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Abstract A fishery is considered in which the young are han'ested by one
nation, and the adults by another. The harvests are sold on separate markets.
Finding the optimal strategies of the two nations is treated as a problem in
dynamic non-cooperative game theory. While in most other models players
make decisions simultaneously at each stage, in this model each player makes
his decision separately in time, knowing the action ofthe previous player. The
model is applied to the southern bluefin tuna fishery which is jointly exploited
by Auslralia and Japan. The results of non-cooperative and cooperative strate-
gies are compared.

Introduction

A government which has declared an exclusive fishing zone may be able to max-
imize the nation's social return from fish stocks within the zone by exercising
control over fishing effort. It may be able to determine the optimal catch for each
year, and enforce this through a system such as individual transferable quotas.
However, if the fleets of other nations have access to fish stocks which are directly
related to the fish stocks within the exclusive fishing zone, the nation's socially
optimal catch is no longer obvious. Fish stocks within the zone may be directly
related to stocks outside the zone because the stock straddles the boundary,
because the fish are within the zone for only part of their life cycle, or because
the population of one species of fish within the zone affects the population of
another species offish outside the zone through predator or prey relationships.

Fishing effort outside the zone may affect the nation's optimal catch for various
reasons. Outside fishing effort may influence the price obtained; it may affect the
future size offish stocks within the zone; and it may affect the cost of harvesting
through a stock effect. Similarly, the nation's catch may affect the optimal catch
of foreign fleets.

The interdependencies apparent in such fisheries, variously referred to as
transboundary (Munro 1979), sequential (Charles and Reed 1985), and divided
(Kaitala 1986), mean that nations face game situations in deciding how best to
set their own national catches each year. Charles and Reed (1985. p. 953) have
pointed out that "the optimal management of sequential fisheries has received
scant attention to date, at least within the context of bioeconomie analysis." They
consider the problem of inshore and offshore fleets maximizing joint returns from
fishing different age classes of the same stock. As the fleets belong to the same
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nation, joint maximization is a reasonable objective. However, between nations
there may be problems in determining how joint returns should be shared. If the
nations have different estimates of fishing costs, fish prices or discount rates, it
may still be rational for the nations to cooperate by agreeing on suitable side
payments {Munro 1979). On the other hand, nationalistic pride on the part of
governments or fishermen may lead to nations adopting non-cooperative strategies
instead.

Although non-cooperative behavior is probably more common than cooper-
ative behavior, modelling non-cooperative harvesting strategies for sequential
fisheries is even more underdeveloped. The modelling task is clearly complex.
not only because of the difficulty in making reasonable assumptions about how
each nation views the goals ofthe other nations, but also because ofthe dynamic
interdependencies already mentioned.

The classic model of non-cooperative oligopoly is the Coumot model of firm
behavior. It has been criticized on two grounds. The assumption of zero conjec-
tural variations is seen to be unrealistic. For example, in the case of two firms,
A and B, it seems implausible that A sets output dependent on B's output, without
A supposing that B will set output dependent on A's output decision.

A second criticism is the static nature ofthe model. The output decisions for
the Coumot equilibrium are not dependent on the number of subsequent periods
in which output decisions must be made, or on the cost and demand parameters,
and discount rates, in those subsequent periods. Cyert and DeGroot (1970) analyze
a multiperiod Coumot process and show that typically the reaction functions " . . .
are the trivial functions which specify that the outputs of the firm in each period
must be equal to equilibrium values" (pp. 414-5). They sum up the reason for
this result in stating: 'The trivial and static nature of these reaction functions is
a result of the fact that the fimis are selecting their outputs simultaneously in
every period" (p. 415).

Levhari and Mirman (1980) have developed a multiperiod Cournot model of
two nations harvesting a common stock of fish, and have determined reaction
functions which are not so trivial. Each nation's harvesting is limited by the stock
offish and the other nation's harvesting level. The novel feature in their model
is the introduction of stock dynamics. They determine optimal reaction functions
for each period using dynamic programming. However, they retain the assumption
that the participants make decisions simultaneously, and with zero conjectural
variations within each period. Kamien et al. (1985) allow conceptually for non-
zero conjectural variations In a dynamic Coumot model ofthe fishery. However,
they do not discuss how optimal or consistent conjectural variations might be
determined.

Kennedy (1986, Ch. 4) suggests using dynamic programming to solve game
theory problems in which participants make decisions alternately rather than si-
multaneously. Cyert and DeGroot (1970), in making the same suggestion, point
out that many attempts have been made to improve on the static Cournot model
by positing different conjectural variation terms, but that none of these attempts
has resulted in a general model. They make the strong claim that, by modelling
decision making as occurring alternately and by employing recursive induction,
they present a general solution to the duopoly problem originally posed by
Coumot.

In Cyert and DeGroot's model there is no technical linkage between periods
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such as stock dynamics. The returns to participants in each period depend only
on the output decisions of the two participants. The particular return functions
examined are quadratic. In the model suggested by Levhari and Mirman the period
return to each participant depends only on the harvesting decision made by the
participant. Although the previous decisions ofthe participants affect the current
stock level, which in turn restricts the current harvesting level of each participant,
there is no stock effect in the period returns.

The aim of this paper is to outline a multiperiod model of two nations alter-
nately harvesting from different life stages of a common fish stock, allowing for
stock effects in the cost-of-harvesting functions. The model is closely related to,
but not the same as, the feedback Nash type of model described by Basar and
Olsder (1982) and applied by Levhari and Mirman (1980) to a fishery. It could be
described as a feedback Stackleberg model with participants taking turns at being
the leader. This type of model does not appear to have received much attention
in the game theory literature since the work of Cyert and De Groot (1970). No
mention is made of such a model in a recent review of game theory models of
fisheries by Kaitala (1986).

Numerical solutions are obtained for the model applied to the southern bltiefin
tuna fishery, although it must be emphasized that the model is mainly illustrative.
The solutions are compared with those from a model in which joint returns are
maximized. The relevance ofthe game theory approach to actual decision making
is discussed after the presentation ofthe results. Of particular interest is the way
in which the returns of the two nations involved, Australia and Japan, are dif-
ferentially affected by playing non-cooperative instead of cooperative strategies.*

The Duopoly Model of Alternating Harvesting Decisions

State Variables

For modelling purposes, a fish stock is partitioned by age into two sets. All fish
below a certain age are assumed to exist within the exclusive fishing zone of
Nation L All older fish are assumed to exist outside the zone and to be harvested
by Nation 2. The state of the system at any stage is given by the biomasses x,
and \2 of the fish within and outside the zone.

Decision Process

Nation l's harvesting season starts at the beginning of each year and lasts for six
months. Nation 2 harvests throughout the second half of each year. Each nation
sets a harvesting quota at the start of its harvesting season. If the number of years
to the modelling horizon is T years, the number of decision stages is n = 2T.

* There has been previous discussion of modelling the southern blueftn tuna fishery in a
gaming framework. Tisdell (1983) shows how a static equilibrium solution might be ob-
tained using a zero-sum threat payoff table and a Pareto-efficient frontier. Kennedy and
Watkins (1986) and Kennedy (1986, Ch. 10) recognize the game situation in attempting to
find optimal harvesting policies for Australia, but sidestep the complexities of gaming by
keeping Japanese effort level fixed for all years at a base level.
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Stage Return Functions

The objective of each nation is to maximize the present value of stage returns to
the nation, subject to the other nation following an optimal policy. The k-th na-
tion's stage return is a function of its fishing effort, Uk, and the biomass level, Xk-
Let the weight offish harvested be denoted by hk{xk, Uk). Each nation sells its
harvest on its own market, and obtains a price Pk{hk}. The cost of fishing effort
is assumed to be directly proportional to fishing effort. Then the return from each
season's harvesting in terms of economic surplus is:

Pk{qk}dqk - CkUt (I)

where Ck is the constant average cost of fishing effort.

Stock Dynamics

The stocks of each nation are updated at six-month intervals in line with harvesting
and population dynamics. Nation l's stock increases with recruitment dependent
on Nation 2's stock six months earlier, and decreases with natural mortality,
diffusion to Nation 2's stock, and its own harvesting effort. Nation 2's stock
increases with diffusion from Nation l's stock, and decreases with natural mor-
tality, and its own harvesting effort. Thus the stock dynamics can be expressed
as

Xk,i + 1 = gkfXk.ii Xi.i, Uk.i, UA.J} f. - 2' \ ^

where Xk.i denotes nation k's stock level at the beginning ofthe i-th period. For
i odd, hA,i = 0, and i even, hk,i = 0.

National Objectives

The problem facing Nation 1 is:

n

Max S a ' , - ' n,.i{X|,i, Ui.j}

i = l

with respect to

Ui.i , Ui,3 Ui,n_i

subject to
U2.2 , U2.4, • • • , Uz.n

Xi.i and X2,i given, and (2)
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where ai is the six-month discount factor for Nation I; and U2.2, U2,4, . . . are the
solution levels of Nation 2's fishing effort for Nation 2's problem. Note that be-
cause U|.i = 0 for i even, rii.ilxij, u,.i} = 0 for i even, also.

Nation 2 faces an exactly analogous problem.

Solution Procedure

The two problems can be solved by dynamic programming using the appropriate
recursive equations. The recursive equation for Nation 2 is:

V2,i{Xi,i, X2,i} =

(3)
(i = n, n - 2 2)

with

Xl,i + 2 = ti.2{Xi.i, X2.i, U i , i + i , U2.i} - „

X2,i + 2 = t2.2{Xi.[, X2,i, U i . i + i , U2,i}

V2.n-t-2{Xi,n + 2, X2,n + 2} = 0 (5)

where V2.i{xi.i, X2.i} is the value to Nation 2 of stock levels Xu and \2.\ if both
nations pursue optima! policies at each stage from Stage i to Stage n. The state
transformation functions. Equation 4, follow from the stock-dynamics functions.
Equation 2. Included in the arguments ofthe transformation functions is u' . i+i,
which is the optimal effort level of Nation 1, given stock levels Xi,j+i, X2.i + i
dependent on Xu, X2.i and U2.i.

The equivalent recursive equation for Nation 1 is:

= Max
(6)

(i = n - l , n - 3 1)

Xi.i + 2 = ti.i{Xi,i, X2,i, U2,i-(-i, Ui,j}

X2.i + 2 = t2.i{Xi,i, X2.i, U2,i-M. Ujj}

Vi.n+l{X|.n-(-1. X2,n-(-l} — 0 (8)

The solution procedure starts by solving Nation 2's problem for i = n, given
in Equation 3. Because this is the final decision stage, the problem is a single-
period problem, not affected by a subsequent decision by Nation 1. That is. Equa-
tion 5 applies. It is therefore possible to find U2.n{xi,n, X2.n}. In similar fashion it
is possible to find Uj.n-i{xi,n-i, X2,n-i}, using Equations 6 for i = n - 1, and
8. Equation 3 can now be solved for i =̂  n - 2, because V2.n{-} in Equation 3,
and ul.n_i{-} in Equation 4, have been calculated. This allows Equation 6 to be
solved for i = n - 3, given Vi.n-i{} and U2.n-2{'}- Equations 3 and 6 continue
to be solved alternately for decreasing i until i = 1.
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Note that the solution procedure described so far applies for simplicity to a
deterministic formulation ofthe problem faced by each nation. It would be more
realistic to recognize various sources of uncertainty. For example, the stock dy-
namics function would be better formulated as stochastic. One of the features of
a dynamic programming approach is that it can be readily extended to solve
stochastic problems. For example, recursive Equation 3 would be altered by plac-
ing an expectation operator before V2.i + 2{-} on the RHS, and V2.i{} would be the
expected present value of the fish stocks. Methods of stochastic dynamic pro-
gramming are expounded in Hastings (1973) and Kennedy (1986).

The Joint-maximization Model of
Alternating Harvesting Decisions

Both nations could obtain a greater combined economic surplus if they cooperated
to maximize the sum of the present values of their economic surpluses. Both
nations would be able to agree on their harvesting levels at the beginning of each
year, although Nation 2's decision would still not be implemented until half-way
through the year. The recursive equation for the joint-maximization problem is:

Vi{xi.i, Xz.i} = max [n,.i{x,.i, Uu} + an2.i+i{x2,i+i, U2.i+i}
U l . i , 112.i> I

(9
-I- a^Vi + 2{x,.i-.2, X2,i + 2}] (i = n - 1, n - 3, . . . , 1)

with

Vn-n{X],n + i, X2.n + i} = 0 and (2) (10)

where Vi{x] ,i, X2,i} is the value to both nations of stock levels x i .i and X2.i if both
nations pursue an optimal cooperative policy from Stage i onwards.

As before, the solution procedure starts by solving Equation 9 for i = n -
1. The solution to this problem gives Vn_i, which then permits the solution of
Equation 9 for i = n - 3. The process continues until i = 1.

An Application to the
Southern Bluefln Tuna Fishery

To illustrate and compare the working of the duopoly and joint-maximization
models, the models are applied to the southem bluefin tuna fishery. The fish are
primarily exploited by Australia, corresponding to Nation I, and Japan, corre-
sponding to Nation 2. As a broad generalization, Australia harvests young fish
within the Australian Fishing Zone (AFZ), and Japan harvests adult fish. Most
ofthe Japanese catch is obtained outside the AFZ. About 10% is obtained within
the AFZ on a fee-for-access basis.

By 1983 both Australian and Japanese scientists agreed that the fishery was
overexploited, and that its future biological viability was threatened. The parental
biomass had reached such a low level that there was the risk of recruitment being
severely attenuated.
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The Australian government reacted by introducing a preliminary quota on the
Australian catch of 21.0 thousand tons for the 1983-84 season, and after a gov-
ernment inquiry by the Industries Assistance Commission, a more restrictive
quota of 14.5 thousand tons for the 1984-85 season. Before introducing the latter
quota the Australian government made it clear that, in setting a restrictive quota
on the Australian catch, it expected the Japanese harvest to be restricted as well,
or at least not increased. The report ofthe Industries Assistance Commission
(1984, 38) into the fishery stated: "If no agreement could be reached with the
Japanese and the Japanese catch increases, while the Australian quota may need
to decline to protect parental biomass, strategically it may be in Australia's interest
to increase the Australian quota." Subsequently, the Australian government did
decide that the Japanese catch was not curtailed sufficiently, and retaliated by
effectively banning Japanese harvesting within the AFZ during the 1984-85 sea-
son. The Japanese fleet was readmitted for the 1985-86 season after a resolution
ofthe disagreement between the two countries. The incident highlights the game
situation the Australian government is involved in now that it is attempting to
control the exploitation of southern bluefin tuna within the AFZ.

Model Description

The model simulates harvesting over a twenty-year period, starting with the 1982-
83 season. Stock level xA is the biomass of young fish under 8 years old harvested
by Australia and Xj is the parental biomass (8 years and older) harvested by Japan.
The initial levels are 198 and 224 thousand tons, consistent with the data on the
population age structure for 1983 estimated by Hampton and Majkowski (1986,
Table 3).

The stage return functions, based on Equation 1, depend on the harvest, price,
and cost-of-fishing-effort functions. The harvesting equations are:

hj = 0.0759u?^Xj

where h is harvest in thousands of tons per year, u is fishing effort level stand-
ardized equal to 1.00 for 1982-83 levels, and x is the stock level in thousands of
tons. The catchability coefficients 0.108 and 0.0759 were calculated for 1982-83
stocks, and 1982-83 harvest levels of 21.3 and 17.0 thousand tons. The effort
exponents were set at 0.8 to reflect diminishing returns to effort. Clark (1985) has
argued that for pelagic species there are good reasons for positing an exponent
on stock level of 1.0 or greater. The exponents in the model results described
here are kept at 1.0. Results for exponents of 1.2 show little different.

The Australian and Japanese catches have traditionally been sold on separate
markets. The demand for the Australian catch, which is mainly either canned or
exported to Europe, is reasonably taken to be infinitely elastic because it sub-
stitutes for the much larger world catches of other types of tuna. The demand for
the Japanese catch which is sold as sashimi fish after processing is assumed to
be unit elastic. The average wholesale prices of southern bluefin tuna recorded
for 1982-83 (Industries Assistance Commission 1984, 14) are A$7(X)/ton for Aus-



S John O. 5. Kennedy

tralia and A$I4,000/ton for Japan. Synthetic inverse demand equations corre-
sponding to Equation 2 and centered on 1982-83 price and harvest observations
were:

PA = 700

PJ = 28000 - 0.824hj

where p is in thousands of Australian dollars per ton.
Constant average cost coefficients in Equation I were estimated to be CA =

ASH.7 million and Cj = A$238 million per unit of effort, assuming open access
conditions prevailed in 1982-83 prior to the introduction of controls. That is, the
total cost of harvesting in 1982-83 was assumed equal to the total revenue obtained
from selling the harvest.

The stock updating equations, corresponding to Equation 2, can only be ap-
proximate because only total fish numbers in the Australian and Japanese stocks
are specified as state variables. A more realistic model would record numbers in
each of the seven-year classes in the Australian stock, and in each of the twelve-
year classes in the Japanese stock. Only two state variables were used for com-
putational feasibility, though this meant sacrificing modelling the effect of changes
in harvest levels on the age distribution of each nation's stocks. In determining
the equations, the age distribution is assumed to be that estimated by Hampton
and Majkowski (1986, Table 3) for 1982-83. The annual rate of mortality for both
stocks was assumed to be 0.2, based on Hampton and Majkowski (1986, Table
2). The equations are:

SA.i + i = Ri^i + 0.875sA.i - fA.i (11)

Sj.i+1 = 0.894sj,i + 0.0174sA.i - fj,i (12)

Ri + , = 1.52SA/(1 + (2.53 x 10"' x S A ) ' ' ) (13)

where s is stock numbers, R is recruitment, and f is the harvest in fish numbers.
The recruitment equation is based on one used by Hampton and Majkowski (1986)
for annual updating. Equation 13 is a modification of their equation in that half
the annual recruitment occurs at six-month intervals. In calculating stock and
harvest biomasses, the average weights of fish in the Australian and Japanese
stocks were taken to be 12.1 and 87.4 kilograms respectively, consistent with
Table 3 in Hampton and Majkowski (1986).

Solution Procedure

The basic solution procedure using dynamic programming has already been out-
lined. Solutions were obtained numerically, which meant that the range of con-
tinuous values of XA, XJ, UA. and Uj had to be replaced by a limited grid of values.
Because the problem consists of two state variables and two decision variables,
the number of grid points which must be allowed to represent the possible stock
combinations for a reasonable range of effort levels is potentially very large.
However, the problem was solved for relatively few stock combinations by using
linear interpolation to approximate stock combinations between grid points. The
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grid points of stocks consisted ofthe 49 combinations of XA and Xj from the sets

XA e 180, 195, . . . , 270 thousand tons

Xj G 180, 195, . . . , 270 thousand tons

The range of stock levels was set so as to include the initial stock level, and
adjusted as necessary in line with model results. The seven grid points of effort
levels consisted of UA and Uj G 0.00, 0.15, . . . , 0.90 alternately in the duopoly
model, and of the 49 combinations of UA and Uj simultaneously In the joint-max-
imization model. The grid of effort levels was also refined in successive runs of
the model.

The duopoly problem was solved by determining VA.i{xA.i, Xj.i} and Vj.i{xA,i,
xj.i} at the 49 XA.i/xj.i grid points recursively using Equations 3 and 6. Estimates
of VA.i + 2{"} and Vj.i + 2{"} on the right-hand sides of Equations 3 and 6 for XA.i + 2
and Xj.i + 2 which did not fall on grid points were estimated by linearly interpolating
between the VA.i-H2{*} and Vj.i + 2{*} values for adjacent grid points. The joint-
maximization problem was solved In the same way with Equation 9. Lewis (1975,
1977) used the method of linear interpolation in a dynamic programming problem
applied to the Eastern Pacific yellowfin tuna fishery with fish stock as the single
state variable.

The solution procedure resulted in ul.i{*} and uj.i{-} for each of the 49 XA/XJ
grid points. The objective functions of the two models were assumed to be the
present value of returns over infinite harvesting seasons. The infinite-stage UA{-}
and uj'{-} were estimated as equal to UA.I{-} and uj.i{-} for n = n*. The value of
n* was sufficiently large that UA.I{'} and uj.i{-} did not change for n > n*. For a
discount rate of 10% per annum n* was less than 20, but greater than 20 for a
zero discount rate.

The optimal harvesting sequence for the two nations starting with the base
year stocks XA = 198 and Xj = 224 thousand tons was obtained by a process of
forward tracking using UA{-} and u]{-}. Optimal effort levels for XA.I and Xj.i which
did not coincide with grid points were estimated by linearly interpolating between
optimal effort levels for adjacent grid points.

Results

Optimal infinite-stage effort levels for a discount rate of 10% per annum at selected
stock grid points are shown in Table 1 for both the duopoly and joint-maximization
models. Under joint maximization, it is optimal for Australia to leave harvesting
completely to Japan, whatever the stock levels of the two countries. This is not
surprising given the high average weight of fish in the Japanese stock, and the
high Japanese market return. The result is in agreement with the findings of a
previous model with more detailed stock dynamics (Kennedy and Watkins 1986).

Australian and Japanese annual harvests resulting from the implementation of
the duopoly and joint-maximization policies over a 20-year period are shown in
Figure 1. Corresponding stock levels are shown in Figure 2. Japan's strategy is
much the same under duopoly as under joint maximization. Australia, however,
fishes under duopoly, though at modest levels by historical standards.

Harvest levels of both nations do not change markedly from year to year under
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Table 1
Effort Policies (discount rate = 10% per annum).

Stocks
(thousand

XA

180
180
180
225
225
225
270
270
270

tons)

X j

180
225
270
180
225
270
180
225
270

U A

0.15
0.15
0.15
0.30
0.30
0.30
0.75
0.75
0.75

Effort (1982-83

Duopoly

U j

0.60
0.60
0.60
0.45
0.60
0.60
0.45
0.60
0.60

level = 1.00)

Joint Maximization

UA

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

UJ

0.60
0.60
0.60
0.45
0.60
0.60
0.60
0.60
0.60

DUOPOLY
JOINT MAX

13-

12-

11 •

£10-

> 9-
•V,

Z 8-
Z
o
t- 7 -
O
Z g

O 5'

T 4-

lU
> 3

1 -

T
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Figure 1. Annual harvests for Australia
annum).

and Japan (hj) (discount rate = 10% per
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DUOPOLY
JOINT MAX

260 -

2 4 6 a 10 12 14 16 18 20
YEAR

Figure 2. Stocks for Australia (XA) and Japan (Xj) (discount rate = 10% per annum).

either duopoly or joint maximization. Under joint maximization, Japan harvests
11 to 12 thousand tons per year, while Australian harvets are zero for all years.
Australian stocks rise sharply in early years, from 198 to reach 253 thousand tons
by year 20, while Japanese stocks rise from 224 to 235 thousand tons by year 20
after an initial dip. Japan's harvest and both stock levels continue to increase
slightly at year 20.

Under duopoly, Japan maintains a harvest of 9 to 11 thousand tons per year,
and Australia 5 to 8 thousand tons per year. Although the combined catch rate
is higher than under joint maximization (17.3 as opposed to 11.5 thousand tons
per year), it is still significantly below the actual 1982-83 catch rate (38 thousand
tons per year). Harvests and stocks reach virtually steady states by about year
14.

Table 2 shows that Australia obtains a present value of social return equal to
A$14 million under duopoly. This compares with Australia's zero contribution to
total social return under joint maximization. The present value of social return is
lower for Japan under duopoly at A$937 million compared with A$1084 million
under joint maximization. These results would enable Australia to argue for at
least a A$14 million share of joint social return in response to Australia acting
cooperatively to harvest the tuna.

The lower the discount rate used by a nation, the greater is the impact of future
harvesting, both by that nation and the opponent nation, on the present value of
net returns from the current harvesting decision. To see the effects of a lower
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Tahle 2
Total Harvests and Returns (discount rate = 10% per annum).

Duopoly Joint Maximization

Australia Japan Australia Japan
Total harvest over 20

years (thousand tons)
Present value of social

return (million
Australian dollars)

Present value of
combined social
return (million
Australian dollars)

152

14

193

937

230

1084

951 1084

Stocks
(thousand

X A

180
180
180
225
225
225
270
270
270

tons)

X j

180
225
270
180
225
270
180
225
270

Table 3
Effort Policies (zero rate of discount).

Effort (1982-83 level =

Duopoly

U A

0.15
0.15
0.15
0.15
0.30
0.30
0.45
0.60
0.60

U j

0.60
0.45
0.45
0.30
0.45
0.60
0.30
0.45
0.60

Joint

U A

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

1.00)

Maximization

U j

0.60
0.45
0.45
0.30
0.45
0.60
0.45
0.45
0.60

discount rate, the models were also run for a zero rate of discount. Optimal infinite-
stage effort levels are shown in Table 3.

In contrast to the policy under a 10% discount rate, optimal effort levels by
one nation are not only sensitive to the stocks of that nation, but also to the stock
levels of the other nation. This can be explained by the increasing importance of
strategic behavior as the discount rate is reduced. Total harvests over 20 years
were reduced to about 85% of the levels shown in Table 2 under both duopoly
and joint maximization.

Conclusions

In the game theory example of Cyert and DeGroot (1970), the returns of one
player were affected by the output decision of the other player because both
players sold the same product on one market. In the model ofthe southern bluefm
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tuna fishery, the players sell on separate markets, but the returns of one player
are affected by the harvesting decision of the other through harvesting depleting
stocks and harvesting costs being a function of stock.

A feature distinguishing this model from others is that each player makes
successive decisions alternating with the decisions of the other player, instead of
each player making successive decisions simultaneously. The solution procedure
is relatively straightforward. The question arises as to which type of model is
more realistic in practice. While cooperative decisions must be made simultane-
ously, non-cooperative decisions are perhaps more likely to be made alternately.
Alternate decisions in a fishery are facilitated if each nation sets a quota at the
beginning of each of its seasons. Without quotas, the decision sequence may be
more complex due to delays before each nation is able to discover the harvest of
the other nation.

Results obtained for the southern bluefin tuna fishery show that the gains from
the duopoly behavior compared with joint maximization are not symmetric for
the two nations. Australia obtains a net benefit and Japan a net loss from adopting
strategic behavior. One use of this type of model is in determining the bargaining
positions of the two nations should they cooperate in the annual setting of quotas
on Australian and Japanese catches.

An important limitation ofthe model is that it is deterministic, and both nations
are assumed to have full information. Typically the level of current stocks is
uncertain, and the stock level which will result from exploitation of a known initial
stock level is also uncertain. Besides these biological uncertainties, and the eco-
nomic uncertainties of harvesting costs and returns, in a game situation there is
also likely to be uncertainty about the strategic behavior of the other fishing
nations. However, as already mentioned, it would not be difficult to extend the
models to treat any of these sources of uncertainty stochastically. The system of
approximation based on linear interpolation could be extended by using proba-
bilities as weights to form linear combinations of grid points in value-of-stock
space. Lewis (1975, 1977) has demonstrated how this may be effected in the case
of biological and price uncertainties. It would also be possible to allow for each
nation to formulate a probability distribution ofthe other nation's next harvesting
decision, centered on the other nation's optimal decision.
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