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Abstract To value water quality improvements in the Chesapeake Bay or else-
where, it is necessary to choose an appropriate model of consumer behavior.
A number of different travel cost based recreation demand models have been
employed to value changes in water quality or beach access. Among the pos-
sible models to choose from are the typical trip model, the pooled observations
approach, a varying parameter model, and a logit model. Each approach
makes different assumptions about the structure of individual preferences and
the choice process underlying individual decisions.

The purpose of this paper is to implement a methodology that can be used
to suggest a model {or models) appropriate for valuing quality improvements
in the Chesapeake Bay. To compare these approaches, a series of outdoor
recreation user populations is constructed by choosing a utility function, its
parameter values and an error distribution. This information is combined with
the characteristics of individuals and recreation sites from a Chesapeake Bay
recreation demand survey to solve the individual's maximization problem.
Each of the models is estimated using these data, and the compensating varia-
tion of a quality change is calculated. Benefit estimates are compared with
simulated welfare change to evaluate the models.

There is a large and growing literature concerning the theoretical and empirical
aspects of valuing improvements in environmental amenities. A number of rec-
reation demand models have been developed and used to value potential losses
of unique natural resources as well as changes in the quality of outdoor recreation
sites. Although extensive work has been done concerning the estimation of these
approaches, relatively little has been done concerning their suitability or sound-
ness as a basis for environmental policy. Of interest here is the applicability of
these valuation techniques to recreational uses of the Chesapeake Bay.

Recreational uses of the Bay such as swimming, boating and fishing are an
important component in Chesapeake Bay management decisions. Cleanup or
other preservation activities will affect the desirability of the water for these uses.
The use of recreation demand models to determine these values will benefit policy
makers only if the estimates resulting from these models are reliable. The purpose
of this paper is to examine the reliability of these models for the valuation of
Chesapeake Bay recreation areas.

To accomplish this objective, a simulation experiment is conducted. Chesa-
peake Bay survey data is combined with a utility function to solve a set of hy-
pothetical individuals' maximization problems. The solution to the maximization
problems yields the simulated data. Since the utility function is known, willingness
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to pay for a hypothetical change in quality can be calculated. Standard recreation
demand models are estimated using the simulated data and the resulting welfare
estimates are compared to the simulated willingnesses to pay. Repeated trials are
undertaken in order to assess these welfare estimates. Since data concerning users
of the Chesapeake Bay and recreation sites along the Bay are employed in these
simulations, the results are especially applicable to research and policies con-
cerning the Bay.

The Estimation Approaches

A number of different multiple site recreation demand models have been estimated
in the environmental economics literature. Typically, researchers employ one of
these models to estimate the total benefits due to an improvement in environ-
mental quality. Each of the models uses different estimation techniques and be-
havioral assumptions. The econometric models considered here can be grouped
into three categories: single equation models, a varying parameter model, and a
logit model.

1. Single Equation Demand Models

Perhaps the most intuitive approach to estimating welfare associated with quality
changes for several sites is to pool all of the observations on number of trips,
price and quality together and estimate a single demand equation. By pooling
observations in this manner, it is possible to estimate the effect of quality on visits
since quality will vary over the observations. Several different methods have been
presented along these lines.

One variety of the single equation model is a typical trip model where a demand
equation is estimated using the sum of all visits to all sites as the dependent
variable and the travel cost and quality characteristics associated with the "typ-
ical" trip as the independent variables (Caulkins, Bishop and Bouwes 1982). The
typical trip is generally defined to be the trip most often taken or the trip indicated
by the individual as most preferred. The demand function estimated is

Xi = tto + a,qi + ajPi + ajyi + e;, i = 1, . . . , M, (1)

where Greek letters correspond to estimated coefficients, Xi is the total number
of trips individual i takes in a season to all sites, qi is the water quality measure
associated with the typical trip. Pi is the travel cost associated with this typical
trip, yi is income, ei is a random term and M is the number of individuals in the
sample.

Once this equation is estimated it is possible to determine Marshallian con-
sumer surplus estimates associated with an increase in quality. The consumer
surplus resulting from an improvement in quality is estimated as the difference
between the total consumer surplus before and after the change. That is

CSi = -.5(Xl?/a2) + .5(X0?/a2), i = 1, . . . , M, (2)

where Xli is the predicted number of trips after the improvement in quality and
XOi is the predicted number of trips before the quality increase.

A second variety of the single equation approach is to consider visits to each
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site as separate observations in the estimation of a demand function (Reiling,
Gibbs and Stoevner 1973; Binkley and Hanemann 1975; and Freeman 1979). In
this approach, a pooled demand function is estimated where the dependent vari-
able is the number of visits to the site and the independent variables are income
and the corresponding travel costs and quality characteristics. That is

Xij = ao + aiqij + azPij + aayi + ey, i = 1, . . . , M, j = 1, . . . , N, (3)

where Xij is the number of visits to site j , Pij is the travel costs to site j , qy is the
quality at site j , and N is the total number of sites. Marshallian welfare estimates
are calculated in a similar manner as for the typical trip model.

An extension of this model can be estimated by including the prices of sub-
stitute sites, perhaps in the form of a stacked regression (Kling, Bockstael, and
Strand 1985). However, it is still not possible to include substitute qualities since
doing so eliminates the necessary quality variation.

2. Systems of Demands and the Varying Parameter Model

Another approach to multiple site recreation demand modelling is to consider a
system of demand equations for the available sites. This approach is taken by
Burt and Brewer (1971) and Cicchetti, Fisher and Smith (1976). This model gen-
eralizes a single site travel cost model to a system of demand equations. Since
the travel costs associated with visiting a site are interpreted as the price of visiting
that site, each individual faces a different price gradient depending on where he
lives. The estimated coefficients of the demand equation are then used to predict
the future usage rates or to construct benefit measures associated with changes
in recreation sites.

The difficulty with this approach is that site characteristics cannot be incor-
porated as separate variables since their values do not vary over the observations
in the demand functions. These characteristics can be incorporated into a system
of demand equations by means of a varying parameter model (Freeman 1979;
Vaughan and Russell 1982; Smith, Desvousges and McGivney 1983; and Smith
and Desvousges 1985).

The varying parameter model is used by Vaughan and Russel to estimate the
average value of a freshwater fishing day at fee-fishing sites. To accomplish this,
they estimate a system of demand equations where the number of visits is specified
only as a function of own price and income

= a, + 3,Pii + 7,yi + eii
i i : : (4)

= aw + PNPIN + 7Ny + eiN, i = 1, . . . M.

Next, the parameter values from these demand equations are assumed to depend
on the characteristics of the sites

k

820 + S Szkqkj (5)
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where qkj is in the amount of characteristic k at site j and the 8's are the second
step regression coefficients. By substituting (5) to (4), Saxonhouse (1979) shows
that estimation of the following equation is equivalent to estimating (4) and (5)
separately (when there are two quality characteristics)

+ CT2qii + cr3q2i + a4Piiqii + CT5Piiq2i + " h n n n ,r^

+ o-gyi + e,j. i = 1, . . . , M, j = 1, . . . , N,.

This equation is estimated using pooled data from all the sites visited. The quality
and price variables all enter alone and multiplicatively.

Applications of the varying parameter model have specified the demand for a
site as a function of its own price, income, socioeconomic variables and through
the regression coefficients, own site characteristics. Through this specification,
the number of visits to a site is a function of own price and own quality, but not
of the other chosen prices and qualities.

3. The Logit Model

A number of authors have used multinominal logit models to estimate benefits
associated with recreation goods (Binkley and Hanemann 1978; Feenberg and
Mills 1980; Rowe, Morey, Ross and Shaw 1985; Bockstael, Hanemann, and Strand
1986; and Caulkins, Bishop and Bouwes 1986). The logit model assumes that the
individual is faced with a choice among discrete, quality differentiated alternatives
and that on any given day the individual chooses the alternative that maximizes
his utility. The probability of choosing an alternative can then be expressed as a
function of the characteristics.

In this model, the indirect utility function associated with the choice of alter-
native j is written with one quality characteristic as

Vij = V(Pij,qj) + Wij = a + bPij + cqj + Wij (7)

where a, b and c are parameters, and Wij is an error term. The individual will
choose to visit site j only if site j provides the greatest utility, i.e., if Vij > Vik
for all k. This implies that the probability that the individual will visit site j is

nij = Prob(Wij - Wik > V(pik,qk) - V(pij,qj)), allJ5^k. (8)

If the Wij follow the Weibull distribution, the logit model results and this probability
can be written

nij = exp(V(pij,qj))/2 exp(V(pik,qk)). (9)

The likelihood function for a sample of individuals is the product of the individual
probability statements over all individuals.

When there is a quality or price change, the individual reallocates his visits
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amotig the available alternatives. Hatiemann (1982) shows that the compensating
and equivalent variation for the logit model can be written

cVi = eVi = (l/b)(ln 2 exp(Vo) - In 2 exp(V,)) (10)
k k

where Vo and Vi are the indirect utilities before and after the change respectively.
This provides an estimate of willingness to pay per choice occasion. An estimate
of total willingness to pay per season can be attained by multiplying cvj by the
total number of trips taken annually. For a quality improvement this is likely to
be an underestimate of benefits since as water quality improves, individuals are
likely to take more trips.

Bockstael, Hanemann and Strand (1986) apply a Generalized Extreme Value
variation of the logit model. This distribution is assumed to allow some correlation
among the errors. To allow total number of trips to vary when a welfare change
is considered, they employ a Tobit model to estimate a separate participation
equation.

One difficulty with logit models is that they have considered each choice oc-
casion to be independent of all the others. The total number of trips in a season
is determined as a result of individual decisions made over the course of the year.
This means that when it comes to prediction or benefit estimation, the researcher
is forced to estimate a new equation to capture the effect a welfare change will
have on total participation. Rather than coming from one underlying utility max-
imization problem, these two decisions have been estimated independently.

The Construction of the Simulation Experiment

The importance of generating the data cannot be overestimated since any con-
clusions that are drawn concerning the usefulness of the recreation demand models
are only as good as the data used to test their worth. In this regard it is important
that the data used be "reasonable." That is, are the values of prices, income,
and number of visits good approximations of observed data? Are the character-
istics of individuals observed in sensible groupings? In order to assure that the
data provide a good representation of reality, actual data have been used whenever
possible in the creation of the simulation experiment. The data on income and
travel costs (prices) come from a survey conducted by Research Triangle Institute
for the University of Maryland.' Approximately 400 Chesapeake Bay users were
surveyed on site in the summer of 1984. Individuals provided information about
their pattern of beach use to 17 beaches, the activities they undertook while vis-
iting the beaches, and extensive personal data. Information on water quality char-
acteristics was also collected.

The six most popular beaches where water quality characteristics are also
available (unfortunately, these measures could not be associated with all of the
beaches) are chosen to be included in the simulated data. The use of six beaches
simplifies the creation of the data set and the subsequent model estimations sub-
stantially, but still provides enough variation in alternatives to adequately rep-

' A complete description of the survey can be found in Bockstael, Hanemann, and Strand,
1986.
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resent the range of choices facing the individual consumer. The use of the Ches-
apeake data in this manner guarantees that characteristics are observed in sensible
combinations.

The next step in creating a recreation data set is to specify a utility function,
its parameter values, and an error structure. Once this is achieved, the personal
and site characteristics can be combined with the assumed preference structure
to solve each individual's utility maximization problem. This provides the data
to be used in estimating each of the recreation demand models. Additionally,
since the utility function is known, a simulated measure of compensating variation
can be calculated for a postulated change in water quality for all individuals.

The utility function chosen for this data set is one suggested by Bockstael,
Hanemann and Strand (1986)

U = X'I ' j inCxj - e) + In z (11)
j

where ^j = po -h p,Sj + PzFj + ej, (Bo, Pi, Pz and 0 are parameters and z is the
numeraire. The ^j is a quality index which is a linear combination of two water
quality measures, Sj and Fj and a random error, ê . The quality measures, Sj and
Fj, stand for secchi depth and fecal coliform count respectively. Each individual
has the same preferences in that they all have the same utility function and pa-
rameter vector. The utility function (11) is a variant of the linear expenditure
system with the parameters dependent upon site quality. The parameter 6 is often
interpreted as the subsistence level of the good and is constrained to be positive.
This interpretation is not necessary and is counterintuitive in the recreation case.
The e is chosen to be negative which implies that recreation goods are not nec-
essary for an individual's survival.

The linear expenditure system (11) is chosen for the simulation because it
suggests behavior which is consistent with observed behavior of Chesapeake
beach goers. First, as long as the 9 is negative, the solution to the maximization
problem yields corner solutions. Most Chesapeake Bay users consume only one
or a few of the many sites available to them so the use of a functional form which
allows corner solutions is critical. There are many utility functions for which this
is not the case. Second, as long as the 9 is negative, the own-price elasticities
implied by the linear expenditure system are elastic. This appears to be consistent
with available estimates of these elasticities which range from about - .6 to -2.1
(Strand 1986). In addition, since the utility function is additive, the income elas-
ticities are positive which is also consistent with expectations and available es-
timates of actual income elasticities.

The income and prices (travel costs) are from the Chesapeake data and mean
income is about $40,000.^ The environmental data come from actual measures of
water quality associated with the six sites. For the applications here, the measures
are defmed so that increasing numbers represent improvements in quality. Secchi
depth and fecal coliform counts are objective measures of water quality, but since
secchi depth is a measure of turbidity and fecal coliform levels are indicators of

^ The average travel costs and their standard deviations to each of the six sites are- (1)
$10.59 (4.86); (2) $11.65 (6.10); (3) $11.03 (5.70); (4) $16.26 (8.11); (5) $15.37 (6.06); and
(6) $16.24 (6.90).
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odor, they are likely to reflect characteristics perceivable by recreationists. The
connection between objective measures of water quality and perceptions is not
well understood. Fortunately, for the simulation experiment this difficulty can be
ignored since utility can be assumed to depend on objective measures.

The final consideration is the specification of the error structure in (11). The
error term in this construction is considered a result of measurement error or
random preferences on the part of individuals. The error appears in the quality
index so there is one error associated with each alternative per individual. These
terms are randomly generated and distributed according to a rectangular distri-
bution ranging from 0 to .0001. These endpoints are chosen so that the errors are
significant in determining the size of the quality index ^ j , but do not overwhelm
the effect of the two quality variables. This specification is chosen for its
simplicity.

The solution to the consumers utility maximization problem is generated using
the parameters 3o = - .0001, p, = .0002, Pz = .0000004 and 9 = - 1. A number
of different parameter values were tried in the construction of the simulated data.
These parameters are chosen arbitrarily to yield solutions to the maximization
problem that are consistent with observed Chesapeake Bay data. For a detailed
discussion of the simulation model and solution algorithm see Kling (1986). The
parameter values are combined with five different sets of randomly drawn errors
from a uniform distribution to create five independent data sets. Each data set
has about 250 observations. The resulting data sets are summarized in Table I.

The solutions for the x's are roughly consistent with observed data on rec-
reation visits in terms of magnitude. TKe actual number of trips taken to these
six sites as reported in the Chesapeake Bay beach survey range from 0 to 80 with
a mean across all six sites of 1.82. The simulated number of trips taken to these
sites range from 0 to 40 with a mean across all sites of 2.73. The simulated visits
are more evenly distributed than the observed data.

Once the maximization problem is solved and the simulation data is generated,
it is possible to calculate compensating variation for proposed changes in the
prices or quality characteristics. A ten percent increase in the levels of the two
water quality variables (Sj and Fj) is proposed and evaluated. Compensating varia-
tion (CV) can be defined for the quality change as

V(p,q'',y) = V(p,q',y-CV) (12)

where q° represents the old level of the quality index and q' represents the new
level (with the increased Sj and Fj). The values for CV are also reported in Table
1. The mean compensating variation associated with a ten percent improvement
in water quality is about $17.24. The measures range from zero to about $11.00
for each of the repetitions.

Results of the Simulations

To determine how appropriate the four models described above are for estimating
the benefits of environmental improvements along the Chesapeake Bay, the
models are estimated using the simulated data. Once the estimated welfare mea-
sures are calculated, they are compared to the simulated compensating variations,
underlying the simulated data. Since the emphasis of this work is on welfare
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evaluation, individual coefficient estimates are not reported; rather, the overall
fit of the models are discussed in general.

The models chosen for inclusion in the simulation are those which have re-
ceived the most attention ih the multiple site recreation demand literature. For
each approach, a number of decisions concerning functional form, method of
estimation, and welfare calculation had to be made. These choices are meant to
mimic choices made by researchers in other applications of the models. One
difference between the applications here and elsewhere is that the demand func-
tions are estimated using a linear form rather than the often employed semi-log
form. Since the semi-log is asymptotic to the price axis, it presumes that indi-
viduals always purchase a positive amount of the good which is inconsistent with
the model and data presented here.

1. Typical Trip Model

The first model estimated is the typical trip approach. One equation is estimated
where the dependent variable is the sum of all the trips taken to all the sites in a
season and the independent variables are income and the levels of quality and
price associated with the typical trip. This typical trip is described by the qualities
and cost associated with the most often chosen alternative. The estimated demand
function is

Xi = ao + aiSi -I- azFi + asPj + a4yi + ei i = 1, . . . , M, (13)

where Xj = X xy, Pi, Si and Fi correspond to the price and qualities of the trip
j

most often taken and yi is income.
Heteroskedasticity is often present and corrected for in applications of travel

cost models because visits per person are likely to have a higher variance at higher
income levels and at higher values of other explanatory variables. A commonly
employed test of heteroskedasticity is the Park-GIejser test (Pindyck and Rub-
infeld 1981). In this test the log of the predicted variance form the OLS estimation
is regressed against the log of the explanatory variables of interest. Evidence of
heteroskedasticity was found in all five cases, so weighted least squares is used
to estimate Equation (13).

Th£ R̂  statistics for the five repetitions range from .76 to .77. The coefficients
on S, P and y are all significant at the 1% level for all repetitions. The coefficients
on F are significant at the 1% level for two of the five repetitions. Table II reports
the coefficient estimates and t-statistics of the repetition which generates the
closest welfare estimate for each of the models.

Consumer surplus associated with a ten percent increase in the two quality
variables of the typical trip is calculated as the difference between the Marshallian
welfare triangle before and after the improvement. Results for the five data sets
are presented in Table III. The average consumer surplus estimates per person
per season range from $11.46 to $15.36. In all five cases the welfare estimates
are below the simulated measures.

2. Pooled Observation Demand Functions

A second model estimated is a pooled observation demand function where the
independent variable is the number of trips taken to each site for each individual.



104 Catherine L. Kling

Table 2
Model Coefficients and t-statistics for the Repetition which Produces the

Closest Welfare Estimates of each Model
Typical Trip R^ = .75 ~

Xi = -5.90 + .0063Fi + 4.72Si - 1.20Pi + .00052yi.
(-.97)* (1.29) (2.45) (-13.84) (26.35)

Fooled—WLS = .53

Xij = .43 + .71Sj + .0018Fj - .29Pij + .00009yi.
(.73) (4.12) (3.70) (-27.70) (31.04)

Pooled—Tobit R' = .67

Xij = - .18 + 1.13Sj -I- .0021Fj - .42Pij + .00012yi.
(-.25) (5.44) (3.43) (-29.71) (32.79)

Varying Parameter Model R^ = .68

Xij = -3.31 + 1.42Sj + .0055Fj + .025Pij + .00005yi
(-1.93) (2.52) (3.56) (.22) (1.68)
+ 7.0E - 7Fjyi + .OOOOlSjyi - .0005FjPij - .054SjPij.

(2.55) (1.04) (-4.61) (-1.53)

Logit x^ = -1719.81 (3 degrees of freedom)

Vij = .3018Sj + .00075Fj - .137Pij.
(4.90) (4.50) (-3.35)

* t-statistics are given in parentheses below the coefficients.

Table 3
Welfare Estimates for the Typical Trip, Pooled Demand Function, Varying

Parameter Model and Logit Model'

Data
Set

1
2
3
4
5

Mean

Simulated
Compen-

sating
Variation

17.26
17.13
17.36
17.18
17.26
17.24

Typical
Trip

Consumer
Surplus

12.01
11.46
15.36
14.49
14.79
13.62

Pooled
Observation Consumer

Surplus
WLS

7.98
10.60
10.52
13.44
10.33
10.57

Tobit

6.50
10.97
10.48
14.36
15.64
11.57

Varying
Parameter
Consumer

Surplus

6.60
13.44
13.06
7.01

11.40
10.30

Logit
Compen-

sating
Variation

6.42
10.46
9.50

13.53
10.99
10.18

' The welfare estimates for the typical trip model, the pooled observations models, and
the varying parameter model are Marshallian measures; the simulated measures and logit
estimates are compensated measures.
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Instead of one observation per person as in the above two approaches, there is
one observation per person per site in this approach. The estimated demand func-
tion is

Xij = ao + aiPij + a2Sj + asFj + a4yi + eij,

i = 1,. . . , M , j = 1 , . . . ,N ,

where Xij is the number of visits to site j , Sj and Fj are the quality measures
associated with sitej and Pij is the travel cost to sitej. Again, heteroskedasticity
is corrected for in all five cases. WLS is performed on (14) for all observations
where Xij is positive. The R̂  statistics for the WLS version of the pooled model
range from .52 to .54. The coefficients on S, F, P, and y are all significant at the
1% level for all 5 repetitions. Coefficients are reported for the repetition which
yields the closest welfare estimate in Table 2.

The average estimated Marshallian consumer surplus for each repetition is
reported in Table 3. In cases where the predicted number of trips is negative,
the number of trips is set to zero.^ This provides an estimate of welfare per person
per site, so to determine average consumer surplus per person per season, it is
necessary to multiple these welfare estimates by the number of sites. The esti-
mates are somewhat lower than the typical trip with a mean of $10.57.

Equation (14) is also estimated using a Tobit model. The Tobit procedure is
used to account for the bias introduced by the large number of zero trips to the
sites. The R^ statistics for the Tobit model range from .66 to .68 and all of the
coefficients are significant at the 1% level. The resulting consumer surplus esti-
mates are also reported in Table III. The use of the Tobit improves the welfare
estimates somewhat, but the difference is not very notable except for case 5.

3. Varying Parameter Model

A third model estimated is a version of the varying parameter model. Since there
are only six sites in the data sets, the two step version of the model is not feasible
to estimate since there are only as many observations in the second regression
as there are sites. One equation is estimated using observations pooled over sites.
The two quality characteristics enter into the demand function crossed with price
and income as well as individually.

Xij = ao + aiSjPij + a2FjPij -I- a3 Pij + a4Sj + asFj -I- y
(15)

+ a7Sjyi + agFjyi + eij, l = 1, . . . , M, j = 1, . . . , N,.

Equation (15) is estimated using the Tobit procedure and the demand for visits
after a ten percent improvement in both of the quality variables is predicted. The
Marshallian welfare triangle is computed using a slightly different formula since

' As noted by a reviewer, the use of actual trips instead of predicted trips would have
avoided this anomaly. However, Bockstael, Hanemann, and Strand (1986) argue that the
use of actual values implies that the error term in (14) arises from omitted variables, since
the actual value is not affected by variable omission. In the simulation experiment, there
are no omitted variables; rather, the error is presumed to arise from random preferences
which is consistent with employing predicted trips to calculate welfare estimates.
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the slope of the demand function changes when quality changes. The consumer
surplus per site associated with a change in quality is

csij = .5(xO?j/(a,Sj' + azFP + aj)) - .5(xl?j/(a,Sj' + azF] + aj)) (16)

where Sj' and Fj* represent the quality values before the improvement and S] and
Fj' are the quality levels after the change. In order to have a downward sloping
demand function it is necessary for (aiSj -I- a2Fj -I- aj) < 0. When Sj and Fj are
increased both the slope and the intercept of the demand function will be affected.
If the demand function has a negative slope, the slope change will tend to increase
welfare, and if the price intercept increases welfare will unambiguously increase.
However, it is possible and in some cases here observed, for the intercept to fall
so that, depending on the values for Sj and Fj, consumer surplus estimates can
be negative.

The R^ statistics for the varying parameter model range from .67 to .69. There
is some problem with insignificance of individual coefficients due, most likely, to
coUinearity associated with the cross product terms. For example, for the first
repetition, three of the coefficients are not significant at the 1% level. Coefficient
estimates for the model which yields the closest welfare estimate are presented
in Table 2.

The consumer surplus from (16) represents an estimate of the benefits asso-
ciated with an increase in quality per person per site. As for the pooled model,
these estimates are multiplied by six to provide an estimate of the benefits per
season. Welfare estimates for the varying parameter model are reported in Table
3. On average, the varying parameter underestimates the welfare change by
about $7.00.

4. Logit Model

A logit model is estimated using price and the quality measures as explanatory
variables. The indirect utility function estimated is

Vi = aSi + bFi + cPi (17)

where Vi is the indirect utility associated with a visit to site i. Using the expression
for the probability of choosing site i (9) the log of the likelihood function can be
constructed and estimated. For all repetitions, a Chi-square statistic is calculated;
these statistics indicate that the model is significant at the 1% level using a like-
lihood ratio test with three degrees of freedom. In addition, the individual coef-
ficients on S, F, and P are significant at the 1% level for all the repetitions with
the exception of the coefficient on F in repetition 1. Table II contains coefficient
estimates for the repetition which yields the closest welfare estimate.

To capture the effect of the quality change on the number of trips individuals
take in a season, a separate participation equation is estimated. The total number
of trips taken is assumed to depend on income and an inclusive value (Domencich
and McFadden 1975). The inclusive value captures information about the set of
alternatives available to the individual. A compensating variation estimate (10) is
obtained which provides an estimate of the willingness to pay for the improved
quality per trip. This is then multiplied by the predicted number of trips resulting
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from the participation equation. The results are summarized in T'able 3. The
welfare estimates range from $6.42 to $13.53. Although underestimates, these
predictions are fairly close with a mean of $10.18.

The superiority of the typical trip model is surprising given the apparent mis-
specification of the model. One possible explanation is that there is mis-specifi-
cation of all of the models in terms of functional form. The demand function
implied by the linear expenditure system with quality introduced as in (11) is not
linear in all of the regressors, nor is the indirect utility function. However, the
demand functions estimated for the typical trip, the pooled model, and the varying
parameter model are linear. In addition, the indirect utility function estimated in
the logit model is also linear. Since all of the estimated models use functional
forms which do not match the LES, the fact that the typical trip model performs
best may be purely coincidental.

A second possible explanation of the superiority of the typical trip model may
lie in the simulated data. In this data, many individuals visit only a few of the
available sites. The typical trip model employs data only from the most often
visited site. This model becomes more appropriate as the number of sites visited
decreases; when only one site is visited, there is no mis-specification at all.

A second surprising result is the consistently negative bias in the consumer
surplus estimates. These underestimates may be due to the unmatching functional
forms. Although the consumer surplus estimates are biased downwards in all cases
here, there is no reason to assume that this will hold in general. These results are
specific to the utility function, parameter values, and estimated functions chosen
for this simulation and should not be generalized to other situations without more
evidence. In fact, in a simulation experiment employing the same utility function
but using different parameter values and error distribution, Kling (1986) found
some overestimates of consumer surplus.

Conclusions

The primary purpose of this work is to compare different modelling approaches
that might be used to estimate welfare changes for Chesapeake Bay beach sites.
A linear expenditure system utility function is combined with individual data on
income and travel costs to generate five simulated data sets used in the simulation
experiment. Four of the most commonly applied recreation demand models are
estimated using the simulated data. Welfare estimates from the recreation demand
models are compared with the simulated welfare changes for a ten percent im-
provement in environmental quality across all sites.

The fairly naive typical trip model provides the closest estimates although they
are consistently too small. On average, the typical trip model underpredicts the
simulated welfare by about $3.60. The Tobit version of the pooled model provides
the second best estimate of welfare generating an average error of about - $5.60.
The WLS version of the pooled model, the logit model, and the varying parameter
model generate average welfare estimates ranging from $10.18 to $10.57. The
worst average estimate (the logit) captures only about 60% of the simulated wel-
fare, and the best average estimate (the typical trip) captures about 80% of the
simulated welfare.

An interesting result is that each approach underestimates, on average, the
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simulated welfare. This consistent underestimate suggests that the welfare esti-
mates provide a lower bound to the simulated welfare. This conclusion is not
warranted in general, however, since this underestimate may be due to the mis-
match in functional form between the estimated models and the utility function
used to generate the simulated data.

A number of modifications to the simulation experiment presented here could
be undertaken to improve the reliability of the results. For example, individuals
could be made to vary in more dimensions than just income and price. In addition
to consideration of the attributes of individuals and alternatives, issues of func-
tional form, error structure, and variable omission can be examined with a simu-
lation approach. The utility function in (11) is just one example of a utility function
that could be employed in the simulation. A different functional form could be
chosen to examine how the choice of utility function affects the simulation results.
The choice of the error structure in (11) may also influence the estimated welfare
measures.'*

Simulation experiments, such as the one presented here, seem to be a tractable
way to compare different modelling approaches, in particular, those models used
to estimate benefits from recreational uses of a Chesapeake Bay. The results of
this experiment indicate that four commonly employed recreation demand models
underestimate the benefits of a ten percent improvement in environmental quality
capturing from about 60 to 80% of the simulated welfare change.
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