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Marine Reserves:
What Would They Accomplish?

RÖGNVALDUR HANNESSON
The Norwegian School of Economics and Business Administration

Abstract   A marine reserve is defined as a subset of the area over which a fish
stock is dispersed and closed to fishing. This paper investigates what will
happen to fishing outside the marine reserve and to the stock size in the en-
tire area as a result of establishing a marine reserve. Three regimes are
compared: (i) open access to the entire area, (ii) open access to the area
outside the marine reserve, and (iii) optimum fishing in the entire area. Two
models are used: (i) a continuous-time model, and (ii) a discrete-time
model, both using the logistic growth equation. Both models are determinis-
tic equilibrium models. The conservation effect of a marine reserve is
shown to be critically dependent on the size of the marine reserve and the
migration rate of fish. A marine reserve will increase fishing costs and
overcapitalization in the fishing industry, to the extent that it has any con-
servation effect on the stock, and in a seasonal fishery it will shorten the
fishing season. For stocks with moderate to high migration rates, a marine
reserve of a moderate size will have only a small conservation effect, com-
pared with open access to the entire area inhabited by a stock. The higher
the migration rate of fish, the larger the marine reserve must be in order to
achieve a given level of stock conservation. A marine reserve of an appro-
priate size would achieve the same conservation effect as optimum fishing,
but with a smaller catch.

Key words   Bioeconomic analysis, fisheries economics, fisheries management,
marine reserve.

Introduction

Recently, the idea that certain areas be closed to fishing has gained popularity. This
idea has developed in the wake of persistent overfishing and occasional stock col-
lapses, the most recent of which is the northern cod disaster on the Grand
Banks. The northern cod disaster is particularly disturbing since it took place
despite a high degree of control over the harvest by the Canadian government,
which was committed to a moderate rate of exploitation and whose marine sci-
ence and scientists must be ranked as world class. Seen against this back-
ground, it would clearly be desirable to use fisheries management strategies that
would work independently of incomplete information on stocks and catches and
less-than-fully-effective enforcement policies.
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How effective would the protected areas, or marine reserves as they are often
called, be in protecting fish populations? Would this not depend on the size of the
area protected and the rate at which fish disperse? It would appear that a marine re-
serve need not be very effective if the mobility of fish in and out of the pro-
tected area is high. How would the industry respond? If the conservation policy is
successful, would not excessive fishing capacity be built up in response to improved
conditions in the area still open to fishing, defeating, at least, the economic gains of
this policy and possibly even the conservationist advances as well?

In this paper, we investigate the economic and conservationist effects of marine
reserves and how they depend on the migration rate of fish, the cost of fishing, and
the size of the marine reserve. We use the logistic growth model and start with the
continuous-time formulation, as this is the most simple and elegant approach. Some
features of seasonal fisheries are, however, necessarily ignored in this formulation,
and, so, we also investigate a discrete-time model. To isolate the effects of marine
reserves, it is assumed that a marine reserve is the only form of management im-
posed and that there is open access to the area outside the reserve.

The approach taken in this paper is deterministic. This is quite sufficient to
capture the response of fishing effort and capacity to the establishment of ma-
rine reserves, and how the effectiveness of marine reserves depends on the mi-
gration rate of the fish. Previous investigations of this, such as Polacheck
(1990), DeMartini (1992), and Holland and Brazee (1996) have concentrated on
biological aspects, such as yield per recruit and changes in spawning stock bio-
mass, using age-structured models of real-world fish populations, but taking
fishing effort as given. The main focus in this study is on the reactions of the
industry to the effects of marine reserves under an open-access regime. For this
purpose, general biomass models seem adequate, despite their limited empirical
applicability.

A Continuous Time Model

Consider a fish stock located in an area of unit size. Suppose the stock obeys the
logistic law of growth, so that, in the absence of exploitation,

dS

dt
rS S= ( – )1 (1)

where S is the size of the stock, and r is the intrinsic rate of growth. The stock is
measured as a fraction of the carrying capacity of the area, which, thus, implicitly is
set equal to unity.

Now let a fraction, m, of the area be set aside as a marine reserve. Let the
stock in the two sub-areas be measured as densities, so that the carrying capac-
ity of each subarea is also equal to unity. With the fish moving between the two
sub-areas, equation (1) must be modified to take account of this. The size of the
stock in the marine reserve is mSm, where Sm is the density of the stock, and m
is the size of the marine reserve. With fish moving at the rate z, the migration
rate of the stock in the marine reserve will be zmSm. The probability that a fish
will migrate out of the reserve is 1 – m, so the migration rate out of the reserve
will be (1 – m)zmSm. To translate this into change in stock density in the area
outside the reserve, we divide by the size of that area, 1 – m, so that the in-
crease in the density of fish in the area outside the marine reserve due to migra-
tion from the marine reserve will be zmSm. Similarly, mz(1 – m)So is the rate of
migration into the marine reserve, and the change in the density of fish outside
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the marine reserve due to this out-migration will be –zmSo, where o denotes the
“other” sub-area, i.e., the area outside the marine reserve.1 Thus, the rate of change
in the density of fish outside the marine reserve is

dS

dt
rS S zm S S Yo

o o m o= +( – ) ( – ) –1 (2a)

where Y is the catch rate of fish outside the marine reserve, expressed as density. By
a similar reasoning, the rate of change in the density of fish in the marine reserve is

dS

dt
rS S z m S Sm

m m o m= + −( – ) ( – )( ).1 1 (2b)

In equilibrium, the density of the stock in the marine reserve will be
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with open access prevailing outside the marine reserve, So = c, where c is the stock
density at which the fishery breaks even.2 Substituting c for So in equation (3) we
can find Sm, and from equation (2a), the equilibrium catch rate, the catch in weight
units being (1 – m)Y.

In the following, we shall compare a policy of marine reserve with open access
outside the reserve to two alternative regimes, open access to the entire area, and
optimum fishing in the entire area. Under open access, the equilibrium stock density
will be c, as previously stated. We define optimum fishing as that which maximizes
sustainable rent per year, thus ignoring discounting of the future

max ( )rS S p
c

S
1 − −





(4)

where p is the price of fish, and c is a cost parameter. This formulation implies that
the unit cost of fish is inversely proportional to the exploited stock, or that the catch
per unit of effort is proportional to the stock, with a constant unit cost of effort.
With p = 1, the optimum stock3 will be

1 This migration function is similar to the one used by Conrad (1997). He considers two areas with dif-
ferent carrying capacities, K1 and K2, and uses the migration function s(S1/K1 – S2/K2). Here the carrying
capacity is unity everywhere, and the diffusion rate, s, is the product of z and m(1 – m).
2 With the catch equation Y = EqS, E denoting effort and q being normalized at unity, profits in equilibrium
will be pES – cE, so with zero profits, and p also normalized at unity the zero-profit stock will be S = c.
3 Discounting the future at the rate δ would affect the optimum stock size. The formula for the optimum
stock size with discounting is, in this case,
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Hence, for a given cost of effort, a positive discount rate would lower the optimum stock level. On the
other hand, a positive discount rate raises the cost of fishing effort, c; the more it is raised, the more
capital intensive the fishing technology is (Hannesson 1987). This increases the optimum stock level, so
the impact of the discount rate on the optimum stock level is, in fact, ambiguous.
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S
c

=
+1

2
. (5)

Figures 1 through 3 compare the three regimes, (i) open access to the entire area, (ii)
open access to the area outside the marine reserve, and (iii) optimum exploitation in the
entire area. Figure 1 shows the impact of fishing costs for a given size of the marine
reserve (40% of the whole area) and a given migration rate (z = 0.5). The size of the
stock in the entire area [mSm + (1 – m)So] is remarkably similar under both open-access
regimes, with and without the marine reserve. As fishing costs approach zero, the popu-
lation becomes extinct under both open-access regimes. This is a more serious case
than the no-cost assumption might suggest, as this also covers the case where the
unit cost of fish is insensitive to the size of the exploited stock (Hannesson 1993).

The catch level is also remarkably similar under both open-access regimes; if
fishing costs are low, the stock is overexploited to the point that catch diminishes as
the cost falls, as would, for example, happen as a result of technological progress.
The maximum catch with a marine reserve is only slightly lower than when the en-
tire area can be fished, and occurs at a slightly lower cost level. The equilibrium ex-
ploitation rate under both open-access regimes is also similar. The exploitation rate
is an expression of the total effort applied, or the total cost of fishing. The total cost
of fishing is about twice as high under both open-access regimes as with an optimal
exploitation, without necessarily resulting in greater catch.

Figure 2 shows the effect of varying the size of the marine reserve for a given
and relatively low cost of fishing (under open access, the stock would be reduced to
15% of its pristine level). With a relatively large reserve (80% of the entire area),
the equilibrium stock would be the same as the optimum one, even if there was open
access outside the reserve.4 The maximum catch with a marine reserve and open ac-
cess outside is not quite as great as the optimum one, but the stock is smaller and the
exploitation rate (total costs) higher (the maximum catch is obtained when the ma-
rine reserve is about 75% of the total area).

Finally, figure 3 shows the effect of varying the migration rate. Not surprisingly,
as the migration rate increases, the marine reserve solution approaches the solution
with open access to the entire area. With the fish redistributing themselves rapidly, it
makes no difference whether a part of the area is closed, or open, to exploitation. If
the fish do not move around at all (z = 0), the total stock is almost as large as with
optimal exploitation, but the catch is much lower. The exploitation rate is also
lower, but since the regime is open access, there are no rents, and the revenue is
fully absorbed by fishing costs.

A Discrete Time Model

Considering the problem in discrete time brings out distinctions which one may ex-
pect to encounter in fisheries with a seasonal character. The discrete-time analogue
of the above model is the following

4 From the top panel of figure 2, we see that the effect of the size of the marine reserve on the equilib-
rium stock is not very great until the size of the reserve is quite substantial (about one-half of the area).
Hence, even if a positive discount rate would reduce the optimum standing stock, the effect on the size
of the reserve needed to achieve this would not be very great. For example, with c = 0.15, a discount
rate of 5%, and ignoring the effect of the discount rate on c, the optimum stock would be 0.48, com-
pared to 0.57 in the absence of discounting, using the formula in footnote 3. The marine reserve would
still need to be almost 80% of the entire area to achieve this stock level.
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Figure 1.  Effect of Varying Cost (m = 0.4; z = 0.5; r = 0.2)
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Figure 2.  Effect of Varying Size of Reserve (c = 0.15; z = 0.5; r = 0.2)
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Figure 3.  Effect of Varying Rate of Migration (c = 0.15; m = 0.4; r = 0.2)
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R S rS S zm S So t o t o t o t m t o t, , , , , ,( ) ( )= + − + −− − − − −1 1 1 1 11 (6a)

R S rS S z m S Sm t m t m t m t o t m t, , , , , ,( ) ( )( ).= + − + − −− − − − −1 1 1 1 11 1 (6b)

This formulation implies that fishing is concentrated at the beginning of each pe-
riod, during which the stock is fished down from Rt, the level at the beginning of
period t, to St. During the harvesting phase, the fish do not move into or out of the
marine reserve, but the stock that remains outside the marine reserve after fishing
intermingles with the stock inside the marine reserve. This aggregate stock deter-
mines the net growth of the stock, and the resulting stock disperses itself randomly
over the entire area. These two processes determine the stock available at the begin-
ning of the next period.

In equilibrium, Rm = Sm, and the solution for Sm is the same as in equation (3).
With the unit operating cost of fish inversely proportional to S and equal to c/S, the
stock density outside the marine reserve will be depleted to So = c. Again, we com-
pare this regime to open access to the entire area (in which case the stock density at
the end of the fishing season will be c) and optimum fishing in the entire area.
Maximizing sustainable rent in this model, including the contribution to capital
costs (fixed costs), entails

max ( ) [ln ( ) ln ]R S S c R S S− − − (7)

as the total operating cost is
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From this we can find the optimum density as
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The results, with respect to equilibrium stock and yield, are similar to the continu-
ous model. What is new here is that intra-seasonal rents emerge; instead of keeping
the stock always at the equilibrium level, continuously creaming off the surplus
growth, we start with a bigger stock at the beginning of each season and deplete it
until the operating cost per unit of fish has risen to the level where it is equal to the
price. The top panel of figure 4 shows the intra-seasonal rents with open access to
the area outside the marine reserve, open access to the entire area, and optimal fish-
ing. Under open access, the intra-seasonal rents are higher with the marine reserve.
Due to migration from a more plentiful stock in the reserved area, we always start
with a higher density outside the marine reserve than we would with open access to
the entire area.

The intra-seasonal rents are quasi-rents; i.e., revenues exceeding operating
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Figure 4.  Effect of Marine Reserve on Intraseason Rent,
Fishing Capacity, and Season Length

Note: The second, third, and forth panel diagrams show the results of varying c, z, and m.
The values of these when held fixed are c = 0.15, m = 0.4; and z = 0.5, while r = 0.2.
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costs. It is to be expected that these rents will attract investment in fixed capital, the
cost of which is independent of the rate of utilization in the fishing season. Assum-
ing that investments in fishing capacity are proportional to these quasi-rents, we get
the results shown in figure 4, where we compare the fishing capacity with open ac-
cess outside the marine reserve to open access to the entire area. The excess capac-
ity generated by the marine reserve is sensitive to the cost of fishing, migration rate
of the fish, and the size of the marine reserve. For a marine reserve of 40% of the
entire area, the fishing capacity is twice that under open access to the entire area
when the cost of fishing is low. For a relatively low cost (c = 0.15), the fishing ca-
pacity with a marine reserve reaches a maximum of about eight times what it would
be with open access to the entire area when the marine reserve is about 80%. For a
marine reserve of 40% and a cost of c = 0.15, the fishing capacity is two to three
times the open-access level, except for very low migration rates. In these scenarios,
one of the main results of establishing the marine reserve is to encourage
overinvestment in fishing capacity.

An associated effect is a shortening of the fishing season, as it will take less
time to deplete the population to the break-even level the larger the fishing capacity
is. The time it will take to deplete the stock to the level c is given by Re–FT = c,
where F is the fishing mortality produced by the fishing fleet, and the length of the
fishing season (T) is T = ln(R/c)/F. By assumption, the capacity of the fishing fleet is
proportional to the intra-season rent. Now the fishing mortality produced by a unit
of fishing capacity is inversely related to the size of the area in which the stock is
confined, so if one unit of capacity produces fishing mortality, F*, over the entire area,
the mortality produced in the area outside the marine reserve will be F*/(1 – m). Hence,
the relative length of the fishing season under open access with and without the ma-
rine reserve will be
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where V is rent, the subscript MR refers to the regime with open access to the area
outside the marine reserve, and OA to open access to the entire area. Figure 4 shows
the ratio TMR/TOA as a percentage. The higher capacity buildup generated by the
higher intra-season rents with the marine reserve, results in a very substantial short-
ening of the fishing season. For example, when varying m in figure 4, the fishing
capacity under open access with a marine reserve rises to a peak of more than eight
times the level when the entire area is open, while the fishing season shrinks by
more than 80%.5

Conclusion

The foregoing analysis suggests that little would be gained by establishing marine
reserves without applying some measures that constrain fishing capacity and effort.
The migration of fish ensures that the fish stock to be protected would be depleted
despite the existence of a marine reserve. The catch might be larger than under open
access to the entire area, but this gain would be nullified by increasing cost. The re-

5 The seasonal model in this section is in many ways similar to the approach taken by Homans and Wilen
(1997). In their model, intraseason rents attract fishing capacity which regulators counteract by shorten-
ing the fishing season, as needed, to take a given total allowable catch.
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sults also suggest that marine reserves would have to be very large, maybe 70% to
80% of the entire fishing area, in order to achieve yield and conservation effects on
par with an optimally controlled fishery. However, the difference would be the ero-
sion of economic benefits in the absence of any controls that reign in fishing capac-
ity and effort. In a seasonal fishery, the increase in intra-season rents would lead to a
buildup of greater fishing capacity, which, in turn, would lead to a shorter fishing
season. These effects could be very substantial. As the existing literature indicates,
marine reserves might provide a hedge against stock collapses (Lauck 1996; Lauck
et al., 1998), but only if they supplement other management measures that keep ef-
fort and capacity in check. Marine reserves by themselves, without any measures to
restrain fishing effort and capacity, might achieve little other than increasing the
costs of fishing.
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Appendix

Stability of Equilibrium With Open Access Outside Marine Reserve

Continuous Model

Consider a perturbation of the linearized system [equations (2a) and (2b)] around the equilib-
rium point
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o m m o m= − + − − −[ ] = +( ) ( ) ( ) .1 1 2 1 21 22∆ ∆ ∆ ∆

We consider only the biological part of the system and hold the fishing effort constant. It
may be noted, however, that the human part of the system could destabilize an otherwise
stable biological system if the reaction to positive or negative profits is strong enough. With
the catch function implicit in the previous analysis (cf. footnote 2), we have Y = ESo, and so
∂Y/∂So = E. Now, in equilibrium, So = c, and so E = Y/c, and ∂Y/∂So = Y/c.

The characteristic equation is λ2 – (a11 + a22) λ  + (a11a22 – a21a12) = 0 with roots

λ α α β= ± −( )1

2
42

where α  = a11 + a22 and β = a11a22 – a21a12. For stability, we need at least one negative root, or
a negative real part. In all cases reported, there is at least one negative root, but for some low
values of m or c, there is one positive root, implying that the equilibrium is a saddle point.
See Clark (1976, ch. 6), or Conrad and Clark (1987, pp. 45–48).

Discrete Model

A perturbation of the linearized system around equilibrium gives
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As for the continuous model, we consider stability of the biological system, holding ef-
fort constant. The catch is given by Y = Ro(1 – e–E). In equilibrium, So = c = Roe–E.
Hence, E = – ln(c/Ro), and ∂Y/∂So = (∂Ro/∂So)(1 – c/Ro), and analogously for ∂Y/∂Sm.

Stability of the equilibrium, So,Sm, requires, in this case, that the roots of the characteristic
equation be less than 1 in absolute value, or have real parts that are less than 1 in absolute
value. In the cases discussed in this paper, all roots are less than 1 in absolute value.


