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Abstract 

In this paper we estimated a volatility model for COP/US under two different samples, 
one containing the information before the “discretional interventions” started, and the 
other using the whole sample. We use a nonparametric approach to estimate the mean 
and “volatility smile” return functions using daily data. For the pre-interventions 
sample, we found a nonlinear expected return function and, surprisingly, a non-
symmetric “volatility smile”. These lack of linearity and symmetry are related to 
absolute returns above 1,5% and 1,0%, respectively. We also found that the 
“discretional interventions” did not shift the mean response function, but moved the 
expected returns along the line towards the required levels. In contrast, the “volatility 
smile” tends to increase in a non-symmetric way after accounting for “discretional 
interventions”. The Sep/29/2004 announcement does not seem to have had any effect on 
the expected conditional mean or variance functions, but the Dec/17/2004 
announcement seems to be related to non-symmetric effects on the volatility smile. We 
concluded that the announcement of discretional intervention by the monetary authority 
was more efficient when time and amount were unannounced. 
 
 
Keywords: Volatility Smile, Exchange Rate Risk, Nonparametric Estimation, Central Bank Intervention. 
 
 
JEL: C14, C22, E58, F31, E44. 
 
                                                 
♣ The authors indebt very much the valuable comments made by Silvia Juliana Mera and Munir 
Jalil from Banco de la República to an earlier version of this draft. Remaining errors and 
opinions are the sole responsibility of its authors and do not compromise the Banco de la 
República or its Board of Governors. 
a Associate Econometrician, Department of Macroeconomic Models, Banco de la República, and 
Associate Professor, Department of Statistics, Universidad Nacional de Colombia. 
b  Associate Econometrician, Econometric Unit, Banco de la República. 
c Chief of the Statistics Division, Economic Information and Technical Unit, Banco de la 
República. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7077542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

1. Introduction 

After a COP revaluation escalade against the USD, the Colombian central bank issued a 
series of intervention and regulatory announcements during the fourth quarter of 2004, 
aimed at controlling this trend. Figure 1 displays the COP nominal exchange rate along 
with the announcements and policies issued to counter the observed revaluation trend. 
“Discretional, central bank interventions” in the FOREX spot market started in late 
September 2004, but they were subject to a pre announced total buy of 1 billion USD by 
the end of that year. In December 17 th  the bank announced that these “discretional” 
interventions were to continue indefinitely both in time and amount. From this figure it 
strikes that the revaluation rate actually accelerated on November and December of 
2004, and that after the second announcement, the revaluation trend seems to have 
stopped. 
 Figure 1 suggests that the market reacted to the two announcements in different 
ways. During the fourth quarter of 2004, agents did not perceive central bank 
interventions as credible probably because the September 29 th  announcement fixed the 
amount and time to perform the intervention. The December 17 th  announcement 
dropped the amount and time constraint and seems to be more successful. However, this 
interpretation is still subject to the intervention size and the international environment at 
the two periods. In fact, the amount of intervention during the last quarter of 2004 was 
1325.3 millions USD and during the first quarter of 2005 just 773.8 millions USD, 
which seems to confirm that the second announcement was more credible.  

2300,00

2400,00

2500,00

2600,00

2700,00

2800,00

01
-0
4

02
-0
4

03
-0
4

04
-0
4

05
-0
4

06
-0
4

07
-0
4

08
-0
4

09
-0
4

10
-0
4

11
-0
4

12
-0
4

01
-0
5

02
-0
5

03
-0
5

CO
P
/U
S
D

Dic-21: Ratif ies decision of discretionary 
interventions and closing of contraction operations

Dec-17: Discretionary 
intervention on any amount at 
any time. Interest rates 
dropped   25 bp

Nov 25: Close  
contraction operations

Oct-29: Bank w ill buy 
up to 1000 millios USD 
until December as part 
of end of year liquidity

Sep-17: Bank w ill buy 
up to 1000 millios USD 
until December

Sep-29: Bank w ill buy 
up to 1000 millios USD 
until December

Dic 15: Capital f low  
controls, 1 year min.

 
Figure 1. COP/USD Exchange Rate and Central Bank Announcements. 

 This new kind of “discretional” interventions adds to the Colombian central 
bank FOREX market intervention toolkit which used to contain only “foreign reserves 
management” and “short run volatility control” interventions. In fact, just two years 
after adopting an inflation targeting regime with floating exchange rates in 1999, the 
Colombian central bank announced interventions to accumulate foreign reserves and to 
control short run exchange rate “volatility” outbursts. Two years after that, the bank 
announced interventions to reduce foreign reserves, completing in this way the “foreign 
reserves management” intervention procedures. See Uribe and Toro (2004). 
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 The “foreign reserves management” interventions consists of call (put) options 
which give the holder the right to buy (sell) foreign currency (USD) to the central bank. 
The amount and date of these options are set by the Board of Directors at its own 
discretion, and the mechanism is designed to be consistent with the achievement of the 
inflation target. The objective of these interventions is to manage foreign reserves 
holdings, a constitutional mandate for the bank, and they do not have any devaluation or 
exchange rate level target.  
 The “volatility” interventions are an automatic offering of put(call) options 
scheme which is triggered once the nominal daily exchange rate deviates at least 4% 
from its last 20 business day moving average. The amount of the auction is set by the 
Board of Directors at its own discretion, currently US$180 millions, and these 
interventions are also consistent with achieving the inflation target. The objective of 
these interventions is to counter volatility surprises, which may cause unwanted effects 
on key macro variables through the expectations channel, and, in extreme cases, 
undermine financial stability through currency risk. See Uribe and Toro (2004), 
Schaechter et al (2000) and Svensson (2002). 
 The “discretional” interventions are spot market operations. Currently the central 
bank buys USD from the market, on the FOREX market in an amount and timing set 
discretionally by the Board of Directors, according to both, the announcements and the 
intervention strategy chosen by the Board. The objective of these interventions, 
according to the Central bank press releases, is to counter the negative effects that a 
strong COP may have (directly or indirectly) on some Colombian economic sectors. 
These interventions seem to defend a wall on the nominal exchange rate to its 
devaluation rate.  
 Whether or not central bank “discretional” interventions on the FOREX market 
have the desired effect is a matter of debate in both the academic and central bank 
literature. In order to study the effectiveness of central bank interventions, researchers 
customarily study the conditional mean and conditional variance responses to 
interventions on high frequency data. These responses tell us about the effectiveness of 
interventions and announcements, and would give a measure of the duration of the 
intervention effect on the market. See Aguilar and Nydalh (2000), Dominguez (1998), 
Frenkel et al (2003), Schaechter et al. (2000), Toro and Julio (2005), etc.  
 Conventional models to evaluate the effectiveness of central bank interventions 
in the FOREX market rely on simple parametric or nonparametric assumptions built 
upon a symmetric “volatility smile”. In fact, the class of parametric models generally 
used for this purpose restricts to the simplest members of the ARCH, GARCH family, 
or to very simple nonparametric computations like the exponentially weighted moving 
averages EWMA. These models are characterized for having a linear mean response 
function and a symmetric (generally quadratic) conditional variance response function.  
 If the central bank does not intervene in the FOREX market this assumption may 
be valid provided that the market is fully efficient. In fact, central bank “discretional” 
interventions are recognized to be an important source of non-symmetric conditional 
risk. “Discretional” interventions (like the ones performed by the Colombian central 
bank during the last three quarters), usually pursue an implicit or explicit devaluation or 
exchange rate target level, wall or band, which makes the central bank go against the 
market. This translates into non-symmetric effects on the “volatility smile”, the market 
risk perception conditional on the last observed return. On the other hand, market 
inefficiencies may also be a source of non-symmetry. An alternative explanation of 
some observed market inefficiency, at least in the Colombian market, may be related to 
high transaction costs.  
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 However, since central bank intervention and/or market inefficiency may be 
important sources of “volatility smile” non-symmetry, the use of simple or rigid models 
may hide relevant information on the estimated risk perception and the market effect of 
interventions.  
 In this paper we use a novel nonparametric approach to estimate the conditional 
mean and “volatility smile” functions, that is, the conditional mean response and 
conditional variance response to actual returns. The model is a member of the 
“Conditionally Heteroskedastic Autoregressive Nonlinear” nonparametric, CHARN, 
family. The models in this family are based on two equations, one for the conditional 
mean which explains expected returns as a function of lagged returns, and a conditional 
variance equation which explains the conditional variance as a function of lagged 
returns. Under this setup the conditional mean and conditional variance equations are 
unknown but assumed to be smooth and continuous. In each case, the estimated 
function is derived from a flexible kernel smoother, which produce unrestricted shapes. 
In particular, the estimated conditional mean function is not necessarily linear and the 
estimated “volatility smile” is not necessarily quadratic or symmetric. In this way, we 
are able to determine the interesting features of the “volatility smile” and mean response 
functions, and the market effect of central bank interventions on those functions.  
 Estimation of the conditional mean and “volatility smile” functions is carried out 
by local polynomial estimation, LPE, methods. We estimate two CHARN models, one 
with the sample before the “discretional” interventions started, and the other using the 
full sample. By comparing these two estimates, we can derive the effect of 
“discretional” interventions on the conditional mean and “volatility smile” functions. In 
addition to that, we study the effect of the two announcements regarding the 
“discretional, interventions.  
 We found that for the pre intervention sample, the expected return function 
conditional on the last observed return is basically linear with a small slope, a result 
consistent with lack of market efficiency. For this sample we found a surprising 
“volatility smile” lack of symmetry related to absolute returns above 1,0%. We also 
found the “discretional” interventions did not have mean response shifts, but moved 
expected returns along the line towards the required levels. However, the “volatility 
smile” tends to increase in a non-symmetric way after accounting for interventions. The 
Sep/29/2004 announcement does not seem to have had any effect on expected 
conditional mean or variance functions, but the Dec/17/2004 announcement seems to be 
related to non-symmetric effects on the volatility smile.  
 This paper is distributed in four sections aside from this introduction. In the 
second section we uncover the stylized facts of our database. In the third we describe 
ARCH-GARCH parametric family of volatility models, describe the CHARN family 
and compare both of them. In the fourth section we present the estimation results of our 
CHARN model and analyze the effect of “volatility options”. In the last section we 
conclude. Mathematical details may be found in Appendix A, as well as interpretation 
hints in Appendix B. 
 

2. Stylized Facts about Exchange Rate Returns 

Our whole data set consists of daily measurements of the COP/USD exchange rate. This 
sample is characterized for being drawn after the abandonment of the exchange rate 
band regime, and covers the span from Sep-27-1999 to Mar-31-2005. The pre-
intervention sample ends at Sep-29-2004. The data correspond to the Colombian market 
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representative exchange rate, the weighted average spot prices observed in Colombian 
inter-bank market for USD currency. 
 Table 1 contains the descriptive statistics for the sample. From this table we 
asses that the frequency distribution of exchange rate returns is highly non-normal as 
suggested by the result of the Jarque-Bera test. This result is explained by excess 
kurtosis and some degree of asymmetry. Positive mean and median returns indicate an 
average devaluation trend. Estimated probabilities to obtain returns below or above one, 
two and three standard deviations show a clear deviation from the normal distribution. 
In particular, it is worth observing that the estimated probability of obtaining returns 
beyond three standard deviations from the mean is higher than expected under the 
normal assumption, but the probability of falling beyond one standard deviation is very 
low in comparison with the normal. 
 

 
Statistic 

 
Whole 

Pre-
Intervention  

N  1288  1245   
Mean  0,0147  0,0207   

Median  0,0002  0,0046   
Maximum  2,7640  2,3672   
Minimum  -3,0864  -3,0864   
Std, Dev,  0,4240  0,4113   
Skewness  0,1475  -0,0345   
Kurtosis  8,2880  7,6632   

Jarque-Bera
P-Value 

1505,4 
0.0000 

1128,3 
0,0000   

% Below 3σ  0,6988  0,5622   
% Below 2σ  2,3292  3,4538   
% Below σ  12,0342  13,0924   
% Above σ  12,8106  11,8876   
% Above 2σ  3,1056  2,2490   
% Above 3σ  0,5435  0,6426   

Table 1. Descriptive Statistics 
 These findings are confirmed by figure 2 which displays the frequency 
distribution and estimated density of exchange rate returns for the intra-day sample on 
the left and for daily observations on the right. From table 1 and figure 2 we conclude 
that the unconditional density of exchange rate returns is highly non-normal. This lack 
of normality comes from the excess kurtosis and high tails beyond three standard 
deviations. Excess kurtosis may be related to volatility clustering.  
 Table 2 contains the estimated autocorrelation functions for daily returns and 
quadratic returns. Surprisingly, daily exchange rate returns present some degree of first 
order autocorrelation, and partial autocorrelations present a decay pattern that may be 
consistent with a first order Moving Average process. This finding is consistent with 
some degree of inefficiency in the Colombian FOREX market, a usual finding in 
international literature on exchange rate returns for developing countries. See Andersen 
and Bollerslev (1998). These results point towards the existence of Conditional 
Heteroskedasticity. 
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Figure 2. Kernel Estimated Density and Histogram. Whole Sample on left Panel. 
 

 RETURNS  SQUARED RETURNS   
Lag  AC  PAC  Q PV  AC  PAC Q  PV   

1  0,23  0,23  80 0,0  0,31  0,31 141  0,0   
2  -0,08  -0,15  91 0,0  0,34  0,27 312  0,0   
3  0,04  0,10  93 0,0  0,22  0,08 387  0,0   
4  0,01  -0,04  93 0,0  0,16  0,01 424  0,0   
5  -0,05  -0,03  97 0,0  0,17  0,06 466  0,0   
6  0,00  0,02  97 0,0  0,16  0,06 502  0,0   
7  0,01  -0,01  97 0,0  0,07  -0,05 509  0,0   
8  0,06  0,08  103 0,0  0,10  0,02 525  0,0   
9  0,10  0,07  118 0,0  0,07  0,02 533  0,0   
10  0,06  0,03  122 0,0  0,06  0,00 538  0,0   

Table 2. Auto-correlations for Daily Database 
Figure 3 displays the daily exchange rate returns, which reveal volatility clustering and 
some unusual behavior at the end of the sample. It also seems to show a positive shift in 
variance from the second semester of 2002. Figure 4 shows the squared daily exchange 
returns, which confirm a high degree of conditional heteroskedasticity and volatility 
clustering, and also a positive variance shift from the second semester of 2002.  
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Figure 3. Daily Exchange Rate Returns. 

 
 In summary, the distribution of returns tends to be highly leptokurtic and 
somewhat biased, therefore highly non-normal, as usually found in financial returns 
distributions. There is some degree of conditional mean returns and strong evidence in 
favor of conditional heteroskedasticity. These findings point to conditional mean - 
conditional heteroskedasticity type of models for the Colombian daily exchange rate 
returns. These findings strongly suggest the use of nonparametric methods.  
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Figure 4. Squared Daily Returns. 
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3. Alternative Methodologies to Model Financial Returns 

In this section we describe alternative methodologies which are currently used to model 
financial returns. The families we are interested in are those specified by three elements: 
First, the mean equation which describes the behavior of return levels. Second, the 
conditional variance equation which describes the evolution of the conditional variance. 
And third, the residual distribution specification.  
 In general the mean equation takes the form:  
                                        0( ) , 1 2 3t t t t tr f u t Tβ β δ σ′ ′= , , + = , , , ...,X Z                                          (1) 

where tr  is the level of the financial return at time t , f   is a function to be specified, 

0β  is the long-run mean return level, tX  and tZ  are vectors of exogenous and dummy 
variables that may or may not affect the long-run mean return, β  and δ  are vectors of 
parameters, and tu  is an unobservable zero mean and unit variance random noise.  
 The conditional variance equation can be described as  
                                                        2 ( )t t th h ′ ′= , ,X Zσ γ λ                                                                        (2) 

where the conditional variance is defines as [ ]2
1 2t t t tV r r r− −= | , , ...σ , h  is a function to be 

specified, h  is the long-run level of conditional variance, and a set of exogenous and 
dummy variables which may or may not affect the long-run level of conditional 
variance. The residual distribution corresponds to the behavior of the random noise tu .  
 In the first sub-section we describe some of the most common members of the 
ARCH-GARCH family. In the second sub-section we describe the CHARN type of 
models. Finally, in the last subsection we compare these models emphasizing on the 
linearity and symmetry of the mean and variance-response functions. 

3.1 Parametric Models for Financial Returns 

The Auto-Regressive Conditional Heteroskedastic, ARCH, is a family of nonlinear 
models whose member try to capture “volatility clustering”, that is, the tendency of 
large absolute returns to follow large absolute returns and small absolute returns to 
follow small absolute returns, therefore producing some degree of autocorrelation in 
conditional variances.  
 The ( )ARCH q  model equations can be written as  

 

0 0
1 1

2 2

1

2

1 2 3

~ 0

p m

t j jt k kt t t t t
j k

q

t o i t i
i

t t

r X Z u u

u t T

u iid N

β β δ β β δ

σ α α

σ

′ ′

= =

−
=

 
 
 

= + + + = + + +

= + = , , ,...,

,

∑ ∑

∑

X Z

 

which includes q  lags of the squared mean residuals 2
t iu −  in the variance equation.  

 Since the random error is assumed to follow a Gaussian process, 
~tu iid 2(0 )tN ,σ , parameter estimation is usually carried out by maximum likelihood. 

The log-likelihood for a sample of T  observations from an ( )ARCH q  model is given 
by  

 2 2 2
0

1 1ln(2 ) ln ( )
2 2 2t t t t t
Tl rπ σ β β δ σ′ ′= − − − − − − /∑ ∑ X Z  
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 Although the application of these kinds of models is extensively used for 
volatility modeling in the financial sector, they have several drawbacks. First, the 
unknown number of lags, q,  in the variance function has to be specified in advance and 
might be very large, leading to a non-parsimonious model. Second, since the conditional 
variance must be strictly positive, non-negativity constrains on the parameters must be 
imposed, which in turn complicates the estimation procedure. And third, variance 
functions are assumed to be symmetric.  
 A natural extension of ARCH models that avoids over-fitting and provides a 
more parsimonious model is a Generalized ARCH model, ( )GARCH p q, . This model 

allows the conditional variance 2
tσ  to depend also on previous lags, so that the 

conditional variance equation becomes  

 2 2 2
0

1 1

q p

t i t i l t l
i l

u − −
= =

= + +∑ ∑σ α α ξ σ  

where conditional variance depends on a long-term average value, lagged squared 
residuals and lagged conditional variance.  
 The assumption of conditional normality for tu  may be replaced by conditional 
student  distributed random noise in ARCH and GARCH models.  
 Even though this model is parsimonious and avoids over-fitting, non-negativity 
constrains still have to be imposed on the parameters of the variance equation. 
Moreover, these models do not allow for direct feedback between the conditional 
variance and the conditional mean, and do not provide sufficient flexibility to model 
asymmetric volatility effect, a fact exposed by Cleveland (1979), where it was found 
that negative innovations tend to have larger impacts on the conditional volatility of 
future observations than positive innovations, which is known as “leverage effect”.  
 However, there are members of the GARCH family which allow for 
asymmetric volatility effects. For instance, the so called Exponential GARCH, 
EGARCH  model whose conditional variance equation is given by  
 2( ) ( )t t k t kLog g r −= +∑σ ω β  

where tω  and kβ  are deterministic coefficients and ( ) ( )t t t tg r r r E r= + | | − | | .θ τ   
 In this model there is no need for non-negativity constrains on the parameters, 
and more importantly, it allows for asymmetries in the variance equation. However, 
empirical studies have shown that EGARCH models over-weights the effects of large 
positive shocks on volatility which results in poorer fits than standard GARCH models.  
 Other alternatives for asymmetric modeling are the Threshold GARCH Models, 
TGARCH also known as GJR-GARCH models. In order to fit one of these models, we 
divide the range of innovations into a positive and a negative interval, and then 
approximate the conditional variance by a piecewise linear function, allowing for 
differing effects of positive and negative innovations. The conditional variance equation 
of a TARCH ( )q  model can be written as  

2 2 2

1 1
( 0)

q q

t i t i i t i t i
i i

Iσ ω α ε α ε ε− − −
= =

= + + <∑ ∑  

where ( )I ⋅  is an indicator function. 
 On the other hand, if we specify the return level equation as a function of 
stepwise (piecewise constant) functions, we obtain a qualitative threshold ARCH  
model, QTARCH whose mean equation, for the one-lag QTARCH(1), can be written as  
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                                 1 1
1 1

( ) ( )
J J

t j t j j t j t
j j

r m I r A s I r A ε− −
= =

= ∈ + ∈∑ ∑                                       (3) 

where jm  and js >0 are scalars, 1jA j J, = ,...,  is a partition of the support of the lagged 
returns, 1tr − . These models characterize for having an abrupt mean transition whenever 
the innovations cross a threshold. See Gourieroux and Manfort (1992) for details. 
 There are several reasons to expect non-linearity in the volatility function of 
exchange rate returns, particularly because of central bank interventions and the form of 
its policy reaction function. In fact, since discretional central bank interventions tend to 
defend a wall, band or target, they tend to have a non-symmetric effect on the bid ask 
spread, which translates on future non-symmetric trades. See Bossaerts and Hillion 
(1991). On the other hand, since the discretional central bank reaction function tends to 
be non-symmetric, the devaluation rate may reflect this lack of symmetry. See Neuman 
(1984). However, the nonlinear parametric models we have presented so far have 
several drawbacks on this respect. Specifically, these models require a priori choices of 
parametric mean and conditional volatility functions which do not always capture the 
relevant features of the process. In addition, the mean and volatility functions are fixed, 
and so are their responses to innovations. Thus, the choice of a nonlinear parametric 
model implies a trade-off between flexibility and parsimony. Finally, in order to capture 
the effects we set out to, parametric models tend to be non-parsimonious. 
 

3.2. Nonparametric CHARN Models for Financial Returns 

Nonparametric models provide flexibility in the mean and conditional variance 
functions, as well as in its response to innovations. These models rely on flexible, 
nonlinear and nonparametric mean and conditional variance functions, and do not make 
explicit assumptions on the residual distribution. In general the mean equation may be 
written as  
                                                1 1( ) ( ) 1 2t t t tr m r r u t T− −= + = , ...,σ                                    (4) 

where { }tu  is a zero mean and unit variance white noise sequence such that 
Cov ( )1 0t tu r −, = , m R R: →  and (0 )R: → ,∞σ  are unknown functions. Under 
these conditions 1[ | ] ( )t tE r r x m x− = = .   
 The conditional variance equation is written as  
                                                       2

1( ) [ ]t tx V r r x−= | =σ                                                                     (5) 

 If we make no assumptions on the white noise sequence distribution, we obtain 
the so called Conditional Heteroskedastic Auto-Regressive Nonlinear Model, CHARN , 
which can be interpreted as a limiting (1)QTARCH  case when the number of partitions 
goes to infinity in equation 3.  
 In order to get the estimator for the conditional mean and variance functions, 
there are two alternatives based on a multi-step procedure. The first alternative is based 
on the following steps: i) Estimate 1ˆ ( )tm r − , ii) Estimate the equation 2

1( )t t tr g r −= +ξ , 
yielding an estimator 1ˆ ( )tg r −  for the second moment, iii) Estimate the conditional 
variance function 22

1 1 1ˆ ˆ( ) ( ) ( )ˆ t t tr g r m rσ − − −= − . The only possible problem that may arise 
is the presence of negative values for 2

1( )ˆ tr −σ . The second alternative is as follows: i) 
Estimate 1ˆ ( )tm r −  using some nonparametric technique, ii) Estimate the Heteroskedastic 
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residuals ( )1ˆ ˆt t tr m rε −= − , and demean them, ˆt te ε ε= − . Then estimate 

( )2 2
1t t te r −= +σ η , leading to the estimator 2

1( )ˆ tr −σ , which characterizes for having 
2

1( ) 0ˆ tr − >σ  for all t .  
 An important feature of nonparametric strategies based on interval specific 
information, is that they provide asymptotically unbiased measures, and therefore 
approximately serially uncorrelated measurement errors. See Andersen et al (2002). 
 
 
Local Polynomial Estimation 
 
Local regression strategy provides methods for fitting regression functions to 
measurements of two or more variables in which one is a response and others are 
explanatory. A function is fitted to the data to explain how the response depends on the 
factors without explicit assumptions on the functional form or the residual distribution. 
This fact makes this technique be classified as nonparametric.  
 Local polynomial (LP) fitting, also known as Local Weighted Regression, has 
gained acceptance as an attractive method for estimating the regression function and its 
derivatives. The advantages of this nonparametric estimation method are its simplicity, 
intuitiveness, ease of computation, and the fact that it achieves automatic boundary 
corrections. Moreover, the resulting estimators have important statistical properties. 
This procedure is a generalization of the Nadaraya-Watson which is a LP estimator of 
degree 0.  
 From early papers on LP, Stone (1977) and Cleveland (1979), many relevant 
contributions of this methodology have appeared in statistics and econometric literature, 
ranging from those based on the independence assumption between observations to 
those that allow differing degrees of dependency. A list of references on this topic can 
be found in Fan and Gijbels (1996). 
 The regression model relates the points, tx , and the responses, tr , through the 
function ( ) 1t t tr m x t T= + ; = ,...,ε   where ( )m x  is a smooth regression function 
differentiable enough (up to order 1p + ,  p  being the local polynomial degree). It is 
assumed that tε  are homoscedastic zero mean unobserved random noise, and tr  is the 
strictly stationary endogenous variable. Additional assumptions about mixing conditions 
are imposed, and can be found in Hardle (1990).  
 Consider any point x , in the space of explanatory variables. It is assumed that 
there exists a neighborhood containing x , in which the regression surface is well 
approximated by a polynomial, locally fitted in a moving fashion. This procedure 
produces a smooth response function as required.  
 Estimations of the conditional mean and conditional variance in equations 4 and 
5 are obtained as a result of the following sequential minimization problem  

 
( ) ( )

( ) ( )

2

0 001

2
22
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ˆ ( ) min

ˆ ˆ( ) min
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j j ht t
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r u K r xr x

β

φ

β

σ φ

  
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  
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= − −−
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∑ ∑
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Appendix A contains the estimation mathematical details.  
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3.3. Comparison 

There are several reasons to expect non-linearity in the mean and conditional volatility 
functions of exchange rate returns. In particular, it has been found that inefficient 
markets and/or central bank interventions may lead towards non-symmetric “volatility 
smiles”. In fact, if the market is not efficient, agents are not able to discount market 
information on future returns, leading to a higher degree of dependency on past returns. 
In turn, central bank interventions aimed at maintaining an implicit or explicit target, 
band or wall on the exchange rate level or the devaluation rate, tend to go against the 
market, which induces unexpectedly high or low returns after a market driven return, 
which in general produces non-symmetric increases/decreases on the “volatility smile”.  
 Given that in our sample there are explicit central bank interventions, and the 
Colombian FOREX market is far from being efficient (as clearly seen by the small 
number of market participants), we expect a non-symmetric “volatility smile” and 
perhaps some non-linearity in the conditional mean function. Therefore, we will prefer 
the novel CHARN techniques over the conventional models for our study. 
 

4. CHARN Model Estimation Results 

According to our previous discussion, a CHARN model approach may uncover 
interesting features of the data regarding non-symmetry of the volatility response 
function, non-linearity of the mean response function and the leverage effect. In this 
section we describe the estimation results of this kind of model for the pre intervention 
and whole samples, and use these estimators to study the effect of central bank 
interventions on the “volatility smile”. The first sub section describes the estimation 
results while the second describes the estimated effect of the interventions in mean and 
volatility functions. In the second, in a graphical way we study the effect of the two 
announcements, Sep/29/2004 and Dec/17/2004 regarding the “discretional” 
interventions. 
 

4.1. Pre Intervention Sample Estimation Results 

Table 3 contains the estimation summary for our database based on the non-intervention 
sample. From this table we can observe that the degree of the local polynomial fitted for 
the mean and variance equations are 1 and 2 respectively, which shows a clear, but 
expected, difference of behavior at a local level. The degree of the polynomial is chosen 
to be the one that minimizes the Akaike information criteria. The estimated smoothing 
parameter for the mean function is 0,759 and for the variance function 0,996. The 
choice of this smoothing parameter was automatically estimated by the use of cross-
validation so that an adequate balance of smoothness/bias is found. Given the amount of 
data, the cross-validation method chose a high degree of smoothing as can be seen in 
the number of points in the local neighborhood. This choice seems to be the result of 
striking an information balance for different sub intervals of the returns support. In fact, 
due to the leptokurtosis property, sample information is not balanced along the returns 
support, and thus 99% of the sample lies in an interval between -1,5% and 1,5%, 
leaving almost no sample information for the rest of the support. 
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Name  Exp Return  Volat Smile   
Fit Method  Direct  Direct   

Number Obs.  1245  1245   
Deg Local Poly. 1  2   

Smooth 
Parameter  

0,759  0,996   

Points Local 
Neighborhood 

945  1240   

RSS  0,020  0,000   
Trace[L]  5,094  4,471   

GCV  0,000  0,000   
AICC  -10,039  -19,283   
AICC1  -12499,000  -24007,000   
Delta1  1239,067  1240,132   
Delta2  1238,370  1239,850   

Equiv. Number 
Parameters  

4,256  4,075   

Lookup DF  1239,764  1240,413   
RSE  0,004  0,000   

Table 3. Estimation Summary Pre Intervention Database 
 Figure 5 displays the scatter-plot of observed returns and lagged returns along 
with the estimated conditional mean function for the pre intervention sample. The fit is 
poor as is commonly found in financial returns. However, the estimated mean response 
is not horizontal but is composed of three straight line segments. The segment located in 
the middle goes from lagged returns in the -1,5% to 1,5% interval and covers more than 
99% of the sample. The remaining two segments cover extreme revaluations or 
devaluations, and since they are based on a few data points, its estimates are highly 
unreliable although unbiased. 
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Figure 5. Conditional Mean Response Function under no Intervention. 
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 The estimated segment at the center, the most important and more efficiently 
estimated of the three, increases with a very low slope of 0,23 and crosses the origin. 
This fact may be the result of some degree of market inefficiency since it implies that 
there is a small forecastable component of exchange rate returns, which may be used to 
pursue statistical arbitrages. However, this arbitrage may yield lower returns than other 
trading strategies or arbitrages present in the market. An alternative explanation to this 
lack of efficiency may be the widespread use of the same kind of technical analysis, a 
likely event in Colombia due to the market size, and the very existence of transaction 
costs.  
 Figure 6 displays the squared returns and estimated volatility conditional on last 
returns. This figure reveals also a poor fit, a common finding when modeling high 
frequency financial data. A striking result is the lack of symmetry in the “volatility 
smile”. This result shows that on average uncertainty on future returns is higher after 
devaluation than after a revaluation of the same size. However, this finding is not 
uniform along the whole range of lagged returns. For the most common levels of lagged 
returns, -1,0% to 1.0%, the estimated smile is basically symmetric. For absolute returns 
between 1,0% and 1,5% the non-symmetry is more clear, revealing a higher conditional 
variance for devaluations. These results are reliable since for these levels of returns 
there is still considerable sample information. However, for absolute returns above 
1,5% this result is not reliable since it is based on very few data points.  
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Figure 6. Conditional Variance, “Volatility Smile” Under no Intervention. 

 
 We conclude that for the relevant interval of the sample, that is, where the mean 
and “volatility smile” are efficiently estimated, the mean response function is linear, 
with a slope of 0,23, which indicates a small degree of inefficiency. For this interval the 
“volatility smile” surprisingly lacks symmetry. Results on the rest of the returns support 
are highly unreliable because of the lack of sample information.  

4.2. Whole Sample Estimation Results 

Table 4 contains the estimation results for the whole sample including the “discretional” 
interventions. From this table we can observe similar results to the ones found in the 
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sample before the “discretional” interventions started.  
Name  Expected 

Returns  
Volatility Smile   

Fit Method  Direct  Direct   
Number Obs  1288  1288   

Degree Local Poly 2  1   
Smoothing 
Parameter  

0,9243  0,7302   

Points Local 
Neighborhood  

1190  940   

RSS  0,0217  0,0000   
Trace[L]  6,0793  5,4344   

GCV  1,33E-08 1,63E-12   
AICC  -9,9759  -18,9813   
AICC1  -12849  -24448   
Delta1  1281,3660 1281.6678   
Delta2  1281,0425 1280.9733   

Equiv. Number 
Parameters  

5,5247  4.53675   

Lookup DF  1281,6895 1282.3627   
RSE  0,0041  0.0000457   

Table 4. Estimation Summary Whole Database 
 Figure 7 displays the scatter-plot of the observed returns and estimated 
conditional mean returns function for given lagged returns based on the whole sample. 
This figure is quite similar to the one estimated with the pre intervention sample. 
However, it is worth noticing that the third line segment does not clearly differ from the 
second as the derivative of the two segments seems to be continuous. The second line 
segment now looks as a nonlinear function with a decreasing slope. The first segment 
maintains its clear difference with the second, which in turn seems to have an increasing 
slope. In order to determine how big is this change, we rely on figure 8 which displays 
the estimated mean response for the pre intervention sample (dark line) and the estimate 
using the whole sample (light line). This figure reveals that the difference between the 
two lines is apparent. 
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Figure 7. Conditional Mean Returns Whole Sample. 

 
 This result is consistent with the view that, for the relevant interval of lagged 
returns, “discretional” interventions do not affect the conditional expected returns 
function, but moves the returns along the line towards desired levels of return.  
 Figure 9 displays the estimated conditional variance response for the whole 
sample along with actual residuals from the estimated mean equation. For the relevant 
interval on lagged returns, -1,5% to 1,5%, figure 9 suggests an important degree of non- 
symmetry related to a concavity change beyond a moderate revaluation of 0,2%. This 
concavity change reveals that after a revaluation between 0,2% and 0,9% the risk on 
future returns is higher than the risk after a devaluation of the same size. Moreover, due 
to this concavity change, the risk on future returns after a revaluation between 0,9% and 
1,5% is lower than the risk after a devaluation of the same size. The estimated risk on 
future returns after a devaluation/revaluation equals at an absolute return close to 0,9%. 
This result suggests that “discretional” interventions affected risk on future returns in a 
non-symmetric way, which induces non-symmetry in subintervals where it was not 
present, as can be confirmed in figure 10.  
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Figure 8. Estimated Mean Response Under no Intervention and Including 
Intervention. 
 
 This result supports the claim that central bank interventions aimed at an 
implicit or explicit target, band or wall on nominal exchange rates or devaluation rates 
induce non-symmetry in the “volatility smile”.  
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Figure 9. Squared Residuals From Mean Equation and “Volatility Smile” Whole 
Sample Including Interventions. 
 
 Figure 10 displays the estimated “volatility smile”, for the pre intervention 
sample, dark line, in comparison with the estimated smile based on the whole sample. In 
the relevant interval, -1,5% to 1.5%, we can observe that interventions tend to increase 
the volatility smile in a non-uniform way. The closer the actual return is to zero, the 
smaller is the conditional variance increase due to interventions. For absolute lagged 
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returns below 1.0% the conditional risk increases are faster for revaluations than for 
devaluations of the same level, but for absolute returns between 1.0% and 1.5% risk 
increases are higher for devaluations than for devaluations of the same level, with a 
higher increase at a lagged devaluation around 1,4%.  
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Figure 10. Estimated Volatility Smile Comparison. 

 
 Figure 11 displays the standardized residuals time series, which show that most 
of the relevant conditional heteroskedasticity was removed from the original data, but 
there still remains some persistency probably related to GARCH effects which this 
model is not able to capture. See Bossaerts et al (1996). 
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Figure 11. Standardized Residuals. 
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4.3. Market Effect of Central Bank Announcements 

In this section we study, in a graphical way, the market response to the two alternative 
announcements on “discretionary interventions”, Sep/29/2004 and Dec/17/2004. The 
Sep/29/2004 announcement informed the market about the intent of the Colombian 
central to buy USD from the market in a total amount of 1 billions USD up to the end of 
the year. This announcement was characterized for fixing the amount and time to 
perform this intervention. The Dec/17/2004 announcement, on the other hand, dropped 
the amount and time restriction on the interventions. 
 Due to the amount and time constraint, the September announcement was not 
perceived as a strong signal by the market. In fact, without the need of sophisticated 
tools, market agents knew exactly the USD amount bought by the bank and its effect on 
the market, the following day after each intervention. Since the bank announced a fixed 
amount and time to perform interventions, and agents knew this information, as the time 
went and the amount was spent, the signal sent by the central bank became weaker. In 
fact, according to central bank press releases, the central bank bought 1325,3 millions 
USD during the fourth quarter 2004, 325,3 millions above the pre announced target of 
one billion.  
 The Dec/17/2004 announcement dropped the amount and time restriction on the 
interventions, which was taken by the market as a stronger signal. In fact, by restricting 
this information the central bank announces that it will do whatever it takes in order to 
reach its objective of slowing down the revaluation escalade. The credibility of this 
announcement may be seen in the USD amount bought by the bank during the first 
quarter of 2004, which was just 773,8 million USD.  
 Figure 12 displays the estimated expected returns and volatility smile functions, 
along with the scatter plot of data-points before the “discretional interventions” started, 
light dots, the scatter plot for the dates between the two intervention announcements, 
Sep/29-Dec/17 2004, dark dots, and the scatter plot for the dates after the Dec/17 2004 
announcement, dark stars.  
 From this figure it is evident that black dots tend to locate on the negative side, 
and are fairly concentrated on a few cells of the figure. These data points do not seem to 
have an important effect on the expected conditional returns or the “volatility smile”. In 
fact, these points concentrate on places where these estimates did not change with 
respect to the results obtained with the pre intervention sample. Moreover, these data 
points tend to move along the original expected returns line instead of affecting it. 
 The last result contrast with the evidence of interventions after the Dec/17/2004 
announcement, the dark stars. These data points look evenly dispersed for the expected 
returns figure, and a little less evenly dispersed for the “volatility smile” figure. From 
this figure there does not seem to be an important effect of these interventions on the 
expected returns function, but they seem to affect the volatility smile, explaining the 
concavity change for moderate revaluations.  
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Figure 12. Estimated Expected Returns and Volatility Smile Functions and Scatter 
Plot Two Moments. 

 
 These results suggest that the September-2004 announcement was not as 
credible as the December-2004 announcement. In fact, the data points between 
announcements are fairly concentrated on the slight revaluation zone, but do not seem to 
have an important effect on the conditional expected returns line or the “volatility 
smile”. The December-2004 announcement was more successful in spreading returns 
more evenly on the positive and negative intervals, shifting the location of expected 
returns towards zero. However, the “volatility smile” shape was affected in a non- 
symmetric way as described above. 
 

5. Conclusion 

Conventional models to evaluate the effectiveness of central bank interventions in the 
FOREX market rely on simple parametric or nonparametric assumptions built upon a 
symmetric “volatility smile”. If the central bank does not intervene in the FOREX 
market this assumption may be valid provided that the market is fully efficient. 
However, since central bank intervention and/or market inefficiency may be important 
sources of “volatility smile” non-symmetry, the use of simple or rigid models may hide 
relevant information on the estimated risk perception and the market effect of 
interventions. In this paper we used a novel nonparametric approach to estimate the 
conditional mean and “volatility smile” functions, that is, the conditional mean response 
and conditional variance response to actual returns. Under this setup the conditional 
mean and conditional variance equations are unknown but assumed to be smooth and 
continuous. In each case, the estimated function derives from a flexible kernel 
smoother, which produce unrestricted shapes. In particular, the estimated conditional 
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mean function is not necessarily linear and the estimated “volatility smile” is not 
necessarily symmetric. In this way, we are able to determine the interesting features of 
the “volatility smile” and mean response functions, and the market effect of central bank 
interventions on those functions. By using nonparametric techniques we not only avoid 
making explicit assumptions on the conditional mean and variance response functions 
behavior, but also free the results of any distributional assumption. 
 We estimated two CHARN models by LPE methods, one with the pre 
intervention sample, and the other using the whole sample. By comparing these two 
estimates, we derived the effect of “discretional” interventions on the conditional mean 
and “volatility smile” functions. In addition to that, we studied the effect of the two 
announcements regarding the “discretional” interventions.  
 For the pre intervention sample, we found that for the sub interval of the returns 
support where the expected return and volatility smile functions are efficiently 
estimated, the expected returns function conditional on the last observed return is linear 
with a small positive slope, which reflect some degree of non-efficiency in the market. 
For this sub interval we found a surprising non-symmetric “volatility smile” behavior 
related to absolute returns in the interval 1,0% to 1,5%, but found symmetry for 
absolute returns below 1,0%.  
 We also found that, for the -1,5% to 1,5% interval, “discretional interventions” 
did not change the shape of the expected returns function, but moves the points along 
the line in order to achieve the required level of expected returns. However, 
“discretional interventions” do have an important effect on the “volatility smile”. In 
fact, “discretional interventions” tend to increase the market risk perception in a non- 
symmetric way. Given a positive lagged return discretional intervention increase risk on 
future returns in a proportional way.  However, the concavity of the “volatility smile” 
changes after a revaluation, producing a clear lack of symmetry. Moderate lagged 
revaluations are perceived to have higher risk on future returns in comparison with 
devaluations of the same level, and revaluations beyond 0,9% seems to be related to less 
risk that perceived after a devaluation of the same size.  
 We finally found that because it included a restriction on time and amount of the 
intervention and agents easily knew the ex-post daily intervention amount, the 
Sep/29/2004 announcement was not as credible as the December/17/2004. In fact, the 
average daily devaluation rate between announcements was -0,17%. The data points 
after this announcement up to Dec/17/2004 locate on the negative side of the figure and 
do not seem to be related to expected returns or conditional risk shifts. The Dec/17/2004 
announcement was more successful in terms of moving mean returns to the required 
levels but increased the market’s risk perception. As a matter of fact, the daily 
devaluation after this announcement was 0,006%.  
 Our results suggest that in order to be successful, central bank announcements 
on discretional foreign exchange rate interventions should not set explicit deadline and 
amount of intervention.  
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Appendix A 

Mathematical Details 
 
In this section we present a short review of the Local Polynomial Approach, whose 
theoretical ground has been developed since the work of Cleveland (1979). Empirical 
applications to volatility function using this framework could be found in Bossaerts et al 
(1996)  
Local Regression Models: Suppose, for each t  from 1 to T , that tr  is a measurement 
of the response and tx  is a corresponding vector of measurements of q factors. In a 
regression model the response and factors are related by ( )t t tr m x ε= + ; where m  is the 
regression surface and the tε  are random errors. If x  is any point in the space of the 
factors, ( )m x  is the value of the surface at x ; for example, ( )tm x  is the expected value 
of tr  In the fitting of local regression models we specify properties of the regression 
surface and the errors; that is, we make assumptions about them. More details in Fan 
and Gijbels (1992). 
 Specification of the Errors: In all cases, it is assumed that tε  are mean 0, 
uncorrelated random variables, formally in the nonparametric setup the requirement are 
satisfied by mixing conditioning, which means locally independency. Distribution 
assumptions are not done in this context, which lead us to robust methods of estimation. 
We can specify properties of the variances of the tε  in one of two ways. The first is 
simply that they have a constant variance, 2σ .  
 Specification of the Surface: For each x  in the space of the factors, we suppose 
that in a certain neighborhood of x , the regression surface is well approximated by 
appropriate polynomial functions. The overall sizes of the neighborhoods are controlled 
by the value of h , which will be defined later. Size, implies a metric, and the Euclidean 
distance is commonly used. For two or more factors, the shapes of the neighborhoods 
are specified by deciding whether to normalize the scale of the factors.  
 Fitting is done locally. That is, for the fit at point x , the fit is made using points 
in a neighborhood of x , weighted by their distance from x . The size of the 
neighborhood is controlled by h . For h , the neighborhood includes a proportion k  of 
the points, and the weighting shape is governed by the kernel function selected. For 
h →∞ , all points are used, with the ’maximum distance’ assumed to be h  times the 
actual maximum distance for q explanatory variables. 
 The local linear estimator is unbiased when m  is linear, while the Nadaraya-
Watson (local mean) estimator may be biased depending on the marginal density of the 
design. We note here that fitting higher order polynomials can result in bias reduction, 
see Fan and Gijbels (1992) and Ruppert and Wand (1992) - who also extend the 
analysis to multidimensional explanatory variables.  
 By the Taylor Series expansion arguments:  

 
(2) ( )

(1) 20 0
0 0 0 0 0

( ) ( )( ) ( ) ( )( ) ( ) ( )
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p
pm x m xm r m x m x r x r x r x
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≈ + − + − + ... + − ,

! !
 

or ( )0 0ˆ ( ) jp
j jm r r xβ=≈ −∑ , where ( )jm  refers to the j-th derivate of m . This polynomial 

is fitted by a weighted least squared regression problem:  
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where ( ) ( )K h
h hK ⋅/⋅ = , h  is the bandwidth controlling the size of the local neighborhood 

and  K  is a kernel function assigning weights to each data point. K  should obey some 
restrictions. K  should be symmetric around cero, continuous inside its support, 
integrable and usually non-negative.  
 Notational and computationally, it is more convenient to work with matrix 
notation. Denote by X  the design matrix of problem in (*)  
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let W  be a diagonal T T×  matrix of weights: ( ){ }0h tW diag K x x= − . Then the weighted 

least squares estimator can be written as  ( ) ( )min Y X W Y X
β

β β′− − . 

 The solution vector is provided by weighted least squared theory and is obtained 
by  
 1ˆ ( )X WX X WY′ − ′=β  

where ˆ
j
,β  0 1j p= , ,...,  denotes the solution to the least squares problem (*), and 

1
1 1 0

ˆ ˆˆ ( ) ( )m r e e X WX X WYβ β′ ′ ′ − ′= = = ,  where 1 (1 0 0)e′ = , , ...,  the first unit vector of 
dimension 1p + .  
 With 1p = , the estimator ˆ ( )m r  is termed as local linear regression smoother or 
local linear fit. This estimator can be explicitly expressed as 0 1

ˆ ˆˆ ( ) ( )K Km r r x xβ β= = − −  
and 

 1 1

( )( )ˆ ˆ ( )
( )

t K t K t

t K t

x x r r K
r

x x K
β β

− −
= = .

−
∑
∑

 

where ( ) 1

K t t t
r K K r

−
= ∑ ∑  and ( ) 1

K t t tx K K x
−

= ∑ ∑ , with ( )t h tK K X x= − . These 
is the familiar expression for regression estimator but locally weighted according to 

( )K ⋅ .  
 Some comments are in demand. First: the choice of h , the bandwidth, plays a 
crucial role. Selecting an appropriate bandwidth is one of the most important choices in 
practice. In this regard, two ways of selecting it are used in practice: Plug-in methods 
and Cross-Validation methods. Second, the order of the polynomial: not too large not 
too small; Akaike Information Criteria was used here in order to select between p=1 or 
2. Third, the choice of the Kernel function it is not so transcendental; see Rodríguez and 
Siado for a list of these functions.  
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Appendix B 
STATISTICAL RESULTS 

 
Each Fit Summary Table (as 3 and 4 in text) displays the following characteristics of 
model:  The fit method used for estimation may be Direct or kd tree fitting. The former 
implementation of the model means that fitting is done at every data point in the 
sample. The latter is a faster method which is done by doing the fitting at vertices of a 
partition of the predictor space followed by blending of the local polynomial to obtain 
the regression surface. The degree of the choice of the local polynomial fitting can be 
either linear (1) or quadratic (2). The smoothing parameter refers to the fraction of 
points in the neighborhood that is used to obtain the local fitting, i.e. Points in Local 
Neighborhood/Number of Observations. L  is named the smoothing matrix and defines 
a linear relationship between the fitted and observed values. Thus, this matrix satisfies 
the identity Ŷ LY= .  The summary table also reports the lookup degrees of freedom 
computed by: 

2
1

2
= δ

δρ   where 1δ = [( ) '( )]tr I L I L− −  and 2δ = 2[( ) '( )]tr I L I L− − .  The 
equivalent number of parameters of the fit is found by: ( ' )tr L L . This is a measure of 
the amount of smoothing done by the local fitting procedure from which large values of 
this parameter means a reduction of the neighborhood size, which in turn, causes less 
smoothness of the regression surface. Finally, the residual standard error is computed in 
order to do statistical inference through confidence limits on the predicted value. The 
choice of the degree of the local polynomial, p,  is done by the minimization of either 
an information criterion generalized by cross-validation GCV  or the Akaike criterion 
AIC. Where AICC  is 1

1

2( 1)2
2ˆ( ) nln n n ν

νσ +
− −+ + , which is the analogous to the usual 

computation for parametric models, and 1AICC  is 1 2 1
2

1 2

( )2
2

ˆln( ) nn n δ δ ν
δ δ

σ / +

/ −
+  from Hurvich et 

al (1998) is an Improved Akaike Information Criterion, which is more valid for 
nonparametric adjustments. The tri-cube weight function is used to define the 

weightening scheme, that is 3 3
[ 1,1]

70( ) (1 | | ) ( )
81

K h h I h−= − , which has the advantage of 

being differentiable in all its support. 
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