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1. Introduction

In a recent paper, Farzin (1984) has shown that the impact of
the discount rate on the optimal rate of depletion of an exhaus-
tible resource is ambiguous. This is so because not only is the
discount rate an expression of time preference, it also reflects
the opportunity cost of capital. As the extraction of an exhaus-
tible resource typically requires investment in buildings, equip-
ment, etc., a higher discount rate will raise the cost of extraction.
In terms of the Hotelling rule, dPIdt = r(P - c) where P is the
price of the extracted product, c is the unit cost of extraction,
and /• is the discount rate, a higher r will be associated with a
higher r, and so the implication for the rate of price increase is
ambiguous. Furthermore, a higher discount rate is likely to affect
the backstop price of the resource.

What, then, about renewable resources? Ever since Clark's
famous paper on the discount rate and the extinction of animal
species (Clark, 1973), it has been recognized that a higher dis-
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count rate increases the optimal rate of exploitation of a renew-
able resource, and so increases the Hkelihood of extinction. This,
however, ignores the capital cost implication of a higher discount
rate, the effect discussed by Farzin.

In this paper we examine the effect of the discount rate on the
optimal rate of exploitation and standing stock of a renewable
resource such as fish. As is the case for non-renewable re-
sources, this effect is ambiguous, and the ambiguity depends on
the dual role of the discount rate. On the one hand, the discount
rate expresses a required rate of return on a growing asset. For
a renewable resource with a concave growth function, a higher
rate of discount implies a smaller standing stock. On the other
hand, the discount rate expresses the opportunity cost of capital
to be invested in harvesting equipment. A higher discount rate
thus means more costly harvesting, which in turn implies a less
intensive optimal harvesting and a larger standing stock.

We shall distinguish between two cases. In the first case the
unit harvesting cost is independent of the size of the stock being
harvested (no "stock effect"). Here the effect of a change in the
discount rate depends on whether or not the shadow price of the
resource stock is positive. If it is, the optimal rate of exploitation
is independent of the harvesting cost, except that revenues must
exceed costs if any harvesting at all is to be optimal. The optimal
rate of exploitation is then determined by the requirement that
the marginal growth rate of the resource be equal to the discount
rate. Hence a higher discount rate raises the optimal rate of ex-
ploitation and lowers the optimal standing stock, for a resource
with a concave growth function. If, on the other hand, the
shadow price of the resource stock is zero, the intertemporal
aspect is irrelevant, and the optimum rate of exploitation is de-
termined by an equality between the value of the current mar-
ginal harvest and current marginal harvesting costs. A higher
discount rate then means higher harvesting costs, a lower optimal
harvest rate, and a larger standing stock.

The second case we consider is the one of a stock-dependent
unit cost of harvesting (a positive "stock effect"). Here the dis-
count rate is active in both of its roles simultaneously, except
in the special case of costless harvesting. In this case the effect
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of the discount rate on optimal harvesting and standing stock is
truly ambiguous, its direction depending on the capital intensity
of the harvesting process and the cost of capital.

2. The Model

Consider a renewable resource, the growth rate of which is given
by the function G(W), where Wis the size of the resource stock.
Let the rate of exploitation be given by the function F(K, W),
where K is the amount of capital invested in exploitation equip-
ment.' To focus on the issue at hand, we shall assume that other
factors of production are complementary to capital and ignore
their costs. The net rate of growth of the resource stock then is
(dots denote time derivatives):

W = G{W) - F{K, W) (1)

Optimum exploitation of the resource stock implies finding the
time path of investment that maximizes the following integral:

r
Jo W,) - I,]e-''dt (2)

o

subject to (1) and

k. = h- aK, (3)
where /, is investment at time /, a is the rate of depreciation of
capital, and P is the price of the extracted product, assumed
constant.^ The time subscripts will henceforth be dropped when-
ever this causes no confusion.

The present value Hamiltonian of the problem defined by (1)-
(3) is

H = [PFiK, W) - I + yd - aK)
+ K{G{W) - F{K, Wme-' (4)

where 7 and X are the adjoint variables associated with the side
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constraints (1) and (3). From the maximum principle we get (sub-
scripts to the equation symbols H and F denote partial
derivatives):

HI = iy - \)e~''' (5)
y - ry = - [{P — \)FK ~ ya] (6)

i - rK = -[{P - k)Fw+ KG'] (7)

Equation (5) determines the optimal investment policy:

/, = 0 if-/, < 1,

0 =s /, ^ I,„ax if 7/ = 1.

// = I max if 7/ > 1 •

where /^^^ is the upper limit on the flow of investment at any
point in time.

If a stationary solution {W*, K*) exists, then y = 1 and /* =
aK*. From (6) we then have that (P - \)Ffi{K*, W*) =
r + a, which says that the marginal product of capital, valued
at the net price of the extracted resource, is equal to the discount
rate plus the rate of depreciation. The net price is the market
price of the extracted resource, minus the shadow price (X) of
the unextracted resource.

In a stationary solution, Equation (7) becomes

{P - K)Fw = (r - G')\ (7')

3. Case I: Stock-Independent Harvesting Costs

If Fw = 0, the unit cost of extraction is independent of the size
of the exploited resource. There are two possibilities for satis-
fying (7') in this case:

k>0 and r = G'(W*) (7"a)
X = 0 and r ¥= G'(W*) (7"b)

If [T'a) holds, the optimal rate of exploitation is determined by
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FIGURE I. Optimal standing stock (W*), as determined by the rate of discount
when the marginal harvesting cost is independent of the stock and not very
sensitive to the amount of harvesting effort.

the equality between the marginal rate of growth of the resource
stock and the discount rate. The optimal investment is whatever
is necessary to attain this rate. The intertemporal perspective is
the only thing that matters, the price of the harvested product
being high enough to cover the current harvesting cost. It is not
surprising, therefore, to fmd that the effect ofthe discount rate
on the optimal rate of exploitation is unambiguous in this case
and points in the direction hitherto discussed in the literature,
where the discount rate has been taken as expressing only time
preference. Differentiating (Ta) gives dW/dr = G" <0 (assuming
a monotonically decreasing marginal rate of growth); that is, a
higher discount rate decreases the optimal standing stock (W*)
of the resource, as can be inferred from Figure 1. The amount
of capital invested in the harvesting process would increase ini-
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tially, in order to adjust the resource stock, but would thereafter
fall to a level lower than before, because lesser effort will be
needed to take the harvest which in the long run will decrease.
Note again that Fw = 0 by assumption; that is, the size of the
resource stock has no effect on the amount harvested (except,
of course, that no stock would yield no harvest).

Consider now {7"b), the case in which the shadow price of the
resource is zero. Here the intertemporal aspect is irrelevant; no
future yields are forsaken by taking more in the current period.
Kemp and Long (1980) referred to this case as one of a "non-
scarce" or "potentially plentiful" resource. In Kemp and Long's
model this was caused by marginal utility or revenue falling, or
marginal harvesting costs rising, as the harvested quantity in-
creases. In our model (which could easily be extended to cover
quantity-dependent price) this occurs because of a falling mar-
ginal product of capital {FK) as the harvesting capital is in-
creased, which translates into rising marginal harvesting costs
as the harvested quantity is increased.

This case is illustrated in Figure 2. To satisfy the intertemporal
efficiency rule (r = G'{W*)), the resource stock would have to
be at W*. This would require maintaining harvesting capital at
A:*, such that F{K*) = G(W*), cf. (1). But if F^^ < 0, it is
possible that PFxiK*) < r + a, and (6) could not be satisfied
in a stationary solution with K = K*. Both (6) and (7) could,
however, be satisfied in a stationary solution with X. = 0 and
K -- K** < K*, such that

PFK{K**) = a + r (6')

In this case the impact of the discount rate on the optimal rate
of exploitation works through raising the harvesting cost. This
decreases the optimal amount of capital invested and increases
the optimal standing stock of the resource. Differentiating (6')
yields dKldr = (PFJ^A:)"' < 0. This lowers the amount har-
vested, and the resource stock will grow until a new equilibrium
is reached with a larger stock and a lesser rate of growth.
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FIGURE 2. Optimal standing stock (W**). as determined by G(W**) =
F{K**) and PFKOC**) - r + a. Marginal harvesting costs are independent
of stock but rise with harvesting effort (A"), so that PFK(K*) < r + a, G( W*)

4. Case II: Stock-Dependent Harvesting Costs

Solving (6) for the stationary value of X and inserting in (7) gives

r - = (/• + a)Fw{K*, W*V[PFK{K*, W*) - (r -H a)].
m

The steady state relation G{W) = F{K, W) implies a function
^{K, W) = 0, which for certain forms of G(-) and F{-) can be
solved to yield

K* = (t)(W*). (9)
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FIGURE 3. Cases where the function W* = t^{K*) is double valued (b) and
monotonically decreasing (a).

Inserting this into (8) and differentiating gives

dW
dr

K - (r
X ww){r

- {r
a) -

a)]

(10)

A monotonically decreasing relative rate of growth implies
G" < 0. Normally, we would expect <t>' < 0, but Figure 3b shows
the possibility of <|>' > 0. Reasonable assumptions about the ex-
traction function F{K, W) are F^ ^0. F^^ 0, FKW = FWK ^
0- FKK ^ 0, FH.IV ^ 0. Making these assumptions implies a neg-
ative denominator of (10). Since the sign of the numerator is
ambiguous, the sign of dW/dr is also ambiguous. We see that
the higher the cost of capital (r + a) or the lower the value of
the marginal product of capital, the more likely it is that a higher
discount rate will imply a lower rate of exploitation. This am-
biguity disappears if Fw = 0; i.e., if the size of the exploited
stock has no influence on the yield per unit of capital (note that
(10) was derived on the assumption that \ > 0). In that case, a
higher discount rate implies a more intense exploitation (dW/dr

0)
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As an example, consider the familiar parabolic growth equation
G{W) = W{\ ~ W)and the "mass-encounter" production func-
tion F(K, W) = KW. Inserting this into (8) gives the following
solution for the optimal stock size of the exploited resource:

- P{r
(II)

W* = {4Pr'[±{SrP{r + a) + {Pir - 1) - (r +
- \) + {r + a)]

It may be noted that these functions satisfy the assumptions
G" < 0, FK > 0, F ^ > 0, FKW = FWK > 0, FKK = 0, Fww =
0. The function 4) is given by setting F(-) = G{), which gives K

Solving (11) for altemative values of P and r produces the
values shown in Table 1. Consider, first, the case a = 0, which
implies that capital equipment does not depreciate. The figures

Table 1
Solutions of Equation (11) for
Altemative Values of P and r
r

P

0.5
1.0
2.0
4.0

0

0.5
0.5
0.5
0.5

a = 0
0.1

0.57
0.51
0.48
0.47

0.5

1.00
0.68
0.50
0.39

r
P

1
2
4

0

1.00
0.75
0.63

a = I
0.1

1.00
0.76
0.61

0.5

1.00
0.85
0.60

Note: The solution of (11) implies W >
1 when fl = 1, F = 1, and r > 0. Since W
= 1 is the natural equilibrium, we set W
= 1 even in these cases.
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show that for a "low" price of the extracted product {P = 0.5
and P = 1), a higher discount rate implies a greater optimal stock
of the resource; that is, a less intense exploitation. Higher prices
of the extracted product, such as /* = 2 and P = 4, show the
"traditional" relationship between the discount rate and the de-
gree of exploitation. In this case the capital cost is less relatively
speaking, and the cost-increase effect of raising the discount rate
counts for less than the lessened willingness to invest in the
resource by leaving a part of it to grow.

The case a = 1 imphes that capital equipment fully depreciates
in one time period. This raises the opportunity cost of capital,
and is reflected in a higher optimal standing stock (lower optimal
rate of exploitation) of the resource for any given configuration
of P and r. Otherwise the same pattern emerges; if P is low
enough, then a higher discount rate implies less intense
exploitation.

A final point to note about the two cases is that the no de-
preciation—no discounting case represents the zero cost—no
discounting case, in which the resource should be exploited to
give maximum sustainable yield, which occurs at W = 0.5 (W
= 1 is the no exploitation equilibrium stock). When capital de-
preciates, the zero discounting case no longer represents the zero
cost case. With P = ] the exploitation is unprofitable, as the
lowest possible exploitation cost per unit is K/KW^ax = 1, W^^x
= 1 being the size of the resource stock when left unexploited.

Notes

1. We express capital in money terms, implicitly setting the price
of real capital equal to one. Changing the price of real capital has the
same effect as changing the marginal productivity of capital in the op-
posite direction.

2. This formulation of the optimal harvesting problem is similar to
Clark, Clarke and Munro's (1979) case of quasi-malleable capital; i.e.,
disinvestment is limited to the depreciation of capital. They demon-
strated various approach paths to an optimal stationary solution and
how these depend on the starting point. In particular, if one starts with
a heavily overcapitalized fishery, it is desirable not to use all the har-
vesting capital available and to rebuild the stock more rapidly. To take
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this into account, it would be necessary to distinguish between avail-
able and utilized capital in the above problem. As we have nothing to
add to Clark, Clarke and Munro's analysis on this point, we shall stick
to the simpler formulation, even if it is, strictly speaking, appropriate
only for a fishery that is not too heavily overcapitalized.
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