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Abstract  Size and bag limits are among the most common forms of regulations
for recreational fisheries. In this paper, we theoretically study and compare the
short- and long-term impacts of these policies on individual anglers and fish
stocks. Particular attention is paid to the issue of release mortality, which can
have important consequences for policy effectiveness. Theoretically, we show
the conditions under which these policies will be successful in achieving bio-
logical objectives. Implications for recreation demand analysis are discussed.
We also study these policies using a simulation model of various policy combi-
nations for the Gulf of Mexico red snapper fishery.
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simulation modeling.

JEL Classification Codes  Q22, Q26, Q28.

Introduction

Limits on the total catch per day or trip (bag limits), and restrictions on the mini-
mum size of fish that can be retained (size limits) are among the most widely
utilized regulations in recreational fisheries. These policies are designed to reduce
fishing mortality, improve fish stocks, and, in the long run, improve or sustain a
quality fishing experience for anglers. To understand the effectiveness of these poli-
cies, one must recognize how they alter the incentives that anglers face. The
incentives created by these policies will inevitably have secondary impacts that can
either complement or offset the policy’s direct effect. For example, a bag limit might
not only reduce the number of fish retained on a given trip, but might also change
the number of trips that anglers take during the year. In this paper, we explore the
individual and fishery-wide implications of size and bag limits.

Size- and bag-limit policies, though widely used, have received only limited
treatment in the economics literature. Anderson (1993) considers the implications of
bag limits and Homans and Ruliffson (1999) evaluate how size limits affect a fish-
ery. This paper provides a unifying economic framework for the analysis of
recreational fishing behavior. The model is sufficiently flexible to allow the consid-
eration of not only size and bag limits, either independently or together, but could
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also be used for the analysis of other policies that might be considered.
In addition to the theoretical framework, we study these regulations in an em-

pirical context: the recreational red snapper fishery of the Gulf of Mexico. Using the
General Bioeconomic Fisheries Simulation Model (GBFSM) (Gillig, Griffin, and
Ozuna 2001), we analyze alternative policy mixes in the fishery. While the theoreti-
cal model can give insights into the short-term responses of anglers and some sense
of how the policy might perform in the long run, the simulation model allows the
prediction of long-term consequences of the policy in an environment in which
changes in the fish stock depend on complex biological growth functions in which
the stock’s age structure plays an important role.

In both the theoretical and empirical analyses, we pay particular attention to the
issue of discard mortality. Mortality of fish that are not returned can have important
consequences for the effectiveness of fishery policy. For example, when size limits
are used, all fish below the limit cannot be legally retained. If a substantial portion
of these released fish die prematurely, this will diminish the policy’s effect on total
fishing mortality and the consequent long-term benefits for the fishery.

Because of the difficulty in measuring release mortality, there is a high degree
of uncertainty surrounding its magnitude. However, the limited evidence that is
available suggests that it might be substantial. In catch-and-release bass fishing
tournaments, Wilde (1998) estimates mortality at about 26%. When compared to
freshwater fisheries, release mortality in deepwater might be higher as fish are
hooked at greater depths and pulled rapidly to the surface, suffering rapid pressure
changes. Harley, Millar, and McArdle (2000) put discard mortality for recreational
gulf snapper at between 15 and 35%. Burns, Koenig, and Coleman (2002) report
preliminary findings of release mortality in red snapper of 50% or higher for fish
caught deeper than 35 meters and 60 to 70% for those caught at 40 to 60 meters.

Most fisheries models have equated total fishing mortality with the number of
retained fish. Anderson (1993), who we draw on extensively, admitted the possibil-
ity of a nonunitary survival rate, but did not explore in depth the implications that
this might have. Hence, one of the contributions of this paper is to demonstrate the
importance of considering the issue of release mortality when designing fishery
policies.

The paper is organized as follows. In the next section, we provide a general
model of angler behavior and discuss the system-wide implications of their behavior
in an open-access regime. We then consider the theoretical implications of bag and
size limits, both independently and jointly. After developing the theoretical frame-
work, we demonstrate the potential implications of these policies in the context of
the red snapper fishery in the Gulf of Mexico. We conclude with a summary of our
findings and suggestions for future research.

The Model

The foundation of our analysis is a representative angler’s utility maximization
problem. Following the standard practice in the recreation demand literature, we as-
sume that an angler’s utility is a function of the number of days spent fishing, d, and
a composite good representing other goods purchased, x0. In addition, we assume
that the angler’s utility is affected by the quality of the experience on the fishing
day, q(·), which is a function of the number of fish retained or “landed,” l, the aver-
age size of the retained fish, s, and the time per day spent fishing, t. The angler faces
costs per fishing day, c, and has a fixed income of m that is used to pay for fishing
trips and other goods. By assuming a fixed cost per day, our model is directly appli-
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cable only to cases where the angler is considering one site, or cases in which all
alternative sites are indistinguishable in terms of both cost and quality.

We maintain a number of simplifying assumptions. Our model is deterministic
and static over the course of a fishing year so that all variables can be chosen ex-
actly and catch can be predicted ex ante . We assume that the angler treats the
biological condition of the fishery as constant over the course of the year so that all
trips during a year are viewed as identical. Furthermore, we ignore the possibility
that the angler may discount trips at the end of the year relative to those at the be-
ginning of the year. In addition, to make our analysis more tractable, we treat all
variables as if they were continuous.

The angler’s utility, U(·), is a function of the days fished, d, the quality of a day
of fishing, q(l, s, t), and consumption of a numeraire good, x0. In practice, anglers
certainly make decisions throughout the year as conditions change and their budgets
are used up. Provencher and Bishop (1997) present an empirical model that explic-
itly addresses these issues. However, as they indicate, incorporating the
intertemporal dynamics of the angler’s problem substantially complicates the analy-
sis and may not always be desirable. To keep us focused on what we see as some of
the most important issues in angler choices, our specification aggregates over time,
treating the choices that determine d and q as if they are made at beginning of the
year.

Throughout our analysis we make the following assumptions on the curvature.
We assume that ∂q/∂t > 0 at t = 0 and lim

t→24
 ∂q/∂t = –∞ so that the quality of a fishing

day is maximized by fishing somewhere between zero and twenty-four hours per
day. All other variables are assumed to positively affect the angler’s utility; i.e. , Ux,
Uq, ql, and qs are all non-negative.1 We assume that U is linear in x0 and that U and q
are concave in all other arguments; i.e. , Uqq, qll, qss, qtt are all nonpositive. We refer
to these monotonicity and concavity assumptions jointly as c1. At times, we will also
assume (c2) that qst = qlt = 0, although the results that use this assumption would also
be satisfied as long as these cross-partial derivatives are small relative to the first
derivatives.

In the absence of regulations, the representative angler’s decision problem is to
choose d, t, l, s, and x0 to maximize U subject to a budget constraint and the limit
that landings cannot exceed the number of fish harvested. We write this problem:

max U d, q(h, l, s, t ), x0[ ] s.t. (1)

c × d + x0 ≤ m

l ≤ h(t; X),

where h is equal to the catch per day, which is a function of the time spent fishing
on that day, t, and the fish stock, X.

This specification unifies the frameworks of Anderson (1993) and Homans and
Ruliffson (1999). Anderson considers, in detail, a model in which tradeoffs between
l and d are made. Homans and Ruliffson focus on tradeoffs between l and s. Both
papers pay particular attention to the case where the two inputs are substitutes. Here
we consider the more general problem, in which anglers choose all these inputs and
the variables might be either substitutes or complements. Our specification is con-
sistent with “restricted-choice” models of recreation demand in which “the

1 The notation Ux refers to the partial derivative of the function U with respect to x.
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decisionmaker is viewed as deciding on the number of trips within a planning hori-
zon where diminishing marginal utility is associated with increasing frequency of
trips” (Bockstael 1995, p. 658).2

Like Homans and Ruliffson, we assume angler utility is affected by the size of
retained fish, though we use a slightly different approach. Those authors assumed
that utility is a function of the minimum size of the retained fish.3 In our analysis,
we define s as the average size of the retained fish. While the value of s is largely
determined by the biological conditions in the fishery, it can also be influenced if
the angler chooses to discard a portion of his or her catch. In the absence of such
discards, we assume that the angler’s average catch would be s = s(X), where s(X) is
the average size of the fish harvested as a function of the stock.4

The magnitude of many policy impacts will depend on the size distribution of
the fish. Following Homans and Ruliffson (1999), we will occasionally assume (u)
that the size distribution of fish caught, f(S|X), is uniform (0,1). A fish of size 0
would be the smallest catchable fish, while a fish of size 1 would be the largest. Un-
der this assumption, the average size of the fish harvested is 0.5. This assumption is
made primarily to make our analysis much more tractable and does not affect any of
our results qualitatively.

Angler Behavior in the Absence of Regulations

Because l, s, and t are arguments of the subfunction q, the angler’s utility function is
weakly separable, and his or her optimization problem can be solved using two-
stage planning. First, for each day that a fishing trip is taken, the angler must choose
t, l, and s, defining the quality of a given fishing trip. Second, over the course of the
year the angler must choose d, the number of trips to be taken during the year, and
his or her other expenditures, x0.

One of the tradeoffs that an angler must consider is between the number of fish
landed and the size of the catch. For any level of t, the angler’s harvests h(t; X) are
fixed, but the angler can choose to increase the average size of his or her remaining
catch by discarding smaller fish.

Figure 1 presents the angler’s choice between l and s. The constraint, s = S(l, h; X),
indicates the feasible combinations of l and s given that the angler has spent t hours
fishing and caught h(t; X) fish. For example, if assumption u holds, then S(l, h; X)
will be linear from s (X ) = 0.5 if l = h and approaching 1 as l goes to zero. More
generally, the tradeoffs will be nonlinear, but as long as it is possible to increase s
by decreasing l, the slope will be negative as in the figure. From the feasible set of
combinations of s and l, the angler will choose that one which maximizes q(l, s, t) as
indicated by the tangency in figure 1.

As noted by Anderson (1993), in general it would be useful to have both l and h
in q(.) since this would allow the consideration of catch-and-release fisheries. Al-
though our model is not completely satisfactory as an explanation of voluntary

2 Following Hellerstein and Mendelsohn (1993), we distinguish between “restricted-choice” models,
which treat the decision as one being made at the beginning of the season, and “repeated-choice” mod-
els, in which an angler makes a choice each day about whether or not to take a trip.
3 While having some attractive features from a modelling perspective, this specification can lead to
some counterintuitive results. For example, under their specification angler welfare could fall if that
policy leads to a reduction in size of the smallest fish caught, even if the policy simultaneously in-
creased both total harvests and average size.
4 In general, anglers can also influence the size distribution through gear choices. Here, we assume that
the gear is held constant so that the angler views the size distribution as exogenous.
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discards of all fish caught, it could be used to model the behavior of anglers who
only seek to land large fish, characterized by a fisherman for whom the indifference
curve is essentially horizontal. In contrast, anglers who only are interested in maxi-
mizing the total volume of the catch would have very steep indifference curves, so
they choose to retail all fish no matter how small; i.e. , l = h(t).

For an angler who discards part of his or her catch, the optimal levels of s and l
are set at the tangency point where ql/qs = –Sl. If, however, ql/qs > –Sl, even when
evaluated where l = h and s = s(X), then a corner solution is optimal and the angler
will choose to retain all fish, regardless of their size. We will call such an angler
quantity focused, and the angler’s landings and catch-size can be written as func-
tions of h(t), l*[h(t)], and s*[h(t)]. In either case, the optimal quality of a fishing day
can be written as a function of h(t), q(l*, s*, t) = q*[h(t)].

Changes in t have two implications for the quality of a fishing day. First, t enters
q(·) directly, eventually negatively as the length of the day approaches 24 hours. Second,
t enters q(·) indirectly, increasing h(t) and making possible higher levels of l, s, or both.
Assuming qlt and qst equal zero, assumption c2, we can cleanly separate the marginal im-
pact of changes in t into these two effects, ∂q/∂t = [(∂l/∂h) + (∂s/∂h)](∂h/∂t) + qt =
qh

*ht + qt = 0, where qh
* is the marginal impact of h on q assuming optimal choices

of s and l. For interior optima, the quality of a trip is maximized when qh
*ht = –qt, as

presented in figure 2.
Under the separable specification that we have assumed, anglers will seek to

maximize q regardless of how many days are fished during the year. Hence, choices
defining the levels of d and x0 can be made contingent on the optimal level of q.
From the first-order condition with respect to x0, it follows that at the optimum, Ux

equals the shadow price on the budget constraint. Dividing U(·) by Ux, we obtain a

Figure 1.  Tradeoffs Between the Number of Fish Landed and the Average Size
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money-metric function, u[d, q(l, s, t)], which indicates the total willingness to pay
for d trips. The angler’s optimization problem, therefore, can be written:

max u d, q(⋅)[ ] + u0x0  s.t. (2)

c ⋅ d + x0 ≤ m

l ≤ h(t; X).

When the assumptions c1 hold, analogous concavity conditions are also satisfied for
u, and the optimal number of days fished, d*, is defined by the first-order condition:

∂u d* , q(⋅)[ ]
∂d

− c ≡ 0. (3)

That is, the angler will take additional trips until the willingness to pay for an addi-
tional trip is equal to the travel cost.

Figure 2.  Marginal Changes in q with Changes in t
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Discard Mortality and Bioeconomic Equilibrium

We assume that natural growth, g, and natural mortality, m, are functions of the
stock so that net natural growth can be written G(X).5 From year to year, the stock
evolves according to the equation:

∆X = G(X) − d ili
i

∑ − φ di h(ti , X) − li[ ]
i
∑ 

 
 

 
 
 
, (4)

where i is the index of anglers active in a given year. The parameter φ is the rate of
release mortality so that the final term in equation (4) is the total discard mortality.
The bioeconomic equilibrium occurs when natural net growth equals fishing mortal-
ity; i.e. ,

G(X ) = di li + φ(hi − li )[ ]
i
∑ . (5)

Since individual anglers ignore the stock externality, the equilibrium stock will be
lower than would be economically optimal.

Regulations on an Open-access Recreational Fishery

We now consider the theoretical implications of bag and size limits in a recreational
fishery. We look at the effect on angler welfare, fishing effort, and fishing mortality.
Per-trip, annual, and long-term impacts are evaluated. We explore these policies
separately and then compare those results with a joint policy in which both size and
bag limits are used.

Policies that Improve Trip Quality

Many fishery policies are, in the long run at least, intended to improve the quality of
anglers’ fishing experiences. Since ∂u/∂d is the marginal willingness to pay for an
additional fishing trip, we write WTP  = ∂u/∂d . The impact of a policy change that
results in increases, q, can be identified by taking the derivative of equation (3) with
respect to q*:

∂2u

∂d 2

∂d

∂q
+

∂2u

∂d∂q
=

∂WTP

∂d

∂d

∂q
+

∂WTP

∂q
≡ 0,

5 In some cases, size and bag limit policies are designed to target specific cohorts of the fish population.
In our theoretical model, we abstract from such targeted impacts, characterizing their impact as a homo-
geneous effect on stock. The simulation model we use in the final section of this paper does model the
cohort-specific impacts.
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which can be simplified to:

∂d

∂q
= −

∂WTP

∂q
∂WTP

∂d

. (6)

By the concavity of the utility function, we know that the denominator on the right-
hand side of equation (6) is less than zero. Our first proposition follows:

PROPOSITION 1:  Assuming c1, a policy that increases the quality of a fishing
trip will lead to an increase (decrease) in trips taken if the WTP for addi-
tional trips is positively (negatively) affected by trip quality.

Although it might at first seem automatic that WTP would increase with q, this only
holds if q and d are complements. However, it is also plausible that they might be
substitutes. For example, q and d would be substitutes if anglers simply seek to
maximize their annual catch so that improvements in the catch rate would increase q
but decrease the number of trips taken per year. Furthermore, q and d might be sub-
stitutes at the margin, but not necessarily at all points on the demand curve. For
example, an improvement in the catch rate could increase an angler’s WTP for the
first trips of the year while decreasing the WTP for trips later in the year. That is,
changes in quality may cause the WTP curve to rotate rather than shift. Hence, for
policy analysis it is important that estimates of recreation demand functions capture
the effect of quality on both the function’s height and its slope.

Proposition 1 has important implications for the effectiveness of policies. If q
and d are complements, then a policy that reduces fishing effort per day, as is sought
in bag and size limits, will be reinforced by additional declines in the number of
fishing days desired. Alternatively, if they are substitutes, then the net effect of the
policy will be dampened because the reduction in fishing per day will be offset by
an increase in the number of trips taken.

Bag Limits

A bag limit is a mandatory restriction that places an upper limit on the number of
fish that an angler can retain during a fishing trip, say l . Excluding the possibility of
direct cheating, which would lead to no change in harvest or fishing mortality, there
are four possible ways that an angler can comply with the letter (though not neces-
sarily the spirit) of a bag limit. First, an angler may comply simply by stopping his
or her fishing when the bag limit has been reached. Second, the angler may discard
smaller fish as they are caught to fill his or her limit with larger fish. Third, anglers
can high-grade their catch by disposing of smaller fish caught early in the day when
a later catch causes the angler to exceed the legal limit. We assume that high-grad-
ing leads to 100% mortality of discarded fish. Finally, anglers fishing as a group
could share their limits so that a group of m anglers effectively face a joint limit of
ml  fish and adopt any of the previous approaches as a group. 6 Each of these re-

6 This case will not be considered in detail but can be thought of as a linear extension of the model of a
single angler.
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sponses to the bag limit policy would have different consequences for total fishing
mortality and the angler’s net benefits per trip.

Simple compliance leads to a reduction in fishing mortality per trip by h* – l ,
but no change in s. This approach leads to a decrease in fishing time per day, and q
and will cause a change in days per year depending upon the sign of ∂WTP/∂q, as
noted in Proposition 1. The effect on q of a strategy of simple compliance is demon-
strated in figure 3 by the shift from l*, s* to l , s * . However, if q is increasing in s,
simple compliance would not be optimal, and the angler’s optimal response would
be to improve the quality of a fishing day. This would be accomplished by discard-
ing the smaller fish caught, increasing the average size to sb, and moving the angler
to the indifference curve labeled q(l , s, t ). Unless stated otherwise, from here on we
will assume anglers follow the second approach and comply with a bag limit by dis-
carding their smallest fish.

If F(x|X) is the cumulative size distribution of the fish caught, then the mini-
mum size of the retained fish would be s′, where:

F( ′ s X) = (h − l ) h , (7)

and the average size of the retained fish, sb, would be:

sb =
h

l 
x ⋅ f (x )dx

′ s 

∞

∫ , (8)

Figure 3.  Tradeoffs Between the Number of Fish Landed and
the Average Size under a Bag Limit Policy
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where f(·) is the probability density function of the size of fish caught. Using as-
sumption u that the size of the harvest is distributed uniformly (0,1), these simplify
to ′ s = (h − l ) h  and sb = 1 − (l 2h ).  Hence,  under a binding bag l imit ,  the
angler’s optimal landings are equal to l , and sb can be written as a function of l  and
h(t). The optimal level of t will be achieved where:

∂q

∂s

∂sb

∂h

∂h

∂t
= −

∂q

∂t
, (9)

and sb is defined by equation (8).
A marginal reduction in l  will affect the angler’s quality maximization problem

by increasing s and decreasing ∂q/∂s. It follows that increasing harvests will in-
crease q at a lower rate than in the unregulated fishery; i.e. ,

∂q

∂s

∂sb

∂h

∂h

∂t
<

∂q*

∂h

∂h

∂t
.

This effect is represented in figure 4 in which the marginal benefit curve (the dashed
line) kinks downward as a result of the bag limit. If c2 holds, then the bag limit does
not affect qt, and the downward shift in qhqt will lead to an unambiguous decline in
the optimal level of t.

Figure 4.  Marginal Changes in q due to Changes in t Under Bag Limit
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PROPOSITION 2:  Assuming c1 and c2, a bag limit will reduce the fishing time
of an angler who discards smaller fish to comply with the regulation.

If c2 does not hold, then it is possible that the direct effect of time on q will also
change, possibly decreasing the rate of decline in q as t increases, potentially offset-
ting the impact suggested in Proposition 2. For example, c2 would not be satisfied if
qt falls as the angler catches more fish. The effect of the bag limit on fishing time
cannot be predicted a priori if qtl < 0 or qts > 0.

From Propositions 1 and 2, it follows that if c1 and c2 hold and q and d are
complements, then a bag limit will decrease both the time spent fishing per day and
the angler’s annual number of trips.

The biological impact of a bag limit depends on the release mortality rate, φ,
and on how the regulation affects h(t), l, and d. At one extreme, if φ = 0, then daily
fishing mortality will unambiguously decline for a binding bag limit. At the other
extreme, if φ = 1, or if the angler high-grades to satisfy the bag limit, the re-
striction will still cause a reduction in daily fishing mortality as long as t falls.
In general, fishing mortality will decline if effort falls and will increase only if
h(t* ) − l < φ[h( ′ t ) − l ].  On an annual basis, the total fishing mortality can increase
if the bag limit results in an increase in d · h.

The long-term effectiveness of a bag limit is a function of the restriction’s im-
pact on total mortality. The short- and long-term consequences of a bag limit are
summarized in table 1. For example, if q and d are complements, then the short-term
impact of the policy is to diminish fishing mortality, though the impact is offset
somewhat in the long-term as demand increases in response to improvements in the
stock. However, when q and d are substitutes, both the short- and long-term conse-
quences of the policy are uncertain, and it is possible for an unstable outcome to
result. Although we view it as unlikely, it is possible for the bag limit to cause an-
glers to increase their trips over time as the stock falls, a situation that could even
lead to the collapse of the fishery.

Table 1
Short- and Long-term Impacts of Bag Limits

Long-term Effects
(relative to short-term levels, not

Short-term Effects relative to pre-regulation levels)

Relationship Fishing Trips Harvests Harvest Trips
Between c2 Time Per Per Stock Per Per Effort/
q & d Holds Per Trip Year Year† Effect* Trip Year Year

Complements yes ↓ ↓ ↓ + ↑ ↑ ↑
Complements no ? ↓ ↓? + ↑ ↑ ↑
Substitutes yes ↓ ↑ ? + / – ↑ / ↓ ↓ / ↑ ?
Substitutes no ? ↑ ? + / – ? ↓ / ↑ ?

† The symbol ↓? indicates that we expect the change to be negative, but it could be positive if qtl < 0 or
qts > 0.
* The notation +/– indicates that the stock effect might be positive or negative. The remaining columns
are then divided if it is possible to distinguish the differential impacts of positive and negative changes
in the stock.
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Size Limits

The second policy that we consider is the use of size limits, where an angler can re-
tain a fish only if it exceeds a minimum size. There are a number of characteristics
of size limits that distinguish them from bag limits. First, bag limits affect only the
most successful fishermen, while size limits tend to affect all participants in the
fishery. Second, under a size limit an angler knows immediately whether a fish
caught can be legally retained. Finally, the effect on total mortality is less certain
since anglers may compensate for discarded fish by harvesting additional fish. Our
attention is on this final aspect of the policy.

If the smallest fish that can be retained is of size s, then F(s) is the portion of
the harvested fish that has to be discarded. Hence, ls ≤ [1 – F(s)]h(t), and the aver-
age size of the retained fish will be s′ ≥ ss 

∞
∫ f(s)/[1 – F(s)] ds . If assumption u

holds, these terms are greatly simplified, for in this case s is also the portion of fish
discarded so that  ls ≤ (1 – s)h and s′ ≥ (1 + s)/2. We consider the case of an angler for
whom s* < s′; i.e., for whom the size restriction is a binding constraint.

The angler’s quality maximization problem in this case is presented in figure 5.
As is seen in the figure, prior to a change in h, a size limit will lead to a reduction in
landings and a decline in q. In this case, however, it is more difficult to anticipate
how the angler will change t in response to the policy.

Under a binding size limit, the angler’s quality optimization problem is:

max
t

q 1 − F(s )[ ] ⋅ h(t ), s ′, t{ },

Figure 5. Tradeoffs Between the Number of Fish Landed and
the Average Size Under a Size Limit
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and the first-order condition to this optimization problem is:

q1 ⋅ ht 1 − F(s)[ ] = −qt . (10)

In the case of a bag limit, under fairly weak conditions we can predict that its effect
on daily fishing time is unambiguously negative. This is possible since the bag limit
tends to increase s, diminishing the marginal utility of further increments to s and
causing the curve in figure 4 to rotate downward. In contrast, under a size limit, its
initial effect is to decrease l, since a smaller fraction of the harvested fish can be
retained, increasing ∂q/∂l  as seen in figure 5. Hence, although the term
[1 – F(s)] decreases in s, the net effect on the left-hand side of equation (10) and the
optimal level of t are not immediately clear.

Equation (10) indicates that an angler faced with a size limit will choose to stop
fishing when the marginal improvement in q achieved by increasing l is equal to the
marginal reduction in q caused by increments to t. Assuming c2, the right-hand side
of equation (10) will not be affected by a marginal change in s. Hence, the optimal
level of t will decline if the left-hand side decreases; i.e. , if:

 ∂
ql ⋅ ht 1 − F(s )[ ]

∂s
< 0. (11)

Simplifying equation (11) using ∂F(s)/∂s = f(s) and l = h[1 – F(s)], we see that an
increase in the size limit decreases fishing time if:

−q ll

ql

l < 1. (12)

The left-hand side of equation (12) is analogous to a coefficient of relative risk aver-
sion, a measure of how tightly concave q is in l, which we will refer to as rq. If rq is
large, then as l is reduced this causes increasingly large declines in q. In other
words, if rq > 1, then as l declines because of a size limit, anglers are willing to
make increasingly large sacrifices in time to maintain their landings.

PROPOSITION 3:  Under assumptions c1 and c2, a marginal increase in the size
limit will decrease daily fishing time if r

q
 = (–q

ll
/q

l
)l < 1.

Here we see that for policy analysis, it is important to understand the curvature
of the function that determines the quality of a fishing day, a feature that merits at-
tention in applied recreation demand analysis. Our attention to fishing time is
motivated, in part, by the fact that this is a major contributor to fishing mortality if
φ > 0. Under a size limit, an angler’s annual contribution to total fishing mortality is
equal to d·{[1 – F(s)]h(t) + φF(s)h(t)}. For φ > 0, fishing mortality is increasing in d
and t, and decreasing in s. For high levels of φ with rq > 1, it is possible for the size
restriction to actually lead to an increase in total mortality.

Table 2 presents the short- and long-run consequences of size limits. We see a
sharp contrast between the possible outcomes here and those for bag limits pre-
sented in table 1. In this case, there is a much greater chance that the policy might
actually have deleterious effects on the fish stock. If rq > 1 and q and d are substi-
tutes, we find that an increase in the size limit will actually cause an unambiguous
increase in total fishing effort during the year and a subsequent increase in harvests.
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The effect on annual landings cannot be predicted a priori, but if release mortality is
sufficiently high, the policy might cause an increase in fishing mortality and, there-
fore, a decline in the fish stock.

Comparison of Size and Bag Restrictions

In principle, either bag limits or size limits can achieve any goal in terms of total
landings. Questions remain, however, about which policy results in less fishing mor-
tality and which is less costly. It turns out that in terms of their effects on fishing
effort, bag limits are always at least as effective as size limits and are frequently
preferred by anglers.

First consider the case of a size limit policy, s, and a bag limit policy of l, which
are set so that they result in the same number of fish being landed in each policy.
Recall that under either policy the angler’s optimal choices involve equating the
marginal benefits of increasing t, which makes possible increases in s or l, with the
direct effect of t on q, which is negative at the optimum. These optima are defined
by equations (9) and (10). The left-hand side of each equation is the indirect mar-
ginal benefit of increasing t and the right-hand side is the direct marginal cost. Let ts

be the optimal time under the size limit s, so that equation (10) holds when evalu-
ated at ts. In order for the bag limit to yield equivalent landings, it must be that
l = [1 – F(s)]h(ts).

The two policies will yield identical outcomes only if equation (9) also holds
when evaluated at ts or, setting the left-hand sides of equations (9) and (10) equal, if:

∂q

∂s

∂sb

∂h

∂h

∂t
=

∂q

∂l

∂l s

∂h

∂h

∂t
, (13)

Table 2
Short and Long-term Impacts of an Increase in Size Restrictions

Long-term Effects
(relative to short-term levels, not

Short-term Effects relative to pre-regulation levels)

Relationship Fishing Trips Harvests Harvest Trips Harvests
Between Time Per Per Stock Per Per Per
q & d rq < 1 † Per Trip Year Year Effect‡ Trip†† Year Year

Complements yes ↓ ↓ ↓ + ↓ ↑ ?
Complements no ↑ ↓ ? + / – ↓ / ↑ ↑ / ↓ ?
Substitutes yes ↓ ↑ ? + / – ↑ / ↓ ↑ / ↓ ↑ / ↓
Substitutes no ↑ ↑ ↑ –? ↑ ↑ ↑

Note: Symbols are described in table 1.
† We do not present the case where rq = 0, in which case time per trip would not change.
‡ The symbol –? indicates that the impact on the stock would be negative for a sufficiently high value of
φ. For φ = 0, the policy can never cause an increase in fishing mortality.
†† We assume that a decrease in effort per year leads to a shift in the size distribution so that fewer un-
dersize fish are caught and discarded, leading to a reduction in harvests per trip.
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with both sides evaluated at ts. Suppose that this does not hold, and instead that
qss h

bh t  < qt at ts. In this case, the bag-limit constrained angler will choose to fish less
than ts. Hence, the bag limit would result in a lower level of harvests, lower fishing
mortality if φ > 0, less fishing time, and an improvement in q. The nature of prefer-
ences for which anglers choose to fish less under a bag limit than under a size limit
can be seen more clearly by considering the specific case when we assume u. As
shown in the Proposition A1 in the appendix, assuming c1 and c2, quantity-focused
anglers will always choose to fish less under a bag limit than under the equivalent
size limit. Although we cannot show this point completely, the principle is that when
anglers have a relative preference for l, bag limits tend to be more effective than
size limits in reducing effort.

Now consider the alternative case, where qss h
bh t  > –qt; i.e. , the angler facing a

bag limit would choose t > t s and retain fish that are larger than s. This case would
violate the assumption that ts is optimal for the size-limit constrained angler, since it
means that holding h constant the angler would prefer to retain fish that are strictly
larger than s. Hence, it is not possible for a size limit to lead to the same level of l
but less time fishing than a bag limit. We summarize these results in the following
proposition.

PROPOSITION 4:  Assuming c1 and c2, for bag limit and size limit policies that
lead to the same level of landings, the angler’s fishing time per day, mini-
mum size of retained fish, and the resulting release mortality will all be at
least as great under a size limit as they are under a bag limit. Angler welfare
will be at least as great under a bag limit as it is under a size limit.

Proposition 4 suggests that bag limits are preferred to size limits as a way to
achieve a reduction in fishing mortality. We should point out, however, that our
model ignores some reasons that are frequently given for size limits. Cohort-depen-
dent growth and an interest in promoting trophy-sized fish are two factors that are
often stated for the use of size limits, and such factors should not be ignored. None-
theless, our analysis does suggest that size limits are a relatively ineffective way of
reducing total fishing mortality, and this should also be taken into account in form-
ing policies.

Joint Size and Bag Limits

In many fisheries, both bag and size limits are utilized. This combination of policies
has some interesting consequences. In particular, in a fishery in which a bag limit
already exists, the introduction of a size limit would mean that the angler would
have to increase effort to reach the bag limit. Hence, if φ > 0, the addition of the size
limit can actually induce an increase in fishing mortality.

In practice, the primary impact of the joint regulations may be to add a size re-
striction on anglers who are otherwise unrestricted because they fail to reach their
bag limit. For anglers who are not currently reaching their bag limit, only the size
limit regulation will be a binding constraint. Therefore, their response will be
equivalent to that discussed above. The joint policy is most interesting when either
constraint would be binding by itself.

We consider the case of an angler who would be bound by either a bag limit of l
or a size limit of s when those regulations are imposed separately. Suppose the an-
gler is initially constrained by a bag limit, l, and chooses to discard all fish smaller
than s′. A size limit, s > s′, is then imposed. If the angler’s effort does not increase,
the bag-limit constraint would no longer be binding, as more fish must be discarded
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as a result of the size limit. If the angler reacts to the new restriction by increasing t,
harvesting and discarding more fish, total fishing mortality can increase. The ques-
tion is under what conditions will the angler respond by increasing effort.

Under a bag limit, the optimal amount of time spent fishing, tb, is defined by the
first-order condition, equation (9), qss h

bh t  = – qt. Holding t constant at tb, the immedi-
ate effect of imposing a bag limit will be to increase s and decrease l, meaning that
the bag limit will no longer be binding. From this point, the marginal benefit of in-
creasing t is equal to the left-hand side of equation (10), ql ·  ht[1 – F(s)]. If this
marginal benefit is greater than –qt, both evaluated at tb, then the angler will in-
crease his or her fishing time per day. This will hold if the left-hand side of equation
(10) is greater than the left-hand side of equation (9), both evaluated at tb; i.e. , if:

ql

∂l s

∂h
> qs

∂s b

∂h
. (14)

Again we can obtain clearer results about the conditions under which this is true by
assuming u.

PROPOSITION 5:  Under assumptions c1, c2, and u, a quantity-focused angler
whose landings are bound by a bag limit, will react to the imposition of a
marginally binding size limit by increasing his or her fishing time. If q

l
 is

bounded from above, fishing time will eventually be reduced as the size
limit increases.

The proof is provided in the appendix.
Proposition 5 is obviously much weaker than Proposition 4. Under most condi-

tions, we cannot sign the change in fishing effort that would result from the addition
of a size limit to a fishery already constrained by a bag limit. While the intuition
would remain the same under more general size distribution, the proposition strictly
holds only for the uniform case (u). The proposition does show us, however, that at
least in some cases the addition of a size limit can cause an increase in fishing ef-
fort. If the angler’s effort increases to the point where the bag limit is again reached,
then for φ > 0, the size limit will cause an unambiguous increase in fishing mortality.

Summary of the Theoretical Model

The theoretical model that we have explored provides a general framework in which
size and bag limit policies can be evaluated. The model leads to testable hypotheses
that are stated as propositions. As emphasized in the tables, the implications of poli-
cies are strongly influenced by two characteristics of the angler’s demand: whether
fishing quality, q, and the annual number of days, d, are complements or substitutes;
and by the curvature of u(·) and q(·). These results suggest important areas for em-
phasis in future empirical recreation demand modeling.

From the theoretical model, we find that because of the potential role of discard
mortality, size limits may be less effective in reducing fishing mortality than bag
limits. When imposed on top of a bag limit, a size limit could even lead to an in-
crease in fishing mortality, though this holds only under quite special conditions. In
the next section, we evaluate the relative effectiveness of size- and bag-limit poli-
cies in an empirical context.
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Simulation of the Effectiveness of Size and Bag Limits in the Gulf of
Mexico Red Snapper Fishery

To further explore the implications of size and bag limits, a variety of such policies
were simulated for the Gulf of Mexico red snapper fishery using the General
Bioeconomic Fisheries Simulation Model (GBFSM). GBFSM is a multi-region,
multi-species fisheries model that was developed to predict how alternative manage-
ment policies would affect fisheries (Grant, Isaakson, and Griffin 1981; Isaakson,
Grant, and Griffin 1982). The model has been used extensively for analyzing the ef-
fects of management policies in the Gulf of Mexico (Blomo et al. 1978; Blomo et
al. 1982; Gillig, Griffin, and Ozuna 2001; Grant and Griffin 1979; Griffin and Stoll
1981; Hendrickson and Griffin 1993; Griffin and Oliver 1991; Griffin et al. 1993).

GBFSM consists of two main parts: a biological submodel and an economic
submodel. The biological submodel represents the recruitment, growth, movement,
and mortality of shrimp and finfish. Shrimp and finfish mortality is due to both
natural causes and fishing. In addition to harvests of both shrimp and finfish, effort
targeted toward shrimp also leads to incidental bycatch of finfish. When a manage-
ment policy is introduced in GBFSM, the model calculates the changes in days
fished, number of vessels, and catch per unit of effort for both shrimp and finfish.7

Based upon the biological effects of the management policy simulated, the economic
submodel then calculates the impact on costs, revenues, and rent for commercial
vessels and consumer surplus for recreational fishermen. Details of GBFSM’s struc-
ture and its calibration can be found at http://GBFSM.tamu.edu.

In many ways, simulation of a policy using GBFSM is as close as an analyst
might hope to get to an evaluation of the impact of policies in the real world.
GBFSM was not developed to demonstrate the theoretical characteristics of any par-
ticular policy issue, but is instead a large-scale model in which relationships are
based on empirical foundations, and the overall model is calibrated to closely repli-
cate historical trends in the fisheries. In effect, the model is a numerical petrie dish
that can be used by the analyst to evaluate the impact of fisheries policies by carry-
ing out controlled experiments.

Of particular relevance here is the specification of the recreation demand func-
tion. Red snapper recreation is modeled based on the empirical analysis of Gillig,
Ozuna, and Griffin (2000) and discussed in Woodward et al. (2001). The demand for
red snapper fishing trips by the ith angler, yi, is specified as:

ln(y i ) = b0 + b1Pi + b2 Inci + b3li + b4li
2 + b5E i + b6Ei

2 + b7Bi + ε i , (15)

where Pi represents travel costs incurred by the ith angler to gain access to the re-
source in the Gulf of Mexico; Inc i is the individual’s household income in thousands
of dollars; li refers to expected red snapper catch rates; Ei denotes the number of
years an angler has fished recreationally; Bi is a dummy variable that is equal to one
if an angler owns a boat; and εi is a gamma distributed error term.

The specification of the recreation demand model has some direct implications
for the predicted impacts of the size- and bag-limit policies. First, as is common in

7 The version of GBFSM used in this paper is parameterized to study the effects of management on the
shrimp and red snapper fisheries of the Gulf of Mexico. The biological component of the red snapper
model employs the Ricker stock-recruitment function so that as the spawning stock increases, the num-
ber of recruits increases up to a particular spawning stock level. Beyond this level, the number of re-
cruits declines (Ricker 1975; Ortiz 1998; and Chavez and Arreguin-Sanchez 1991).
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the literature, recreation demand was estimated based on the number of fish re-
tained; no data were available on fish returned. Hence, it is implicitly assumed that
all anglers are quantity focused. Secondly, the relationship between catch rates and
annual demand is such that any increase in the catch per day will increase the num-
ber of trips per year. Therefore, it is implicitly assumed that fishing quality per day
and days per year are complements in the angler’s demand. Furthermore, anglers are
assumed to follow a simple compliance response to bag limits. When their bag limit
is reached, they stop fishing and do not discard fish prior to reaching their limit. Be-
cause of the specification, the short-term impacts of both bag and size limits on
angler effort, and welfare are known a priori: the policies will reduce catch, effort,
and per-angler welfare.

Figure 6 presents the immediate impact of 24 different policy combinations of
size and bag limits: four bag limits (from two fish per day to no limit), combined
with six size limits (ranging from a 10-inch minimum to a 20-inch minimum). As
seen in the figure, for low-size limits the bag limit is the dominant factor in reducing
landings. As the size limit is increased, however, fewer fish can be retained so that
eventually the bag limit constraint does not bind, and total harvests are not affected
by the bag limit.

The effect of these policies on fish stocks comes through two channels. First,
fish stocks are affected by altering the number of fish caught and discarded. Second,
the policies affect angler behavior by altering the catch per trip and thereby change
the number of trips that anglers choose to take over time. This secondary impact is
presented in figure 7, which shows the simulated number of trips taken over a 20-
year time horizon for a variety of size limits without a bag limit. As seen in the
figure, size limits of 18 and 20 inches have a strong impact on trips in the short
term. This follows from the model’s assumed relationship between the desired num-

Figure 6. Fish Landings under Alternative Size and Bag Limit Policy Combinations

Note: first year of simulation.
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ber of trips and the number of fish landed. Over time, however, more aggressive
policies lead to a substantial increase in the spawning stock — increasing the stock
by over 250% with a 20-inch size limit. This leads to an increase in catch per unit of
effort, causing trips per year to increase. By the end of the simulated period, total
trips are nearly back to their pre-regulation level.

While the short-term impacts of these regulations on fishing effort can be theo-
retically predicted, their impact on the fish stock cannot be determined, because it
depends, in part, on the release-mortality rate. Here GBFSM offers substantially
more realism than can be obtained in our parsimonious theoretical model. Release
mortality is a function of not only the number of fish returned, but also the depth at
which they are caught and returned. In figure 7, discard mortality is assumed to be
at a “best guess” level of 10% for depths less than 5 fathoms, 20% for depths of 6 to
10 fathoms, and 33% for depths greater than 10 fathoms. GBFSM’s biological
model predicts total catch, the distribution of that catch, and how it is distributed
among anglers of varying skill levels. It can, therefore, predict the number of fish
caught, the size distribution of those fish, and the corresponding release mortality.

The primary purpose of simulation models, such as GBFSM, is to provide guid-
ance to policymakers on policy choices. Inevitably, multiple objectives are relevant
in this process. Some decisionmakers may place value on the biological condition of
the fishery, while others may place more emphasis on economic indicators of the
fishery’s value.

Figure 7. Trips Taken under Various Size-limit Policies in the Absence of a Bag Limit
Note: For any size limit, the addition of a bag limit policy uniformly reduces

trips taken over the simulated time horizon with more aggressive policies
(smaller bag limits), thus having a greater impact on trips taken.
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Considering 24 different size- and bag-limit combinations, a wide range of out-
comes is possible. Following Proposition 5, we know that for quantity-focused
anglers there is a tendency for a size limit, at least on the margin, to increase fishing
effort and discards. The biological impact of the policies combinations, therefore, is
strongly influenced by release mortality. Since little is known about actual release-
mortality rates, sensitivity analysis is carried out on these parameters over a range of
possible values.

Figure 8 shows the tradeoffs between the spawning stock in year 20 and the
present value of consumer surplus (7% discount rate) assuming that release mortali-
ties are very low. If accurate, figure 8 would suggest that a wide range of efficient
policies is available; virtually all the points on the frontier could be reached by vari-
ous combinations of size and bag limits. However, the shape of the policy frontier
changes dramatically in figure 9, where much higher levels of release mortality are
considered. Here, we see that size limits are relatively inefficient, leading to out-
comes on the interior of the feasible set. For example, in this scenario when there is
a bag limit of two or three fish, an increase in the size limit not only reduces the
fishery’s economic value, but actually has negative consequences for the population
as a result of the high discard rate. The contrast between figures 8 and 9  demon-
strates the importance of research to improve our knowledge of release mortality
and to take this variable into account when establishing fishery policies.

Figure 8. Consumer Surplus and Year-20 Spawning Stocks under Alternative Policy Options
Note: Mortality rates for fish caught at three depths: 0–5 fathoms, 6–10 fathoms,

and more than 10 fathoms. Discard mortality rates: 1%, 1%, and 1%.
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Figure 9. Consumer Surplus and Year-20 Spawning Stocks under Alternative Policy Options
(discard mortality rates: 33%, 46%, and 59%)

Conclusions

We have provided a unifying framework for the analysis of recreational fishing poli-
cies. Although the model is largely consistent with standard recreation demand
models, it also includes some variables that are usually not captured in such models,
including length of fishing days and discard rates. Policymakers would be aided by
a better understanding of how anglers make tradeoffs between the size of the catch
and the number of fish. Additionally, empirical tests of whether daily fishing quality
and days per year are complements or substitutes are needed. We identify the condi-
tions under which rankings of the two policies can be made. The next step will be to
empirically test these conclusions.

We then evaluate alternative size- and bag-limit policies in the context of the
Gulf of Mexico’s red snapper fishery. As predicted in the theoretical model, the rela-
tive effectiveness of these policies is dependent on the rates of release mortality.
When release mortality is high, size limits can be a very inefficient way to achieve
either economic or biological goals. There remains, however, substantial uncertainty
about release mortality rates, and scientific study of this issue is needed to help
identify the optimal policy mix.

Certain caveats on our simulation results should be emphasized. First, we as-
sume that anglers respond to bag limits through simple compliance, halting their
fishing when their limit is reached. If anglers high-grade, share their limit with other
anglers, or discard smaller fish during the day, then bag limits would lead to higher
total catch and higher mortality. The simulation model could be made more general
if empirical recreation demand analysis were carried out that captures the mix of an-
gler responses considered in the theoretical section of this paper.
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Appendix:  Propositions and Proofs

We define ts as the optimal time under the binding size limit s, and l to be the land-
ings that would result; i.e. , l = [1 – F(s)]h(ts).

PROPOSITION A1.  Assuming c1, c2, and u, the optimal amount of fishing time
for a quantity-focused angler will be less than ts.

PROOF : Assuming c1 and c2, equation (13) states that the size and bag limits will both
lead to same amount of fishing time if:

∂q

∂s

∂sb

∂h

∂h

∂t
=

∂q

∂l

∂l s

∂h

∂h

∂t
, (A.1)

with both sides evaluated at ts. Writing h(ts) as h for notational convenience, under u,
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2h
and l s = (1 − s )h.

Note that s is a lower limit on the size of fish retained, while sb is the average size of
retained fish. The derivatives of sb and ls with respect to h can then be written,
∂s b ∂h = l 2h 2  and ∂l s ∂h  = (1 – s). Equation (A.1) can, therefore, be written:

qs

l 

2h2
ht = ql (1 − s)h t.

The right-hand side of this is equal to –qt at ts by definition. Hence, qss h
bh t < −q t  if :

qs

l 

2h2
< ql (1 − s). (A.2)
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Simplifying using the fact that (1 – s)h = l ,  (A.2) can be written:

1

2h(t s )
<

ql

qs

. (A.3)

We now use the assumption that the angler is quantity focused, in which case –
Sl < ql/qs, where Sl is the rate at which s can be increased as l is decreased holding
harvests constant. Under u, s = 1 – l/2h, or h = l/2(1 – s). Setting the total derivative
of this curve equal to zero and solving for –ds/dl, we obtain –Sl = (1 – s)/l. For a
quantity-focused angler under u, therefore:

(1 − s) l < ql qs . (A.4)

The inequality in equation (A.3) holds, therefore, if its left-hand side is less
than or equal to the left-hand side of equation (A.4); i.e. , if:

1

2h
≤

(1 − s)

l
. (A.5)

Under u, s = s + (1 – s)/2 or 1 – s = (1 – s)/2 and l = (1 – s)h. Substituting these into
equation (A.5), therefore, we see that equations (A.5) holds with an equality, so that
quantity-focused anglers will prefer the bag limit to a size limit.

Proof of Proposition 5

As shown in the proof of Proposition A1, under u (∂l s/∂h) = (1 – s) and
(∂sb ∂h ) = −l 2h2 .  Hence equation (14) can be written:

 ql (1 − s ) > −qsl 2h 2 . (A.6)

When evaluated at tb, (1 − s)h(t b ) < l = (1 − s b )h(t b ),  where sb is the minimum size
retained by the bag-limit constrained angler. Hence, equation (A.6) will hold if:

ql

qs

>
(1 − sb )

2h(tb )(1 − s )
. (A.7)

For s = sb, this will hold for a quantity-focused angler as seen in the proof of Propo-
sition A1. However, as s → 1, the right-hand side of equation (A.7) goes to infinity.
Hence, if ql < ∞, it follows that the size limit will eventually lead to a reduction in t.


