.6713 | 152.7361 | 25.4818 | 40.2453 | 65.7271 | 66.46330 | 873. |
| 102 DOG, CAT, AND OTHER PET F | 81.0987 | 82.2273 | .9309 9.9060 | 18.6946 | 1.6255 | 1.6631 | 34. |
| 103 PREPARED FEEDS, N.E.C | 467.6333 | 525.2864 | 38.90145 | 18.7096 | 28.6156 | 29.1663 | 420. |
| 04 RICE MILLING | 15.4113 | 15.6934 | 18.0445 1.6436 | 34.2503 | 72.2708 | 74.0889 | 1393. |
| 05 WET CORN MILLING | . 6896 | . 98902 | 1.0436 | 1.4922 | 3.1358 | 3.2641 | 87. |
| 06 BREAD, CAKE, AND RELATED | 171.7904 | 258.1118 | 81.6042 | 30.5713 | 112.1755 | 113.2113 | 3073. |
| 07 COOKIES AND CRACKERS | 13.1393 | 14.2200 | 3.6514 | 2.6050 | 112.1755 6.2563 | 113.5484 6.3515 | 3073. |
| 08 SUGAR | 294.4056 | 335.3437 | 42.7601 | 17.4198 | 6.2563 60.1799 | 6.3515 62.8842 | 137. |
| 09 CONFECTIONERY PRODUCTS | 221.1738 | 240.2645 | 39.1362 | 25.8409 | 60.1799 64.9771 | 62.8842 | 1353. |
| 10 CHOCOLATE AND COCOA PROOU | 2.0608 | 2.2107 | 39. 2471 | 25.8409 | 64.9771 | 66.8161 | 1364. |
| 11 CHEWING GUM | 1.4429 | 1.4774 | . 2706 | . 3837 | . 6344 | $\begin{array}{r} .6442 \\ \hline 6337 \end{array}$ | 8. |
| 12 MALT LIQUORS | 217.5540 | 225.5888 | 29.9630 | 15.0906 | 45.0535 | 84.6637 | 723. |
| 13 MALT | 181.3360 | 183.7088 | 15.7053 | 15.0906 | 45.0535 29.2674 | 84.4128 | 723. |
| 14 WINES, BRANDY, AND BRANDY | 3.3222 | 3.7590 | 15 .4016 | 13.5621 .3930 | $\begin{array}{r} 29.2674 \\ .7945 \end{array}$ | $\begin{array}{r} 31.3630 \\ 1.5394 \end{array}$ | 403. 10. |

115 DISTILLED LIQUOR, EXCEPT 116 BOTTLED AND CANNED SOFT D 119 SOYBEAN OIL MILLS
120 VEgETABLE OIL MILLS, N.E. 121 ANIMAL AND MAR
123 SHORTENING AND COOKING OI 124 MANUFACTURED ICE 125 MACARONI AND SPAGHETTI
126 FOOD PREPARATIONS, N.E.C 131 BROADWOVEN FABRIC'MILLS A 132 NARROW FABRIC MILLS
133 YARN MILLS AND FINISHING 135 FLOOR COVERINGS
138 PADDING AND UPHOLSTERY FI
139 PROCESSED TEXTILE WASTE 140 COATED FABRICS, NOT RUBBE 142 CORDAGE AND TWINE 147 KNIT OUTERWEAR MILLS 149 KNITTING MILLS, N.E.C 150 KNIT FABRIC MILLS
151 APPAREL MADE FROM PURCHAS
152 CURTAINS AND DRAPERIES
153 HOUSEFURNISHINGS, N.E.C 154 TEXTILE BAGS
155 CANVAS PRODUCTS
156 PLEATING AND STITCH!NG
157 AUTOMOTIVE AND APPAREL TR 158 SCHIFFI MACHINE EMBROIDER 159 FABRICATED TEXTILE PRODUC 160 LOGGING CAMPS AND LOGGING 161 SAWMILLS AND PLANING MILL 162 HAROWOOD DIMENSION AND FL 163 SPECIAL PRODUCT SAWMILLS, 164 MILLWORK
165 WOOD KITCHEN CABINETS 166 VENEER AND PLYWOOD 167 STRUCTURAL WOOD MEMBERS,
168 PREFABRICATED WOOD BUILD́: 169 WOOD PRESERVING
170 WOOD PALLETS AND SKIDS 171 PARTICLEBOARD
172 WOOD PRODUCTS, N.E.C
173 WOOD CONTAINERS
174 WOOD HOUSEHOLD FURNI TURE
175 HOUSEHOLD FURNITURE, N.E. 177 UPHOLSTERED HOUSEHOLD FUR 178 METAL HOUSEHOLD FURNITURE 179 MATTRESSES AND BEDSPRINGS 180 WOOD OFFICE FURNITURE 181 METAL OFFICE FURNITURE
182 PUBLIC BUILDING FURNITURE 183 WOOD PARTITIONS AND FIXTU 184 METAL PARTITIONS AND FIXT 185 BLINDS, SHADES, AND DRAPE 186 FURNI TURE AND FIXTURES, N
188 PAPER MILLS, EXCEPT BUILD 189 PAPERBOARD MILLS
190 ENVELOPES
191 SANITARY PAPER PRODUCTS
192 BUILDING PAPER AND BOARD
193 PAPER COATING AND GLAZING 194 BAGS, EXCEPT TEXTILE
195 DIE-CUT PAPER AND BOARD
196 PRESSED AND MOLDED PULP G 197 STATIONERY PRODUCTS
198 CONVERTED PAPER PRCOUCTS, 199 PAPERBOARD CONTAINERS AND 200 NEWSPAPERS 202 BOOK PUBLISHING
203 BOOK PRINTING
204 MISCELLANEOUS PUBLISHING 205 COMMERCIAL PRINTING 206 LITHOGRAPHIC PLATEMAKING 207 MANIFOLD BUSINESS FORMS 208 BLANKBOOKS AND LOOSELEAF 209 GREETING CARD PUBLISHING 210 ENGRAVING AND PLATE PRINT 211 BOOKBINDING AND RELATED W 212 TYPESETTING 213 PHOTOENGRAVING
215 INDUSTRIAL INORGANIC, ORG 216 NITROGENOUS AND PHOSPHATI 217 FERTILIZERS, MIXING ONLY 218 AGRICULTURAL CHEMICALS, N 219 GUM AND WOOD CHEMICALS 220 ADHESIVES AND SEALANTS

ó

AND

5.6961	6.7468
357.8950	377.4780
85.7603	87.9915
163.6519	344.2789
76.6918	95.0901
44.3968	88.5535
90.8472	131.5557
143.6672	185.9724
5.1017	5.8574
60.2807	61.6463
158.8506	202.0608
52.0809	68.6831
. 0606	. 8084
16.4862	23.3437
1.3431	1.3616
4.0936	4.1483
12.1311	12.2750
13.9231	14.3838
3.3700	3.4321
35.2974	38.0492
4.6949	5.6330
14.3761	24.3135
86.6796	91.8946
14.0094	19.2706
3.9271	5.1373
2.7579	7.5378
5.9364	11.2503
5.9417	6.5416
. 3675	6.2446
. 5446	. 7395
9.1679	14.8205
12.3853	70.4664
2.8054	43.3962
. 4742	8.6291
. 5070	2.6780
587.7439	710.9012
78.6504	116.3885
. 1825	5.4748
19.1826	36.9848
37.1882	37.4093
8.3542	22.1036
. 3843	8.5958
46.1368	62.4087
47.4505	95.2207
3.7228	10.0812
16.0199	16.3357
1.4890	1.7190
3.5740	4.8069
. 8518	. 8612
14.9750	16.3138
15.8886	16.0276
15.9361	16.1659
31.8671	32.1018
51.4356	57.1945
48.9559	57.3633
74.7568	77.2904
5.1868	5.2316
27.4757	28.2448
1956.8190	1966.1600
272.2664	275.4720
224.5880	226.1089
6.2692	6.2913
16.4210	16.6133
610.9186	657.4288
135.9341	137.7417
535.4395	546.5306
3.6871	3.6975
40.9371	41.4527
17.4038	17.6259
628.9271	1123.6460
268.7402	574.3583
274.4886	435.3872
576.0071	606.4694
3.4379	5.4505
45.6748	66.8618
866.4026	1420.6960
17.1940	37.1367
64.0438	83.4387
46.8870	55.5932
5.7037	5.8592
13.7439	17.3605
6.3907	15.1677
26.8646	53.6122
. 4810	1.0940
6.3293	40.9295
2.2991	23.0832
2.9353	29.8654
7.9700	21.2462
3.6338 2.6504	6.9647 24.9353

5.6961
357.8950 85.7603 76.6918 44.3968 143.6672 60.2807 158.8506

.0606

1.3431
12.1311 3.9231 35.2974 14.3761 80.6796
14.0094
3.9271 2.9279
5.9364 5.9417
.3675
0.16469

587
78
3
46
47
3
\square

6
6

273
\qquad 2737
270
214
390
198
412
58
367
1299
513
181.
7
7

489
138.
138.
66.
77.

2929.
2930.

509
86

329
153

322
1119
944
$\begin{array}{r}54 \\ 6579 \\ \hline 659\end{array}$
153
4
14
$\begin{array}{r}591 \\ 1459 \\ \hline\end{array}$
213
438
103
268
250
2

268
433
4

760
777
7
935
447.
$\begin{array}{r}10347 \\ 1595 \\ \hline\end{array}$

1595
2512

127.

$\begin{array}{r}124 \\ 4154 \\ \hline 1096\end{array}$
3620
28.
$\begin{array}{r}28 \\ 649 \\ \hline 200 \\ \hline\end{array}$

8002
8025

9025
3290
4310.

9956
19808.
394.

838
215
1050.
222.
$\begin{array}{r}222 \\ .97 \\ 165 . \\ \hline\end{array}$
${ }^{107 .}$
134 .

221 EXPLOSIVES 222 PRINTING INK	12.0419	15.2409	4.6132	1.7380			
222 PRINTING INK 224 ChEMICAL PREPARATIONS N.	$\begin{array}{r} 1.7955 \\ 179.8988 \end{array}$	59.8206	12.0055	5.8688	6.3513 17.8743	$\begin{array}{r} 6.4931 \\ 18.2977 \end{array}$	146.
225 Plastics materials and re	32.7149	332.2047 170.3423	59.1986	30.7291	89.9277	94.6276	+ 1472.
226 SYNTHETIC RUBEER	1.2716	10.3083	30.1750 1.5179	3.9609	34.1359	35.8498	1015.
229 DRUGS	42.4701	69.3618	19.8141	- 1034	1.6213	1.6770	73.
230 SOAP AND OTHER DETERGENTS	141.3935	176.2301	29.8075		27.2518	28.0456	747.
231 POLISHES AND SANITATION G	51.2625	64.7338	10.2884	11. 10379	52.9126	53.9083	927.
232 SURFACE ACtIVE AGENTS	7.3577	18.6183	5.2214	11.0379	21.3263	21.6561	378.
233 TOILET PREPARATIONS	279.3130	299.1292	54.0378	78.6584	5.6141	5.7256	185.
234 PAINTS AND ALLIED PRODUCT	90.3149	93.8721	22.0105	78.6584 8.2768	132.6962	134.3224	1767.
235 PEETROLEUM REFINING	447.5507	1038.0140	30.4636	54.0030	34.2866	31.0293	671.
236 LUBRICATING OILS AND GREA	52.5393	154.4064	12.0012	34.7902	84.4666	160.7399	759.
238 PETROLEUM AND COAL PRODUC	4.6451	6.7113	. 3600	1.5393	44.7993	60.8820	330.
239 ASPHALT FELTS AND COATING	3.9360	53.9759	6.6008	13.4725	20.0734	20.5443	8.
240 TIRES AND INNER TUBES	3.4622 6.3508	79.6575	8.6939	20.6677	29.3615	29.9852	$375{ }^{\circ}$.
243 FABRICATED RUBBER PROOUCT	75.6358	76.4560	1.8917	. 2911	2.1829	2.4321	68.
244 MISCELLANEOUS PLASTICS PR	914.7124	933.5934	248.3960	98.4016	26.9943	27.2829	1074.
245 RUBBER AND PLASTICS HOSE	15.1996	15.5235	248.4021 5.6198	98.1977	346.5998	350.1215	10326.
246 LEATHER TANNING AND FINIS	41.9918	58.0844	13.7188	12.1617	5.7815	5.8609	218.
248 SHOES, EXCEPT RUBBER	61.9975	62.7713	26.5768	12.4046 . .2782	26.1185	26.3927	574.
250 Leather gloves and mitten	5.4497	5.8542	1.7351	-. 2782	26.2986	26.6315	136.
254 LEATHER GOOOS, N.E.C	4.1485	7.2483	2.1772	$\cdots .3467$	- 57239	1.7408	97.
255 GLASS AND GLASS PROOUCTS,	18.5755	63.3192	17.8585	7.3490	25.5239	2.6300	94.
257 CEMENT, HYORAULIC	. 5893	27.8393	9.0155	3.1085	12.1240	12.9652	961.
258 BRICK AND STRUCTURAL CLAY	4.7663	1.4718	. .3046	. 3003	. 6050	12.9986	367.
259 CERAMIC WALL AND FLOOR TI	4.7681	4.7722	1.3165	1.1060	2.4225	2.6826	56.
204 FINE EARTHENWARE FOOO UTE	. 2304	. 2326	. 23558	. 1211	. 3565	. 4033	9.
265 PORCELAIN ELECTRICAL SUPP	. 2818	. 3001	. 04518	. 0205	. 0663	. 0701	11
266 POTTERY PRODUCTS, N.E.C	1.7200	1.7519	. 3494	. 0239	. 0857	. 0922	12.
267 CONCRETE BLOCK AND BRICK	27.6493	27.7880		. .1437	. 4921	5369	68.
268 CONCRETE PRODUCTS, N.E.C	69.6508	70.1768	8.8292	1.8373	10.6664	12.0493	338.
269 READY-MIXED CONCRETE	116.6623	117.9330	24.9354 32.8442	8.5304	31.4658	34.3474	1088.
272 CUT STONE AND STONE PRODU	86.2652	88.1974	27.8442	8.6634	41.5075	45.0953	1098.
273 ABRASIVE PRODUCTS	307.8117	320.9435	84.10753	12.1060	39.2198	42.3043	1305.
275 GASKETS, PACKING AND SEAL	18.8857	19.1089	84.0753	57.0972	141.1725	148.8438	3158.
276 MINERALS, GROUND OR TREAT	3.0431	3.1062	5.4695	2.4639	7.9334	8.3977	34
277 MINERAL WOOL	61.1983	63.6562	15.4758	16.4499	1.0656	1.1648	33.
278 NONMETALLIC MINERAL PRODU	1.0986	1.1294	. 2226	16.41263	31.8894	33.7179	639.
281 ELECTROMETALES AND STEEL	35.5820	55.8543	14.3488	5.6629	20.0117	. 3382	23.
282 STEEL WIRE AND RELATED PR	1.9125	2.0732	. 4165	. .1868	20.0183	21.3386	396.
283 COLD FINISHING OF STEEL S	41.48337	58.7891	12.4368	8.6598	21.0966	22.1256	10.
284 STEEL PIPE AND TUBES	44.9402	2.7926	. 4186	. 2948	. 7134	22.7495	471.
285 IRON AND STEEL FOUNDRIES	95.9278	97.2330	14.0346	7.4306	21.4659	22.5766	400.
286 IRON AND STEEL FORGINGS	5.1390	6.2903	34.8989	19.4596	54.3585	57.0151	1294.
287 METAL HEAT TREATING	26.4470	30.1281	9.0049	8.5531	2.7617	2.8357	64.
288 PRIMARY METAL PRODUCTS, N	6.1173	7.4355	1.4050	8. 8290	17.5580	18.1802	360.
293 Primary nonferrous metals	. 8294	. 9225	. 2620	. 0342	2.2340 .2963	2.3856	56.
294 SECONDARY NONFERROUS META	24.3495	1.0175	. 2588	-. 0364	. 2225	. 24275	6.
295 COPPER ROLLING AND DRAWIN	24.3958	25.6548	4.1712	. 1400	4.3112	4.5630	159
296 ALUMINUM ROLLING AND DRAW	23.1404	26.0127	4.2556	-. 0255	. 2302	. 2451	10.
297 NONFERROUS ROLLING AND DR	7.9498	26.6127 8.6235	4.92300	$\bigcirc .5396$	4.3804	4.6973	192.
299 ALUMINUM CASTINGS	129.9487	134.1522	62.4418	. 3.6386	5.3563	1.4691	62.
301 BRASS, BRONZE, ANO COPPER	8.9994	9.3577	4.2830	-3.6386	58.8033	60.9229	2191.
303 METAL CANS CAstings, n.E.	24.5377	9.8362	4.4609	-. 2545	3.9551	4.1463 4.3547	176.
304 METAL BARRELS, DRUMS AND	242.7604	298.5325	51.2822	66.7706	118.0528	4.3547	179.
306 PLUMBING FIXTURE FITTINGS	11.9408	7.6499	1.6254	1.6310	3.2564	19.3288	227.
307 HEATING EQUIPMENT, EXCEPT	28.4607	20.3954	3.1188	1.9727	5.0915	5.3084	45.
308 fabricated structural met	120.2325	129.5589	9.0879	3.6057	12.6936	12.2963	300.
309 METAL DOORS, SASH, AND TR	75.0971	123.59819	39.5089	10.5869	50.0959	52.4492	1265.
310 FABRICATED PLATE WORK (BO	126.4644	131.6052	22.4163	9.9565	32.3728	33.1987	741.
311 SHEET METAL WORK	221.5984		45.0542	17.1257	62.1799	63.7639	372.
312 ARCHITECTURAL METAL WORK	24.4047	227.7880	63.7169	17.3615	81.0784	82.7437.	2446.
313 PREFABRICATED METAL BUILD	5.0760	5.2866	8.8057 1.1695	2.6547	11.4604	11.8097	307.
14 MISCELLANEOUS METAL WORK	48.4710	50.4065	12.1025	. 4276	1.5971	1.6452	55.
315 SCREW MACHINE PRCOUCTS AN	90.2210	120.7830	42.0258	2.7272	14.7530	15.4148	435.
316 AUTOMOTIVE STAMPINGS	24.7531	35.8417	10.3033	18.2292	62.5559	63.6668	1443.
18 METAL STAMPINGS, N.E.C.	223.6761	329.6051		2.4428	12.7461	13.1123	393
19 CUTLERY	7.0949	3.76801	101.8582	46.8510	148.7093	151.1406	3962.
320 hand and edge tools, n.e.				43.4781	3.9375	4.0022	104.
21 hand saws and saw blades	160.8364	182.6801 1.7728	66.4318	43.4726	109.9044	111.6298	2417.
22 HaRDWARE, N.E.C.	53.4677	69.1981	2.7156	0.2427	22.6538	. 6621	17.
23 Plating and polishing	88.8696		48.1964	9.3598	32.0754	32.5799	228.
24 METAL COATING AND Allied	67.2745	82.1206	48.1964	18.6895	66.8859	67.8496	1899.
25 MI SCELLANEOUS FABRICATED	54.8961	79.4170	25.9217	8.6587	35.1876	36.0350	1134.
26 STEEL SPRINGS, EXCEPT WIR	10.2598	11.4794	35.9218	12.9617	38.8833	39.7017	1010.
327 PIPE, VALVES, AND PIPE FI	155.4259	187.9774	57.1129	38.7247	5.4730	5.6241	109.
28 METAL FOIL AND LEAF	18.1240	21.6986	57.1129	$\begin{array}{r}38.3669 \\ \hline\end{array}$	95.4798	97.6307	811
29 FABRICATED METAL PRODUCTS	75.8106	93.9845	3.80787	1.7630	6.4486	6.5958	123.
330 STEAM ENGINES AND TURBINE	8.4784	17.4262	30.6787	13.0175	43.6963	44.8586	923.
31 INTERNAL COMBUSTION ENGIN	5.9335	20.4116	5.8850	4.2713	10.1563	10.3277	152.
32 FARM MACHINERY AND EQUIPM	214.3663	273.0178	6.5719	3.3552	8.9271	9.1490	158.
33 LAWN AND GARDEN EQUIPMENT	50.0712	55.0167	11.6880	52.1577	121.2931	123.1688	3334.
34 CONSTRUCTION MACHINERY AN	325.8759	353.0761	102.6977	9.4621	21.9501	21.5684	439.
35 MINING MACHINERY, EXCEPT	1.0056	1.1014	102.6979	41.0049	144.3626	147.5572	3821.
		1.1014		. 2255	. 5845	. 5935	11.

1.9354
12.0459
23.6871
5.3951
20.7057
4.0002
1.2154
107.7932
.2034
.2098
16.9243
18.9939
2.0696
12.9523
2.0994
4.2734
48.6268
104.8842
21.5471
5.9382
34.0319
24.5595
50.4919
13.8567
272.0081
1755.2500
12.4239
12.6955
14.4180
9.4916
1.4987
121.4933
4.3458
102.5220
101.7452
5.1565
10.1765
110.4551
17.7871
.2620
1.4188
8.7652
19.5233
19.0908
.2769
1.6787
11.9021
33.2905
5.9329
2.6288
11.6443
206.1215
24.0407
164.4790
5.6901
5.0830
59.7694
1.7650
11.1043
19.9740
9.7036
105.5308
32.0869
2.2773
2.2645
15.4853
25.9118
3.7829
.2887
4.1073
11.4516
16.3567
28.9756
247.3188
174.0090
63.8436
118.1369
2.8621
1.8683
26.7888
24.0428
74.5070
5.5846
.3494
7.1526
.

1.3717	3.3071	3.4469	64.
1.8622	13.9082	14.5229	397.
2.3371	26.0242	26.5602	782.
1.1968	6.5918	6.6939	182.
-. 7244	19.9813	20.5281	717.
9.4918	50.4920	51.3964	1208.
. 2476	1.4629	1.4911	56.
27.3749	135.1681	136.5186	3329.
. 1544	. 3579	. 3616	10°
. 0516	2615	. 2667	10.
5.3993	22.3236	23.2271	618.
7.0971	26.0910	26.5622	588.
. 1380	2.2076	2.2693	78.
3.5854	16.5377	16.7852	427.
. 2890	2.3884	2.4390	78.
1.3117	5.5851	5.6780	101.
14.8626	63.4893	64.9026	1297.
32.7492	137.6333	140.0820	3287.
3.5954	25.1426	25.7094	768.
. 6693	6.6075	6.6648	182.
8.9632	42.9951	43.5971	1106.
7.5104	32.0699	32.7601	800.
7.7837	58.2756	59.1851	1638.
2.0644	15.9211	16.1441	449.
49.0086	321.0167	329.8170	9846.
- 12.4579	1742.7920	1786.4320	46693.
-. 0044	. 4195	. 4456	12.
-. 0974	12.5981	12.9954	404.
$\cdot .1118$	14.3062	14.7707	402.
2.1246	11.6162	11.9054	317.
5.1807	1.6794	1.7181	51.
55.4382	176.9315	181.0759	3787.
1.7255	6.0714	6.1815	157.
39.4213	141.9433	144.3882	2498.
48.5307	150.2759	152.3334	3027.
1.7202	0.8766	7.0554	307.
5.2725	15.4490	15.6524	622.
49.8270	160.2821	162.4605	3726.
7.8418	25.6289	26,1010	581.
. 0638	. 3259	. 3302	8.
. 7720	2.1908	2.2520	48.
2.0490	10.8142	11.0628	315.
5.9177	25.4410	26.1570	716.
3.7565	22.8473	23.3100	675.
. 2104	. 4874	. 4949	10.
. 0506	1.7293	1.7678	57.
6.9776	18.8798	19.1447	395.
18.0600	51.3506	52.0754	1029.
-. 5892	5.3437	5.4947	160.
- 2605	2.3683	2.4319	147.
-1.2225	10.4219	11.0994	792.
20.2384	185.8831	189.7724	6302.
13.2932	10.7475	11.3818	608.
91.0784	73.4006	77.9666	8281.
3.8504	9.5405	9.9445	175.
3.1588	8.2418	8.3917	173.
44.4298	104.1992	105.9042	1821.
. 95584	2.7234	2.776	115.
3.1710	14.2753	14.7145	482.
10.2188	30.1928	36.0625	438.
1.2347	10.9383	18.3340	214.
65.9669	171.4977	192.0199	2110.
12.6965	44.7834	46.4900	1280.
. 7524	3.0297	3.0509	70.
. 7652	3.0297	3.0498	70.
4.2263	19.7116	19.8459	468.
. 1909	1.1027	1.1117	54.
13.7605	39.3234	39.4365	1504.
1.6885	5.4763	5.5028	205.
. 1052	. 3939	. 3958	37.
5.5651	4.6724	4.7381	202.
5.1336 3.5184 7.0346	16.5851 19.8751	16.7651 2087	778.
7.0346	19.8751 36.0102	20.1373	754.
58.2642	305.5829	309.5473	856.
37.7442	211.7532	214.6063	4584.
28.6358	92.4793	93.8021	1997.
57.3039	175.4408	178.3339	4945.
. 5946	3.4567	3.5024	98.
. 3769	2.2452	2.3266	77.
-. 1200	26.6688	27.1399	1043.
- 1571	23.8857	24.3817	1012.
37.0068	111.5138	114.6151	2439.
2.3414	7.9261	8.0612	255.
. 4962	. 8456	. 8480	16.
3.2318	10.3843	10.5141	513.
5. 0334	. 1719	1.1761	14.
5.2544	16.9403	17.3799	664.
2.1079	5.3780	5.4644	342.
9.0197	31.9589	34.7662	1225.

434 PENS AND MECHANICAL PENCI	7.6	8.2085	2.3316				
436 MARKING DEVICES 437 CARBON PAPER AND INKED RI	17.9837	19.0387	2.3316	1.0653 .5692	$\begin{aligned} & 3.3970 \\ & 8.0946 \end{aligned}$	3.4797	116.
437 CARBON PAPER AND INKED RI	10.5461	11.2878	2.5873	1.0615	$\begin{aligned} & 8.0946 \\ & 3.6488 \end{aligned}$	$\begin{aligned} & 8.3491 \\ & 3.7230 \end{aligned}$	333.
439 BUTTONS	11.4173	11.9154	3.2829	1.6994	4.9824	5.1332	117.
440 NEEDLES, PINS, AND FASTEN	. 7367	7575	. 2354	. 0208	2583	. 2618	27.
441 BROOMS AND BRUSHES	14.6137	15.4660	5.2992	. 1142	. 3496	3571	16.
443 BURIAL CASKETS AND VAULTS	5.0142	5.5180	1.83710	1.5828	6.8820	7.1202	228.
444 SIGNS AND ADVERTISING DIS	78.1781	108.9377	41.5765	10.9374	52.0746	2.1602	77.
445 manufacturing industries,	60.8710	65.3254	19.8577	10.93575	52.5139	53.9408	2065.
446 Railroads and related ser	327.3812	758.5796	384.9534	46.3575	26.2153	29.5652	1214.
447 LOCAL, INTERURBAN PASSENG	176.4266	249.7227	95.6920		431.3487	447.9501	8732.
448 MOTOR FREIGHT TRANSPORT A	1041.2640	2147.3630	775.0174	634.0870	1409.1040		816.
449 . WATER TRANSPDRTATION	85.1545	219.4538	36.4605	234.4699	1409.1040	1489.7390	34880.
450 AIR TRANSPORTATION	1280.7020	1717.0320	567.1429	205.1205	772.9634	64.5355	1315.
451 PIPE LINES, EXCEPT NATURA	40.0435	70.3928	8.2997	29.1571	772.2634		14541.
452 TRANSPORTATION SERVICES	62.2836	102.3956	44.3331	16.4432	37.4588	39.6313	176
453 ARRANGEMENT OF PASSENGER	74.7573	140.2317	61.6430	16.4432 34.6697	60.7763	62.8242	2084.
454 COMMUNICATIONS, EXCEPT RA	795.4728	1523.4620	508.2992	464.6097	96.3127	97.8330	3911.
455 Radio and tV broadcasting	119.9342	444.8922	130.8305	461.2231	969.5223	1139.2220	14102.
456 ELECTRIC SERVICES	1072.9150	2814.0960	455.5418		1454.2350	252.0845	4859.
457 GAS PRODUCTION AND DISTRI	320.2959	885.0438	476.9622	139.6936	1454.2350	1657.6290	12116.
458 WATER SUPPLY AND SEWERAGE	1.1645	1.6129	76.2663	139.1158	216.7579	254.0737	2485.
459 SANITARY SERVICES AND STE	22.9483	84.7299	24.7522	31.2180	55.9703	8624	16.
460 RECREATIONAL RELATED WHOL	63.2298	85.8670	41.055	11.21820	55.9703	. 5431	681.
461 OTHER WHOLESALE TRADE	3985.9370	7288.5560		900.8754	52.9477	63.4954	242.
recreational related reta	224.3629	231.5099	349.1967	${ }^{990.0754}$	4403.2100	5281.1260	14921.
463 Other retall trade	7218.9620	7933.6350		29.4656	124.6622	140.6278	7081
464 Banking	467.2739	1476.6460	3356.5170	1020.7850	4377.3020	4927.1760	213626.
465 CREDIT AGENCIES	142.6082	1479.6460 619.3097	54.8998	210.3259	758.2257	795.2996	23073.
466 SECURITY AND COMMODITY BR	779.7162	819.3097 820.5856		-9.0202	553.4777	587.5181	23161.
467 InSURANCE CARRIERS	1838.6650	2397.1580	400.2621	73.6532	473.9153	488.4208	8760.
468 INSURANCE AGENTS AND BROK	212.8412	727.6824	845.2153 269.6712	. 797.6887	765.5266	897.0399	29417.
469 OWNER-OCCUPIED DWELLINGS	4111.2000	411.2000	269.6000	167.5001	437.1772	457.5466	19030.
470 REAL ESTATE	3804.2040	7710.0670	. 3500	2075.6140	2075.6140	3079.4050	0.
471 hotels ano looging places	390.0305	720.6637	280.1086	5107.1793	5350.3730	6581.5930	54807.
472 LAUNORY, CLEANING AND SHO	248.8230	327.2278			387.2879	432.8193	23510.
473 FUNERAL SERVICE AND CREMA	158.2161	162.2773	36.3592 36.1505	+38.0388	214.3980	216.7135	13270.
474 Portrait and photocraphic	199.7283	201.9662	59.6202	38.0018	74.1523	76.0645	276
475 Electrical repair service	46.1253	90.2967	25.0202	70.5467	130.1669	132.6571	11538.
476 WATCH, CLOCK, JEWELRY AND	18.4278	18.4278	25.3242	28.0601	53.3843	53.7743	2735.
477 BEAUTY AND BARBER SHOPS	296.1818	296.1817	5.9329	6.6782	12.6912	12.7695	856.
478 MISCELLANEOUS REPAIR SHOP	9.6034	215.5403	122.9419	131.0000	253.9420	256.0346	9333
479 SERVICES TO BUILDINGS	91.2330	182.2685	0.5569	68.3927	130.9496	139.5353	6805.
480 Personnel Supply services	47.1117	291.3178	181.3535	40.0007	131.6311	139.4311	14766.
481 COMPUTER AND DATA PROCESS	72.4673	627.8970	282.9516	64. 3380	244.6135	245.4765	19810.
482 MANAGEMENT AND CONSULTING	182.7625	697.6467	318.3799	155.3379	438.2895	443.5724	11040.
483 detective and protective	8.0044	94.7781	52.4059	137.3160	455.6959	457.4154	14406.
484 EQUIPMENT REPAIR AND LEAS	23.8333	233.8350	78.1808		131.3655	71.6028	5941.
485 PHOTOFINISHING, COMMERCIA	105.3448	230.6058	76.4808 93.4253	61.5047	139.6855	159.2796	3950.
486 Other business servic	103.8096	492.9120	213.4946	103.2717	148.6970	159.5027	5432.
487 ADVERTISING	73.5180	306.8320	136.4205	103.0267	316.5214	324.3725	14143.
488 LEGAL SERVICES	307.9580	1053.4790	452.4209	69.1318	205.5524	209.4192	5565.
489 ENGINEERING, ARCHITECTURA	58.5163	791.4504	434.8472	353.4713	805.5012	806.8806	16723.
490 ACCOUNTING, AUDITING AND	121.8256	591.804	334.8472	151.9740	486.8212	501.9700	17280.
491 EATING AND DRINKING PLACE	2855.3470		919.6889	120.1160	347.8055	349.1814	17615
492 automobile rental and lea	112.6011	371.8263	919.3344	313.8425	1233.1770	1808.7680	
493 automobile repair and ser	605.6204	1027.8100	49.8453	68.8780	118.7233	134.3121	2979
494 AUTOMOBILE PARKING AND CA	163.6306	181.9303	219.7385	247.3265	467.0651	490.9264	14109.
495 MOTION PICTURES	58.2378	140.7148	35.8007	50.9593	86.7894	92.7385	4694.
496 DANCE HALLS, STUDIOS AND	8.7924	8.9283		11.14108	45.7423	49.7921	3295.
997 THEATRICAL PROOUCERS, BAN	42.7014		44.2362		3.9342	4.3622	721.
498 BOWLING ALLEYS AND POOL H	84.3677	84.3677	44.23625	16.1363	60.3725	60.4756	3846.
99 COMMERCIAL SPORTS EXCEPT	55.6480	64.2859	45.4675	-1.8335	36.8909	39.3250	4795.
500 RACING AND TRACK OPERATIO	22.4600	27.2255	6.8894	10.1593	43.6341	49.4900	717.
O1 MEMBERSHIP SPORTS AND REC	193.4972	205.1129	69.3548	2.6404	17.0487	26.2885	115.
O2 AMUSEMENT AND RECREATION	121.3025	121.6810	41.8640	18.5544	71.9952	7.9410	714
03 DOCTORS AND DENTISTS	1574.2070	1596.1370				66.1890	6195.
504 HOSPITALS	2003.4460	2003.4460	993.5068	109.983	1113.5630	1121.6740	25632
505 NURSING AND PROTECTIVE CA	941.3312	941.3312			1103.3050	1103.4630	47838.
06 OTHER MEDICAL AND HEALTH	1099.8310	1252.0280	624.7372	179.9622	604.5423	611.3438	40852.
O7 ELEMENTARY AND SECONDARY	222.6703	222.6703	100.9496	79.9736 7.7247	804.7108	808.7938	21311:
508 COLLEGES, UNIVERSITIES, S	402.2039	430.7612	234.2109	17.9219		108.6744	7378.
O9 OTHER EDUCATIONAL SERVICE	81.6428	82.1166	41.3496	17.9219	252.1328	252.1328	19806.
10 BUSINESS ASSOCIATIONS	90.6217	117.8950	49.4661	-1.7717	46.3557	50.2295	2165.
11 Labor and civic organizat	266.0001	266.0001	125.0713			48.3372	1444.
12 RELIGIOUS ORGANI2ATIONS	324.8976	324.8976	186.0368	2.2334	126.9620	126.9620	10036
13 OThER NONPROFIT ORGANIZAT	148.0544	163.4466				189.1508	13802.
14 RESIDENTIAL CARE	295.6645	295.6645	170.3470	2.2779	85.8124	85.8124	3268.
15 SOCIAL SERVICES, N.E.C.	531.0637	535.2177	346.4158	4.9684	172.9222	172.9222	10116.
16 U.S. POSTAL SERVICE	159.1047	632.2487	471.6874	-83.9684	351.3842 388329	351.5286	23810.
17 federal electric utilitie	. 6961	1.8481		-83.3545	388.3329	388.3329	13814.
18 OTHER FEDERAL GOVERNMENT	17.1795	31.6647	6.7659	-. 04.1956		. 2166	5.
19 local government passenge	59.9862	83.4508	103.5070	. 97.1956	5.5703	5.5703	281.
20 State and local electric	61.6144	161.4474	28.3099	-97.4332	6.0538	6.0538	3772.
21 Other state and local gov	375.1325	550.1385	180. 1390	4.7295	43.0311	43.0311	1191.
25 GOVERNMENT INDUSTRY	10560.4900	10560.4900	6296.4530	443.9351	224.1341	224.1341	7097.
27 HOUSEHOLD INDUSTRY	155.2309	155.2309	92.5530	$\begin{array}{r} 4264.0350 \\ 62.6780 \end{array}$	10560.4900 155.2309	$\begin{array}{r} 10560.4900 \\ 155.3300 \end{array}$	230085.
						. 309	14550.
rotal 102	102676.3000	140759.1000	43350.6800	2738	9800		
					34.800	9935.7300	6325.

[^0]: Source: Lazarus, 1992 and Olson, 1992

