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Abstract   Management of public resources, such as fisheries, is a complex task.
Society, in general, has a number of goals that it hopes to achieve from the use
of public resources. These include conservation, economic, and social objec-
tives. However, these objectives often conflict, due to the varying opinions of the
many stakeholders. It would appear that the techniques available in the field of
multiple-criteria decision-making (MCDM) are well suited to the analysis and
determination of fisheries management regimes. However, to date, relatively few
publications exist using such MCDM methods compared to other applicational
fields, such as forestry, agriculture, and finance. This paper reviews MCDM ap-
plied to fishery management by providing an overview of the research published
to date. Conclusions are drawn regarding the success and applicability of these
techniques to analyzing fisheries management problems.

Key words   Fisheries, literature review, mathematical programming, multiple-
criteria decision-making, multiple objectives.

Introduction

Fisheries management is concerned with the utilization of fisheries resources for the
greatest benefit to society. Optimal use, however, depends on the objectives of soci-
ety. From a purely economic viewpoint, optimal use of fisheries resources is to
achieve the maximum level of producer and consumer surplus possible
(Cunningham, Dunn, and Whitmarsh 1985). However, fisheries managers are also
subject to pressure from groups with political, social, or conservation objectives. As
a result, fisheries management is often characterized by multiple objectives, some of
which may be conflicting (Crutchfield 1973).

Examination of fisheries management policies from around the world suggest
that the most common objectives of fisheries management are: (i) resource conser-
vation, (ii) food production, (iii) generation of economic wealth, (iv) generation of
reasonable income for fishers, (v) maintaining employment for fishers, and (vi)
maintaining the viability of fishing communities (Charles 1989). The U.S.
Magnuson-Stevens Fishery Conservation and Management Act (Public Law 94-265)
states that fisheries managers shall develop management plans that achieve the “op-
timum yield” from each fishery. These management measures must consider eco-
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nomic efficiency, but no measure has economic allocation as its sole purpose. Man-
agement measures must also ensure that overfishing is prevented to provide for sus-
tained participation of fishing communities and minimize adverse economic impacts
on such communities.

Similar multiple objectives are present in the management of European fisher-
ies. Objectives of the Common Fisheries Policy (CFP), as embodied in Article 2 of
Regulation No. 3760/92, are, “to protect and conserve available and accessible living
marine aquatic resources and to provide for rational exploitation on a sustainable basis,
in appropriate economic and social conditions for the sector, taking into account of
its implications for the marine ecosystem, and in particular taking into account of
the needs of both producers and consumers” (European Commission 1992, p. 1).

Considerable effort has been undertaken globally to develop biological and
bioeconomic models of fisheries to assist in fisheries management. However, results
from these models are largely ignored by fisheries managers because they focus on
single objectives. Due to the increased importance of fisheries management and the
associated requirements of conservation, plus social and economic factors, conflicts
apparent in the fishery management process are increasing (Hanna and Smith 1993).
Therefore, multi-objective evaluation of fishery management plans would appear the
logical approach for both theoretical and practical reasons (Bishop, Bromley, and
Langdon 1981).

The MCDM techniques, especially the subset of multi-objective programming
(MOP) techniques, appear to be an ideal set of tools to aid in the task of fisheries
management. The application of MCDM to fisheries problems is relatively small
scale compared to other fields, such as forestry, water resource planning, agricul-
tural planning, and finance. However, there are case studies reported for all major
MCDM techniques for fisheries problems, although few in number (see appendix).

The purpose of this paper is to provide an overview of the types and applica-
tions of MCDM methods applied to fishery issues. Techniques are divided into three
main sections: multi-objective programming, multi-criteria decision analysis, and
other important concepts. An overview of how each of these techniques can be ap-
plied to fisheries and examples of applications are presented. In addition, the related
area of multi-level programming is also examined. Finally, a discussion is presented
regarding the potential future usefulness of MCDM techniques in assisting fisheries
management decision-making.

Multi-objective Programming in Fisheries

The key feature of MOP is that it directly incorporates the tradeoffs between the
modeled objectives in the analysis. Decision maker preferences are also incorpo-
rated into the analysis; e.g., through a set of weights assigned to the multiple objec-
tives. When several interest groups with diverse objectives are involved in the deci-
sion-making process, as is the case in many fisheries problems, different sets of
weights can be applied, and a set of “optimal” solutions estimated. If several interest
groups are active in the process, then a single “best” solution is unlikely. However,
tradeoffs between objectives become explicit rather than implicit, as is often the
case in fisheries management decision-making.

A key characteristic (typically a requirement) of multi-objective programming
solutions is that of Pareto efficiency.1 As with the economic concept of allocative ef-
ficiency, Pareto efficiency occurs when no objective or goal can be improved with-

1 Pareto efficient solutions are also often termed noninferior or nondominated.
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out degrading another. A Pareto efficient solution frontier, or discrete set of Pareto
efficient points, exists for most problems. From there, a best-compromise solution
can be identified given specific decision maker preferences. Incentive-compatible
solutions (where Pareto efficiency may not be detectable) are defined as the solution
state where no decision maker finds it advantageous to alter their behavior pattern in
order to achieve a more satisfactory result. Thus, the solution(s) developed will ulti-
mately best reflect the situation under investigation.

From the reviews of MOP applications, fisheries management appears to have
been slow to adopt MOP planning process opportunities. In a recent bibliography of
general MOP applications, White (1990) cites 504 publications, none of which coin-
cide with the fisheries references in this paper. Romero (1991) cites 351 goal pro-
gramming applications of which only three relate to fisheries. This lack of studies is
predominantly an artifact of the journals in which applications to fisheries appear, as
few fisheries journals are listed in operational research bibliographic databases.
Therefore, unless a specific literature search for multi-objective fisheries applica-
tions in the fisheries and economics literature is performed, few will be found.

Generally, MOP techniques are applied to model a form of management plan in
a similar approach to linear programming (LP) models. Some problems that have
been considered in fisheries are policy management, fleet structure, stock planning,
resource allocation, quota allocation, development planning, optimal harvest, and
resource management. The following subsections describe the MOP techniques and
fisheries applications using goal programming, generating methods, and nonlinear
MOP.

Linear Goal Programming

Goal programming (GP) was first thoroughly introduced by Charnes and Cooper
(1961), and is perhaps the oldest of the MCDM techniques. It has since been further
developed by many researchers. Recent comprehensive discussions are given by
Romero (1991) and Ignizio and Cavalier (1994). The most common paradigms of
linear goal programming techniques are weighted (or Archimedian) GP (WGP) and
lexicographic (or preemptive) GP (LGP) (Tamiz, Jones, and El-Darzi 1995). Others
include MinMax (or Chebyshev), fuzzy, fractional, and nonlinear GP. Linear GP is a
computationally efficient approach (i.e., standard linear programming techniques are
used for solution), generally only seeking one solution for a specified model (Cohon
and Marks 1975; Willis and Perlack 1980).

The structure of a GP model minimizes the sum of absolute deviations from
given target (goal) values using the Simonian philosophy of “satisficing.” The typi-
cal mathematical representation of a WGP is,

min ( )z u n v pi i i i
i

k

= +
=
∑

1
(1)

subject to

fi(x) + ni – pi = bi      i = 1, … k (2)

x ∈  X (3)

x, n, p ≥ 0 (4)
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where fi(x) defines a typical objective function or goal (often linear), bi is the target
value of goal i, x ∈  Rn is the set of decision variables, n, p ∈  Rm are deviational vari-
ables, and u, v ∈  Rm are the respective deviational variable predetermined weights.
Equation 1 is termed the achievement function, equation 2 is the k goals (or objec-
tives) to be satisficed, and equation 3 represents an optional set of hard constraints
in the traditional LP style (e.g., the sum of a given species’ landings cannot exceed
that species’ total catch). The achievement function weights specify the relative de-
gree of importance of each goal. From equation 2, if the target level, bi, is exceeded,
then the positive deviation variable, pi, is nonzero, and the negative deviation vari-
able, ni, is zero. Conversely, for an underachieved target level, ni is positive, and pi

is zero. For example, bi may represent the target level of fishery profits, while fi(x)
represents the actual levels of profits achieved in the model. In this case, ni repre-
sents the shortfall in actual profits compared to target profits, whereas pi represents
the excess of actual profits over target profits.

The achievement function measures the total deviations (in absolute terms) from
the target level of each goal, where the predetermined weights in the achievement
function represent the relative importance of the goals. If it is acceptable to exceed a
goal, but not to underachieve it, then the goal’s positive deviational variable, pi, will
have zero weight, vi, in the achievement function, while the negative deviation
weight, ui, will be nonzero.

The deviations from the specified goals are typically measured in different
units, and, particularly, different magnitudes of units; e.g., dollars and people em-
ployed. This may cause significant difficulty in setting up a representative achieve-
ment function with appropriate weights u and v. However, normalization of the de-
viations using a variety of techniques can help overcome such incommensurability.

Similarly, LGP can be represented in a mathematical form by altering the
achievement function  to a lexicographically ordered vector,

  
min [ , , ..., ]a = a a al1 2 (5)

where a u n v pi i i ii

m
*

* *( )= +=∑ 1  represents a typical priority level (PL*), and ui
* , vi

*

are predefined interpriority level weights. Equation 3 is not necessarily required in
the case of the LGP definition, as these hard constraints can appear as goals in the
first priority level. With LGP, each priority level is optimized in turn; therefore, this
assumes that priority level one is infinitely more important than priority level two
and so on. For example, the solution (0,1,10,50), in priority order PL1 – PL4, is pref-
erable to (0,2,1,1), even though the latter is closer to the goals in more levels.

In a fishery model, this might represent an objective of minimizing catch be-
yond the quota as a priority over maximizing profitability or employment. In such a
case, a solution that yields a lower level of over-quota catch is preferable to one
which yields higher levels of other objectives, even if substantial improvement in
achieving the other objectives can be obtained through alternative solutions.

The number of published applications in fisheries (table 1) that specifically use
GP is very small compared to other fields such as forestry, water resource manage-
ment, and agriculture (Romero 1991). These started receiving significant attention
in the early 1980s, but there was (and has been subsequently) very little application
of GP to fisheries. Cohon and Marks (1975) suggest that GP is less suited to public
sector problems than to those in the private sector as a possible reason. This is pri-
marily due to value judgments required for modeling, as no one has complete
knowledge of the situation under investigation.

All of the fisheries studies using GP have noted the diverse number of “optimal”
solutions which may be obtained when optimizing a model. This is achieved by
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simple redefinition of weights, GP method, and possible goal re-specification. A dis-
tinct advantage of the method is that it easily allows the analysis of a wide range of
possible scenarios. However, several authors have questioned the effectiveness of
the GP approach. The three main criticisms that have been leveled at GP are that: (a)
value judgments are required to formulate an accurate model; (b) Pareto inefficient
solutions can occur, particularly if low target values are set; and (c) incommensura-
bility may cause incorrect modeling of decision maker’s preferences. All of these
points can be handled sufficiently with appropriate modeling techniques.

A case study of the English Channel fishery overcomes these deficiencies in GP
by using a variety of modeling techniques (Pascoe, Tamiz, and Jones 1997). Three
objectives were identified: maximize economic profit; maintain employment; and
minimize discards of quota species. All of these are measured in significantly differ-
ent units. To overcome this, a percentage normalization technique was incorporated
into the achievement function for each objective; i.e., sum of the penalized deviation
variables divided by the target value. The economic profit target value was calcu-
lated by performing an initial optimization of the model, where the only objective
was to maximize profit, thus giving an upper bound for the economic profit goal.
The target values for employment were taken as current levels, and those for dis-
cards as zero. Therefore, underestimation of target values was not a factor in the de-
velopment of this model. Different weighting schemes were attached to each objec-
tive in the achievement function and investigated. Furthermore, a full tradeoff
analysis was performed between economic profit and employment, giving a graphi-
cal representation of the alternative scenarios for the two most important objectives.

The authors concluded that this approach was a useful way of incorporating
economic, biological, and social objectives into a single framework for analysis.
Such an approach is beneficial when trying to identify an “optimal” fleet configura-
tion given a multi-objective context. The approach was not applied to the analysis of
management options, and may not be appropriate for such analyses. The question,
“how might fishers respond to management,” is significantly different from the
question, “how would an ‘optimally’ managed fishery look.” However, in the latter
case, identifying the management targets is as important as identifying means to
achieve the targets.

The main difficulty with the technique in the case studies examined was the
identification of the appropriate weights to attach to each objective and the appro-
priate levels of each goal. While the approaches adopted were well suited to the
problem being addressed, elicitation of these goals and weights from managers
would be required if such techniques are to be practically applied in fisheries man-
agement.

Generating Methods

The aim of generating methods is to provide all of the information that can be de-
rived from a multi-objective model, without the need for explicit preferences (or
value judgments). The most common of these techniques is the weighting and con-
straint methods (Cohon and Marks 1975).

The mathematical representation of the weighting method is:

  

max ( )w zi i
i

k

x

=
∑

1
(6)

subject to
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x ∈  X (7)

x ≥ 0 (8)

where x ∈  Rn is the set of decision variables, z(x) is the set of k objective functions,
and wi are the weights associated with each objective, such that wi ≥ 0, ∀ i  with wi > 0
for at least one i. Thus, optimal solutions can be generated by parametric variation of wi,
initially set with arbitrary values.

Similarly, the mathematical representation of the constraint method is:

max zj(x) (9)

subject to

x ∈  X (10)

zi(x) ≥ bi  (i ≠ j) (11)

x ≥ 0 (12)

where b is a vector of lower bounds on (k – 1) objectives z, for all i except i = j.
The set of noninferior solutions can be produced by parameterization of wi and

bi for each method, respectively. Hence, the methods generate (all) optimal solutions
from which the decision maker can then adopt the solution that most closely repre-
sents their perception of the best scenario. Therefore, no a priori assessment of deci-
sion maker preferences is required. The constraint method has the advantage that
Pareto efficient solutions will be determined, and it can also be argued that param-
eterization of objective lower bounds is more straightforward (Cohon and Marks
1975; Willis and Perlack 1980). However, in the constraint method, bi must first be
initiated (Cohon and Marks 1975).

Willis and Perlack (1980) compared these generating techniques with GP by in-
vestigating their effectiveness with four criteria. These included the three key crite-
ria defined by Cohon and Marks (1975) for determining a MOP technique, combined
with the validity of decision maker interaction. Generation of the noninferior set
was found to be computationally explosive for large numbers of objectives (k > 4),
but they fared well in the other criteria, offering maximum information to the deci-
sion maker, with possible graphical depiction of objective interaction for k < 4.
Sylvia and Cai (1995) noted that methods such as these can be most consistently ap-
plied to fisheries policy problems based on a pluralistic (open) process. They also
briefly discuss the usefulness of generating techniques for aid in fisheries policy de-
cision-making.

In the two fisheries applications referenced in table 1, a hybrid of the weighting
and constraint methods was used to analyze policy management scenarios. In both
cases, only a portion of the objective space was investigated for analysis.

The main advantage of the technique raised by the authors was that the subjec-
tivity of the modeling process was removed as weights and target values of the goals
did not need to be preassigned. Instead, the decision maker is presented with a
“menu” of potential solutions from which the desired allocation could be chosen
(Padilla and Copes 1994). In addition, the technique makes explicit the tradeoffs be-
tween objectives that are not observed in a single objective model (Sylvia and
Enríquez 1994). In both cases, a frontier of optimal outcomes was presented for a
range of weights. The decision as to which combination is the most desirable can be
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made by the decision maker with full knowledge of the tradeoffs involved. For this
reason, the approach was considered more appropriate as a means to identify poten-
tial management targets than goal programming, which generally aims to find a
single “optimal” point that best satisfies the range of objectives.

The main disadvantages of the process noted by the authors, however, were that
the models were complex and required considerable quantities of information and
data. They also required the analyst to have an interdisciplinary knowledge of the
system, and could be difficult to understand and evaluate by the decision makers
(Sylvia and Enríquez 1994). As noted by Sylvia and Enríquez (1994), making the
benefits of such multi-objective techniques outweigh the costs is the challenge that
lies ahead.

Nonlinear, Multi-objective Programming

Most real-life problems exhibit some degree of nonlinearity. Multi-species bioeconomic
fisheries models are a typical case, where the species’ catch/effort relationships,
catch prices, fishing costs (variable returns to scale), and biomass functions are non-
linear in nature. Such nonlinearities are often intrinsic to the real-life problem. How-
ever, due to solution limitations of (large-scale) nonlinear models, linear approxima-
tions may be necessary. Where appropriate, separable programming techniques can
be used to transform a nonlinear curve into piecewise linear segments (Williams
1993).

The general definition of a nonlinear MOP follows the same form as that of the
standard linear cases. However, the objective functions and/or constraint functions
may take a nonlinear form. Therefore, any linear MOP model definition could feasi-
bly take nonlinear status, although the optimization would become substantially
more difficult, and the solution technique employed would typically differ consider-
ably. Many mathematical programming modeling/solution packages currently avail-
able offer such nonlinear capabilities.

Nonlinear programming models with nonlinear equality and/or inequality con-
straints are considerably more complicated to solve than those with linear con-
straints (Gill, Murray, and Wright 1981). A variety of solution methods exist, and
one should be selected which is appropriate to the model; e.g., does the model in-
clude nonlinear equality and/or inequality constraints, and is feasibility a significant
issue? Generally, a problem must be solved as a sequence of subproblems, due to ill-
conditioned matrices (singularities) through the iterative procedure. Highly nonlin-
ear models can lead to solution problems with derivative errors, very slow conver-
gence, and/or tendency to a local optimum. Typically, unless specific known struc-
tures are used, the global optimum cannot be guaranteed by the optimizer. The most
common approaches incorporated into nonlinear optimization solvers are typically
variants of the gradient-type search methods.

Nonlinear, multi-objective programming fisheries models are given in table 1.
These consider the investigation of fleet management, optimal harvesting strategies,
resource management, and resource allocation. Although incorporating multi-objec-
tive properties, all of these examples use single objective nonlinear optimization
methods for solution; e.g., minimize the weighted sum of deviations. This is prima-
rily due to the complexities involved in the models and solution process.

In the studies examined, the choice of nonlinear, multi-objective techniques
over simple linear goal programming or linear generating methods was more a re-
flection of the underlying system being modeled rather than as an alternative multi-
objective technique. In most cases, goal-programming techniques were used with a
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range of alternative weights. Nonlinearities were largely incorporated through either
the underlying biological relationships or through endogenous prices. The key ad-
vantages, then, were that the models were better representatives of the fisheries than
their linear counterparts. The main difficulties, however, were those facing nonlin-
ear optimization. These include problems of local optima. For large, nonlinear mod-
els, additional constraints were required to ensure a feasible solution (see Mardle et
al. 1997).

Multi-criteria Decision Analysis in Fisheries

The other distinct field of MCDM is multi-criteria decision analysis (MCDA). This
is sometimes termed multi-criteria decision aid, multi-attribute decision analysis, or
multi-objective decision analysis. Typically, MCDA is employed to analyze more
general management issues than MOP; e.g., which management policy is preferred,
rather than how best to allocate resources given a set of objectives. Quantitative and
qualitative aspects to the problem may be included in the model. In practice, there is
usually only a small number of alternatives that are selected for investigation. The
preferred option for implementation is determined using the MCDA technique. Man-
agement options are rated, scored, or ranked according to the preferences of the de-
cision maker.

Two main types of MCDA have been applied to fisheries: multi-attribute utility
theory and the analytic hierarchy process, both developed in the 1970s. The prob-
lems under consideration in fisheries are policy management, sampling strategies,
resource management, fishery management, fishing site analysis, and recreational
fishery management. These techniques tend to be general in terms of analysis, deal-
ing with pure policy rather than specific quantitative plans.

Multi-attribute Utility Theory

Multi-attribute utility theory (MAUT) is based on the underlying idea that decision
makers attempt to maximize their utility with respect to a number of criteria or indepen-
dent attributes which often include implicitly present factors (Keeney and Raiffa 1976).

Applications of MAUT to fisheries problems are presented in table 1. The aims
of the models are to provide management with supporting information for a number
of proposed alternative scenarios. The majority consider the development of policy
decisions for improved fishery management. However, other examples examine
fishermen’s behavior, sampling strategies, and fishery availability.

The additive model is the simplest and most common form, where the math-
ematical representation of the n-attribute additive utility function can be defined as,

  

u k u xi i i
i

n

( ) ( )x =
=
∑

1
(13)

where ui(xi) is essentially a scaled indicator of the desirability of the ith attribute
[0 ≤  ui(xi) ≤  1], and ki is the attribute utility weight2 of the ith attribute
( kii

n ==∑ 11 ). This additive form models an indifferent decision maker preference
between any two attributes.

2 One method for calculating the ki is to evaluate the utilities of two attributes subject to the best and
worst consequences from an indifferent perspective (see Keeney 1977).
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An alternative model consists of the n-attribute multiplicative utility function,
which is often represented as,

  

ku kk u xi i i
i

n

( ) [ ( ) ]x + = +
=
∏1 1

1
(14)

where 0 ≤ ui(xi) ≤ 1, and kii

n ≠=∑ 11 . The scaling constant, k, is computationally de-
pendent on the development of the attribute utility weights, ki, where

1 1
1

+ = +
=
∏k kki
i

n

( ) (15)

Conversely to the additive utility function, the multiplicative model describes
no indifference between attributes. These properties are generally intrinsic to the
problem and should be investigated before analysis is undertaken.

In order to determine the level of utility associated with the level of each activ-
ity, it is common to hold workshops involving interested parties (often represented
by an individual or small group). This is exhibited in the case study by Hilborn and
Walters (1977), where after identification of the interest groups, individual prefer-
ences were modeled to develop the results and assess the alternatives in order to at-
tain consensus. This feature of uncovering individual preferences so that quantita-
tive and qualitative information can be incorporated into the model, is an important
aspect of multi-attribute utility analysis (MUA). It, therefore, offers a focus for
points of agreement and disagreement between interest groups (Hilborn and Walters
1977; Boutillier et al. 1988). McDaniels (1995) also discusses the development of
technical and preference judgments by management team members in a workshop.
The understanding and structuring of such judgments in a formal framework proved
valuable for participants in developing difficult management choices.

A simpler form of model representation that has been used in the fisheries lit-
erature, termed by some as the simple multi-attribute rating technique, is given by,

U w Si j ij
j

n

=
=
∑

1
(16)

where ui is a measure of the performance of the ith management regime, with j = 1,
…, n attributes, and wj is the weight associated with each attribute ( wjj

n ==∑ 11 ).
The variable, Sij, is a measure of the performance of the ith management regime
against the jth attribute, typically 0 ≤ Sij ≤ 100, representing the range of possibili-
ties from worst to best (Healey 1984, 1985; Bain 1987; Boutillier et al. 1988).

The applications all note the potential usefulness of this technique and the wide
range of management options that can be easily considered. The key feature of
MAUT is that it focuses on points of agreement and disagreement between the inter-
est groups (Boutillier et al. 1988). Healey (1984) notes that the more sophisticated
MAUT approaches have a disadvantage over simple MAUT, as they are more diffi-
cult to identify with. He also notes four main advantages of the simple MAUT tech-
nique. It provides a practical solution to multi-attribute decision problems, mimics
the natural decision-making process, provides a structured analytic framework, and
allows a broad range of information, both quantitative and qualitative. However,
value judgments are a disadvantage. Simple MAUT is a practical and useful tool for
fishery management decisions (Bain 1987). Walker, Rettig, and Hilborn (1983) com-
ment that, generally, MAUT may offer a better perception of questions that need
considering rather than a clear statement of answers.
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Analytic Hierarchy Process

The analytic hierarchy process (AHP), developed by Saaty (1977, 1980), involves
four main steps: (i) develop a hierarchy of interrelated decision elements describing
the problem; (ii) perform pairwise comparisons on the decision elements, typically
using a nine-point weighting scale, to generate the input data; (iii) compute the rela-
tive weights of the decision elements (e.g., using the eigenvalue method); and (iv)
aggregate the relative weights of the decision elements to calculate ratings for the
alternative decision possibilities.

The AHP has been applied to a diverse range of applications (see Zahedi 1986).
However, it is only in the last ten years that AHP has been applied to fisheries, and
only to a small degree (table 1). Despite its simplicity, this decision analysis frame-
work is remarkably powerful.

Most users of this technique have highlighted a number of weaknesses associ-
ated with each step of the method. There is no existing theoretical framework for es-
tablishing the hierarchy in step 1; i.e., modeling a decision problem into a hierarchy.
Instead, the specification of the hierarchy is subjective and can be influenced by the
judgments of the modeler. An incomplete hierarchy can lead to counter-intuitive
composite weights. The use of pairwise comparisons as the evaluator of the decision
elements may lead to inconsistent rankings in step 2. Therefore, a consequence of
this is that random errors may not be eliminated with consistency checks. Due to the
many estimation methods that have been proposed and applied to compute the rela-
tive decision element weights in step 3, no single method appears to be more appli-
cable than another for a given analysis. If more than one evaluator is present in the
analysis (step 4), there is no preferred approach for the combination of judgments.

Leung et al. (1998) attempted to overcome these problems by sending a ques-
tionnaire to all individuals involved in the decision-making process (including fish-
ermen and managers) to elicit the key objectives of concern. These included main
criteria (e.g., biological, social, economic, and political) as well as subcriteria (e.g.,
employment and profit as part of the economic factors). Weights for each criteria
were obtained by a subsequent survey using pairwise comparison of the identified
goals. Geometric means were estimated to give an overall rank for each alternative.
Results for the evaluation completed were found to be comparable to previous deci-
sions made. It was felt that the mail surveys, although an acceptable method, lost
vital interaction between the participants. However, the authors believe the AHP to
be a valuable tool for many fishery decision management problems.

An advantage of the AHP is that it provides a complete decision-making frame-
work for the analysis of appropriate fishery management problems (DiNardo, Levy,
and Golden 1989). It allows managers to make use of their professional judgments
and may include interest group preferences (Merritt and Criddle 1993). Similar to
MAUT, value judgments are also incorporated in the process, giving decision mak-
ers the opportunity to explicitly state their preferences with respect to identified ob-
jectives.

Other (Multi-objective) Optimization Techniques in Fisheries

There are several other MCDM techniques that can be incorporated into the analysis
and determination of natural resource management; e.g., step method (Benayoun et
al. 1971) and outranking methods such as ELECTRE and PROMETHEE (Vincke
1992). Other useful approaches include dynamic programming (Bellman 1957) and
meta-heuristics (Osman 1996). The following applications are further indicators of
the different approaches that consider multiple objectives in fisheries management.
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Mathiesen (1981) considered the optimal size and structure of the Norwegian
fishmeal industry with regard to four objectives: social profitability, private profit-
ability, employment, and catching ability. Capelin, mackerel, and other species were
of greatest significance to the industrial fishery. Parametric linear programming was
used to analyze goal values for the multi-criteria model. The aim of this project was
to allow decision-maker analysis of objectives in the industry, especially with re-
spect to tradeoffs. However, with few results presented, definite conclusions were
not made concerning the applicability of the method applied.

Kendall (1984) outlined an approach to investigate a typical problem inherent in
fisheries management, that of multi-objective, multiple interest group, and interdis-
ciplinary resource planning. The discussion outlined several approaches, including
participation methods, multi-criteria decision-making, dynamic analysis, and adap-
tive implementation. The main purpose of this discussion was to consider a method
which could potentially adapt to the multi-objective, participative, and dynamic de-
mands of evolving fisheries management questions.

In an interactive decision support system, Stewart (1988) compared the step
method (STEM)4 (Benayoun et al. 1971) with two GP approaches for pelagic fish
quota analysis (see the Linear Goal Programming section). The interactive multiple
GP (IMGP) approach was deemed to be the most useful in this case and was re-
ported to aid in reaching a consensus between the interest groups.

Charles (1989) described an optimal control theory procedure and used simula-
tion for the analysis of four management objectives: total economic rent,
fishermen’s income, employment, and fishing community viability. A simulation of
over thirty years was pursued that investigated two possible systems. The modeling
framework was developed to assist in highlighting the data required to undertake
such a detailed analysis.

Sylvia and Cai (1995) discussed an example illustrating their model as a nonlin-
ear program in order to solve a policy problem that included the level of rent and
biological impacts on nonmarket species to determine harvest rate. They concluded
that multi-objective techniques, especially MOP, have significant potential in the de-
velopment of fisheries policy issues.

Multi-level Programming

In structure, a multi-level program (which may also include multiple objectives)
may be able to describe fisheries problems more “realistically” than other tech-
niques. It is an approach that optimizes models in which the policy maker does not
have complete control over all policy variables; therefore, it exhibits multiple levels
to the problem structure. This contrasts with the multi-objective programming ap-
proach where the policy maker aims to optimize given objectives (Candler, Fortuny-
Amat, and McCarl 1981). Some, or all, levels in the multi-level program may con-
tain multiple objectives; however, the nested feature of multi-level programs may
not, by default, be described as multi-objective. Therefore, while it may not be com-
pletely consistent with the MCDM philosophy in its general form, the pluralization
nature of fisheries management models makes multi-level programming a poten-
tially useful tool for policy analysis.

4 STEM progressively articulates decision-maker preferences by first setting up ideal (maximum) objec-
tive values on the k objectives, and subsequently seeking the decision maker to indicate at each stage of
the solution process which objectives may be decreased to allow for possible improvements in others.
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Multi-level programming is applicable to many planning and optimization prob-
lems which generally describe a hierarchical structure (see Candler, Fortuny-Amat,
and McCarl 1981; Vicente and Calamai 1994). There are typically two or more deci-
sion makers involved with independent goals (some conflicting), where each deci-
sion maker has expertise over only part of the problem. The simplest and most com-
monly implemented case is the bi-level program, which can be extended into the
multi-level case by subsequently making each level a further bi-level program.

The definition of the bi-level programming model is expressed as,

maxx F(x, y) (17)

subject to

f(x, y) ≤ 0 (18)

where for each value of x given, y is the solution of the lower-level problem,

maxy G(x, y) (19)

subject to

g(x, y) ≤ 0 (20)

For this bi-level case, F defines the upper-level objective function controlling the
policy variables, x. The lower level, G, then optimizes the response variables, y,
given the decisions made by the upper level.

Multi-level programming provides a concept of nested optimization, where each
level describes an optimization that relies on the outcome of the previous level. Al-
though the natural structure of such a model includes an objective for optimization
at each level, the underlying philosophy is not necessarily multi-objective. However,
in order to model many “real” fisheries management problems, multiple objectives
would need to be incorporated into the relevant level(s). Candler, Fortuny-Amat,
and McCarl (1981) noted that multi-level programs are analytically difficult, and the
recognition of such a problem is considerably easier than its solution. A recent and
thorough bibliographic review of the topic is given by Vicente and Calamai (1994).

The solutions to such problems are not guaranteed to be Pareto optimal over all
levels. However, it is argued that “incentive compatibility” provides a more accurate
reflection of solution efficiency for problems of this kind (Meuriot and Gates 1983).
That is, the position where no decision maker finds it advantageous to alter their be-
havior pattern if the others do not.

Even though many fisheries management regimes may follow a hierarchical
structure, there have been few applications of multi-level programming for the in-
vestigation of fisheries management problems (table 1). Meuriot and Gates (1983)
evaluated foreign access to U.S. fisheries with respect to the imposition of fees.
While the authors generally agreed that multi-level programming provided a better
representation of the system being modeled, the approach has computational diffi-
culties. If more efficient solution algorithms were available, then many more inter-
esting and needed applications would result (Meuriot and Gates 1983). Önal (1996)
developed a model of the Texas brown shrimp fishery, although the complex multi-
objective structure of the problem was not fully incorporated into the model.
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Discussion and Conclusion

There is a significant level of diversity in fisheries management papers that specifi-
cally discuss the application of multiple-objective techniques. This implies that
there is far greater importance attached to the subject matter than to the technique
applied for analysis. Therefore, the passing reader will come across few MCDM
fisheries publications discussing specific techniques, unless specifically searching.
This gives a definite impression that there are far fewer publications in this area
compared to other fields. Generally, the more publications that appear for a given
topic, the more research is stimulated, and, thus, further publications are generated.
The lack of published material does not necessarily imply that there is little or no
work being undertaken in an area, but it inevitably appears as such. This leads to
unfamiliarity of managers with the capability of certain techniques, and an unwill-
ingness to trust the results obtained. If such an opinion is held by decision makers,
then this is a crucial hurdle that such analysis must cross to prove its usefulness.

It appears from the publications cited that few of the applications of MCDM in
fisheries management have actually been incorporated into the policy development
process. However, it is difficult to confirm the extent to which such methods have
been used in the decision-making processes due to the probable nonpublication of
many of the models applied that ultimately determined fisheries policy. The applica-
tions discussed in this paper all report to be successful in developing the manage-
ment aims under analysis, although many are presented as investigative studies. The
MCDM techniques have generally been used to examine potential management
policy measures, and have gained supporting evidence. Hence, the results of the
analyses provide managers with an indication of the effects of possible management
decisions. Correspondingly, such multi-objective methods may be having a greater
impact on the direction and formulation of policy than is apparent.

The complex decision-making process that exists in the fisheries hierarchy (de-
scribed as typically pluralistic [Sylvia 1992], and with an absence of structure [Bain
1987]) makes thorough problem definition and analysis considerably more difficult,
especially when addressing the various interest groups in order to develop suitable
fisheries policy. Moreover, not understanding the concepts of goals, objectives, and
values in the fisheries management process leads to broadly defined goals without
substantial justification (Barber and Taylor 1990). Such poorly defined goals in-
crease the difficulty of applying and analyzing multi-objective models. However,
the increased adoption of co-management and formalization of involvement of inter-
est groups should help to reduce these problems. Further, to ensure that each group’s
interest is properly represented in the decision-making process, an objective and
transparent decision-making system will be required. As a consequence, the role of
MCDM in fisheries analysis is likely to increase.

Multi-level programming, although not strictly a multi-objective method, may
model the fisheries management hierarchy to resemble the true structure of the prob-
lem more realistically. However, due to solution complexities, it is difficult to use
this approach for large models, especially where multiple objectives are a necessary
feature. Therefore, if a computationally efficient method for solution becomes avail-
able, then multi-level (multi-objective) programming may prove a significant ap-
proach for fisheries analysis. At present, it remains a potentially useful modeling
technique.

Using the techniques with interactive procedures provides an extremely useful
extension to investigating given scenarios. Such a facility offers decision makers a
procedural process, and, therefore, greater flexibility in refining their utility towards
stated objectives.  This allows a more direct path to obtaining an “efficient” or “best



Mardle and Pascoe58

compromise” or “incentive compatible” solution. Stephenson and Lane (1995) argue
for “conceptual change” in fisheries management by proposing “a new discipline of
Fisheries Management Science” in order to provide a framework for effective man-
agement (Lane and Stephenson 1995, p. 215). The MCDM techniques are highly
significant in such a development.

There are many avenues for further research which could be investigated using
MCDM in fisheries management. For example, existing techniques can be combined
with others, such as Delphi (achieving consensus among experts), and the AHP with
goal programming as in other applicational fields, to establish utility in terms of
weights and quantities. Generally, the techniques can be applied to aid in analysis of
a variety of scenarios in order to offer advice and direction for policy implementa-
tion. Scenario analysis is an important and effective part of determining strategy
definition.

Undoubtedly, MCDM can play an important role in the development of fisheries
management policy. It is clear that with pressure being exerted on fisheries to be
well managed and sustainable, the capability to include multiple objectives for
analysis in the modeling procedure is important. The question that Rettig (1987)
asks, “are bioeconomic models really helpful?” is central to the development of
MCDM within the management process. However, for economists to have an impact
on fisheries management decisions, consideration needs to be given to the multiple
objectives of fisheries management. While this may lead to a less-than-optimal out-
come from a purely economic efficiency perspective, it is likely to result in a better
outcome than if economic efficiency was not considered at all.

Fisheries managers, as in most fields of management, require advice, direction,
and justification for possible action. Given the multi-objective nature of most fisher-
ies policies and the growing involvement of multiple user groups in policy formula-
tion, multi-criteria decision-making models are highly applicable to fisheries man-
agement.

This paper is not intended to discuss every work mentioning multi-objective
techniques in fisheries, but rather to provide an overview of the type of applicational
work that has been undertaken in recent years. Based on the applications cited, it
can be concluded that multi-criteria decision-making can play a useful and signifi-
cant role in fisheries management.
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Appendix

Distribution of Papers

There is a wide distribution of fisheries applications papers using MCDM. This is apparent in
that there is an average of two publications cited per journal (1.9 per source, including pro-
ceedings, etc.). The content of journals in which such papers appear also varies considerably.
The output rate is small over the twenty years of referenced papers, with thirty-eight
applicational publications, averaging approximately 1.73 per year. This statistic is dramati-
cally reduced if emphasis is placed only on a specific optimization approach.  However,
since 1977, publications concerning fisheries applications using MCDM have appeared con-
sistently (figure 1), even though typically only one or two papers each year.

The distribution of papers that discuss the use of  MCDM techniques for fisheries in the
fifteen cited journals and proceedings, etc., is depicted in figure 2. Of these, Marine Re-
source Economics has published the most such papers with six since 1985.

A breakdown of publications by MCDM technique is given in table 1. (Note that Stewart
(1988) is included twice; i.e., GP and other). The majority of work is spread over a variety of
sources and not confined to one specific journal for cited publications. Goal programming
and multi-attribute utility theory have been the most common forms of analysis used.

Figure 1.  Number of MCDM Fisheries Application Publications Per Year

Note: Figure 1 includes all thirty-eight multi-objective application papers cited. However, table
1 does not contain the “other” multi-objective methods category. Further, where authors have
published more than one paper on a particular topic, table 1 lists the first publication and then
discusses the others in the “Comment” column.
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Figure 2.  Proportion of MCDM Fisheries Application Publications by Journal


