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Abstract In recent years, attention has been devoted to
fishery management problems that arise because capital em-
bodied in fishing fleets is often nonmalleable. having few if any
alternative uses. This problem of Irreversible investment was
analyzed by Clark et al. (1979). using a deterministic modei.
In reality, however, most investment decisions must be made
within an uncertain environment. This paper describes recent
efforts to account for uncertainty in analyzing the problem of
optimal fishery investment, where the uncertainty is caused
by stochastic variability in the resource stock from year to
year.

Introduction

It has been increasingly recognized in recent years that fishery
management must take into account the fact that capital used in
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the exploitation of fishery resources is often nonmalleable. That
is to say, the capital lacks effective alternative uses. If the capital
is to be sold, one can do so only at a loss. A current example
of nonmalleable capital in fisheries is provided by the excess
capacity evident in many "distant-water nation" fishing fleets
since the onset of Extended Jurisdiction. In this paper we sum-
marize two recent research works in the area of optimal fishery
investment, comparing in particular the differences between de-
terministic and stochastic analysis.

Clark et al. (1979) investigated the consequences of nonmalle-
ability of capital for fishery management, using a continuous time
deterministic model. They pointed out that if capital employed
in the exploitation of a fishery resource is perfectly malleable,
there is no need to be concerned with the stock of capitai as
such. The services of capital can be treated in exactly the same
manner as the services of labor. The only stock one need be
concerned with is the resource itself. Hence the only investment
program of interest is the program of investment in the resource.
Formally, one is confronted with a relatively simple optimal con-
trol problem involving one state variable and one control vari-
able.

When capital used in exploiting the resource is nonmalleable,
the problem becomes substantially more compHcated. One then
does have to be concerned with the stock of capital. Of greater
importance, however, is the fact that the optimal programs of
investment in the resource and investment in capital are then
interdependent. Formally, we now have an optimal control prob-
lem with two state variables and two control variables.

Clark et al. (1979) confine their discussion of nonmalleabiiity
to a situation in which capital embodied in the fleet is nonmalle-
able. In so doing, they consider three cases with varying degrees
of nonmalleabiiity: the case of perfect nonmalleabiiity, in which
there is no positive resale value and in which the depreciation
rate is zero; the case of quasi-nonmalleability, in which there is
no positive resale value, but thc depreciation rate is positive;
and finally the case in which the resale value is positive.

Let us focus on the second case. The nature of the joint in-
vestment program can be represented by the following example.
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BtOMASS

FIGURE 1. Optimal investment and harvesting policies for the deterministic
continuous-time instantaneous-investment model of Clark et al. (1979). A sam-
ple trajectory is also shown. See text for details.

Figure 1 shows a state-space diagram taken directly from the
Clark et al. article.

Let X* denote the biomass level that would be optimal if capital
were perfectly malleable andx the optimal biomass level if capital
were "free." The capital stocks K and K* are the capital stock
levels required if harvesting is to take place on a sustained yield
basis at i and .v*, respectively.

Let it be supposed that we commence with the resource at its
natural equilibrium level .v(0) = .Y" > .v*. We suppose further
that A" - 0. Finally we suppose that so far it had not been prof-
itable to harvest the resource. Now, because of a one-time
change in market conditions, the resource becomes commer-
cially exploitable.

The optimal investment in K, which is assumed to occur in-
stantaneously (/ = +=c), is given by the switching curve (72 (the
corresponding switching curve for the resource is a\). The op-
timal level of investment in K will be certain to result in a fleet
of sufficient size to reduce x below .v*.
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Once the investment has been undertaken, the only costs as-
sociated with the fleet that are relevant are operating costs. Op-
timal resource management policy thus calls for fishing the re-
source stock down to i . if the harvesting capacity permits. The
question of harvesting capacity is relevant because it will never
be optimal to invest in vessels when xU) is less than J:*. Indeed,
once the initial investment has been undertaken, the optimal cap-
ital investment policy will be to set gross investment equal to
zero, implying that net investment K is equal to -"yÂ , where 7
denotes the depreciation rate. It will be optimal to maintain this
policy until the resource stock level has risen to x*.

In the example given, investment in K is sufficient to reduce
X to X. Once x has been reached, harvesting takes place at x on
a sustained yield basis. This can only be temporary, however,
as the fleet is steadily declining in size. A period of enforced
conservation will follow in which it is not possible to harvest the
sustained yield with the existing fleet even though the fleet is
used to capacity. Thus x* will be gradually approached as shown
by the trajectory. Once .v* has been reached, it will be optimal
to invest in K to the extent that K is increased to Â *.

The Clark etal. (1979) model is entirely deterministic in nature.
In the remaining sections of this paper we describe a related
stochastic model and enquire into the consequences for resource
and capital investment policy of introducing uncertainty. What
will be of particular interest here is the impact of uncertainty on
investment in nonmalleable capital, given that such investment
is interdependent with harvesting policy. The model discussed
hereafter has been analyzed more extensively by Charles (1982,
1983a, 1983b): unlike the deterministic model, it is one of discrete
time and allows for fleet investment delays.

The Model

Following Clark et al. (1979), consider a fishery using an aggre-
gated capital stock K to exploit a single-cohort fish stock. To
aid exposition and add realism to the model, we shall assume a
discrete-time seasonal fishery. It is assumed further that natural
environmental variabihty causes the biomass to follow a sto-
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chastic stock-recruitment relationship. Specifically the recruit-
ment in year n, /?„, is assumed to follow a tognormal probability
distribution with mean F{S,,-\). where S,,-\ is the previous
year's escapement and F[-) is a deterministic stock recruitment
function, assumed here to be a pure compensatory one iF' > 0,
F" < 0).

The capital stock changes from year to year through natural
depreciation and possible investment. It is assumed that the re-
sale value of the vessels is zero. Thus effectively the capital stock
can be decreased only through depreciation, which is assumed
to occur at the end of each season. New fieet capacity costs c^
per unit and must be paid for at the time of order, but does not
become available until the season following the one in which it
is ordered. This delay in investment refiects real-world behavior
and tends to increase the uncertainty in capital investment plan-
ning.

The intraseasonal dynamics of the biomass x in year n are
governed by the differential equation dxidt = -hit) =
-qEit)x(t), where ris the time within the season, h is the harvest
rate, q is the catchability, x(0) = R,,, and the instantaneous fish-
ing effort £{/) is subject to 0 < Eit) < K,,. Hence Sf, must be
chosen subject to R,,e'"'"^" ^ 5* < /?„, where 7is the maximum
feasible season length. Given SI, the optimal addition to fieet
capacity K desired to become available at the beginning of the
next season is determined before thc end of the current season.

The price of fishp. the unit cost of effort c, and the catchability
(y, are considered to be known, fixed constants.

The rents accruing to the fieet in year n are then given by:

Ti{R,,, K,,, S,,, ln+\) = I [pqEx - cE]dt

- S,,) - iclq) In (/?,,/5j - c^/,,.

where /« + i denotes the increase in fieet capacity to come into
effect at the beginning of period n -\- 1. By assumption /,,^, >
0.

We assume that the fishery manager is risk-neutral. Ideally
we should allow for the possibility of the manager being risk-
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averse, and indeed this possibility will be considered in future
work. However, allowing for risk aversion seriously complicates
the analysis and thus shall not be attempted here.

Given our assumption of risk neutrality, it is reasonable to
assume that the manager's objective is to maximize the dis-
counted stream of expected yearly rents. Hence our problem
can be summarized as follows:

max j 2 a"-'£f-ir(^,,, K,,, 5,,. /„.,)]}
{ S l . l 2 . S 2 . . . . } L « = | J

subject to /?„ + ! -- c});.-,5,,K „(•), K^^i = (1 - y)K,, +
R^e'"'''^" < Sn < /?„. and /„+, > 0, where

Qxp{-{\og{R/R} - a-/2

is a log normal density with mean ^ and uncertainty parameter
(T, and where a is the annual discount factor.

The problem can be formulated in a recursive form by using
Bellman's dynamic programming approach, to obtain the value
V of the fishery in state {R,i, K,,) at the start of season //:

V(R,,, K,,) = max max M/?,,, K,,, S,,, /,, + i)

where K,,+, = (1 - y)K,, + /„ , i and R,,^i ~ 4>F(S,,,. .,.
Removing the subscripts on the variables, this can be rewrit-

ten:

V{R, K) = max max {-niR, K, S, I)

+ a ^ £ V{R\i\ - y)K + I)} (1)

It is this Equation (I) that forms the basis for the analysis pre-
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sented below. For further discussion of the structure and as-
sumptions of the model, see Charles (1982, 1983a, 1983b).

Preliminary Analysis

Performing the inner maximization in Equation (1), for fixed S
we obtain the optimality equation for investment:

£ v.(y^ (1 _ )^ + /) = £^

or / - 0 if

E VA-(/?, (1 - l)K) < — (2/7)

This indicates that unless the fleet is temporarily overcapital-
ized, next year's optimal capacity, (I - y)K + /. should be set
such that the expected marginal benefit ofan extra unit of capital
equals its marginal cost. The term V̂ - is the partial derivative of
V with respect to K.

Let us define K = h(S) to be the solution orE{VKiF(S). K)}
= Cfcla, so that h{S) is next season's optimal capacity. We can
observe that, substituting new terms, hiS) is analogous to the
switching curve U2 in Figure I. It is shown in the above refer-
ences that under suitable assumptions, /i{-) is an increasing func-
tion of escapement. Thus if (1 - y)K > h{S), the optimal in-
vestment is /* - 0 (capital is already sufficiently abundant) while
otherwise /* is chosen so that (1 - y)K + /* = hiS). This can
be written:

PiS, K) - max [h{S) - (1 - y)K, 0] (3)

Now. performing the outer maximization, we obtain the op-
timality expression equating the marginal benefit and marginal
cost of an incremental increase in escapement:

F'{S) \RV \R {\ - y)K + ns K)]]
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where x^ = cipq and the constraint Re~"^^ ^ S ^ R has been
neglected temporarily. Assuming that Equation (4) has a unique
solution S = siK), the following results have been obtained:

1. If A: = h(S) and S = siK) intersect at 5 = 5/, then the
optimal escapement is independent of fleet capacity if/C is
small; that is, s(K) - S/ for K < [1/(1 - y)]h{Si). Thus Si
represents the optimal escapement at low fleet capacities.

2. As fleet capacity K becomes very large, the optima! es-
capement s{K) approaches (or reaches) the level S, rep-
resenting the abundant-capital equilibrium and correspond-
ing to -v in Clark et al. (1979).

3. 5/ < S.
4. s(K) is likely to be an increasing function of AT throughout.

The function s{K) is analogous, once again with appropriate
substitutions, to the switching curve ai in Figure 1. Incorporating
the constraint Re'''^ ^ S ^ R. we now obtain the optimal es-
capement function:

R
S*(R, K) = i s(K) s(K) < /? < siK)e'''^'' (5)

R < s(K)

Thus the two policy functions h(S) and siK) are sufficient to
determine optimal management for any state of the fishery. The
above analysis indicates that optimal policies under uncertainty
should be qualitatively similar to those deduced by assuming a
deterministic world. However, to address the important ques-
tions of comparative dynamics and quantitative differences aris-
ing when uncertainty is considered, we must turn to numerical
methods. Results obtained by using such methods are outlined
in the following sections.

Deterministic Results

Before moving to a discussion of the stochastic results, we shall
first review the corresponding deterministic results obtained by
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Table 1
Parameter Values Used in the Base Case Runs of the Model for the

Prawn and Whale Fisheries
Quantity

"Fish" price (p)
Variable cost (c)
Capital cost ICK)

Depreciation rate {7)
Discount factor («)
Catchabilily Iq)
Maximum season length

(7-)
Maximum fecundity ia)
Maximum recruilmenl {h)
Natural mortality factor

IW)

Prawn Fishery

0.9 AS/kg
1600 A$/week per vessel
4.7 X 10- A$/vessel

0.15
0.9
0.00179/week per vessel

26.0 weeks
42.0
7.0 X i(f kg

0.273

Whale Fishery

7000 US$/BWU'
5000 US$/catcher-day
10,000 US$/(catcher-day/

year)
0.15
0.9
1.3 X 10" Vcatcher-day

1.0 years
I.I5
1.186 X 10' BWU*

0.905

*Blue whale tinil.

Charles (1982, 1983a). The aforementioned joint investment
model was applied to each of two fisheries, namely (I) the Aus-
tralian Gulf of Carpenteria banana prawn Fishery (Clark and
Kirkwood. 1979) and (2) the aggregated pelagic whale fishery
(Clark and Lamberson, 1982). The stock-recruitment function
used in the analysis was primarily the Beverton-Holt function,
R = F{S) = aSli\ + iaS)/b), where values of a are reduced by
an appropriate factor M to take into account natural mortality
effects. We have reproduced in Table 1 the parameter values
used for each fishery. The corresponding optimal policy func-
tions for the prawn and whale fisheries are depicted in Figures
2 and 3. respectively, with sample trajectories shown in each
case.

The primary difference between these results and those ob-
tained by Clark et al. (1979) (see Figure 1) arise from discrete-
time, as opposed to continuous-time, structure and from the in-
corporation of a delay in bringing new capacity on-line. In the
continuous-time Clark et al. results, as biomass increases there
exists a unique biomass level x* at which the benefits of in-
vestment first outweigh the costs. However, in the discrete-time
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1 2 3 4 5 6 7
BIOMASS (MILLIONS OF KILOGRAMS)

FIGURE 2. Optimal investment and escapement policy curves, S ^ s{K) and
K = h{S). for the prawn fishery with delayed investment and deterministic
dynamics. Large arrows indicate the overall effect of fishery dynamics. Sample
trajectories and the long-run equilibrium (5. K) are also shown. (From Charles
[1983aJ.)

fishery the intraseasonal rent structure Is such that as biomass
increases, the benefits of harvesting increase gradually. Even for
R < R, the long-run equilibrium biomass, small amounts of in-
vestment are desirable to capture the substantial rents obtainable
through harvesting for part of the season. As biomass increases
further, the optimal capacity also increases until at 5 = 5 we
have hiS^) = K, the long-run optimal capacity. This leads to the
smooth concave /z(-) policy functions shown in Figures 2 and 3,
contrasting with the switching curve (J2 of Figure 1.

For deterministic models the introduction of delays in in-
vestment, so that new capacity desired for a given season must
be planned and paid for in the previous season, is essentially a
change in accounting procedure. Compared with the instanta-
neous investment assumption used by Clark et ai. (1979), the
effective capital cost per unit of new capacity is increased by a
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FIGURE 3. Optima! investment and escapement poiicy curves for the deter-
ministic whale fishery with delayed investment. Sample trajectories approach
the long-run equilibrium point (5. K).

factor I/a, but the decision criterion remains the same. However,
delayed investment is a realistic component of fishery models
and creates additional uncertainty In a stochastic world. The
effect of delayed investment on the appearance of the policy
functions is to make the optimal fleet capacity dependent on
escapement rather than recruitment. This produces little change
for a slow-growing stock (e.g., whales) but for a fast-growing
stock {e.g., prawns) the /i(-) curve can be shifted to the left sub-
stantially and can intersect the optimal escapement curve s{K^.
In other words it can be optimal to have positive investment
during a season when no harvesting is desirable, in anticipation
of a high stock size next season. This situation is depicted in
Figure 2.

Having now seen typicai results for the deterministic case, we
turn in the next section to an examination of the effects on op-
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timal fishery management of introducing random fluctuations in
the biomass.

Stochastic Results

In considering the effect of stochastic fluctuations on optimal
policies for fishery investment, there are three primary ques-
tions. First, how will investment behavior in an optimally man-
aged stochastic model of a fishery differ qualitatively from that
ofthe corresponding deterministic model? Second, will the op-
timal fleet capacity in a stochastically modeled fishery be higher
or lower than that predicted by corresponding deterministic
models? Finally, how does the effect of randomness interplay
with economic and ecological parameters?

To examine the first question, consider a fishery with data as
given for the prawn fishery in Table 1, except with capital cost
CK = 83200, maximum fecundity a ^ 14.0. and uncertainty pa-
rameter CT = 0.58. (This value of CT was the maximum likelihood
estimate obtained by fitting a log normal distribution to prawn
recruitment data [G. P. Kirkwood, personal communication,
1980].)

Figure 4 shows the resulting optimal policy functions for this
stochastic (CT = 0.58) fishery, and the corresponding determin-
istic (CT ^ 0) case (together with analogous results when a =
3.82. not discussed here). As expected, the qualitative features
of the stochastic and deterministic policies are identical. How-
ever, the behavior of the fishery itself changes considerably
when stochastic fiuctuations are introduced. In the deterministic
model, the fishery eventually approaches a long-run equilibrium
point, where S* = 2.5 x 10'' kg and Â* = 10.5 vessels in this
case. When stochastic effects are considered, the trend (or drift)
ofthe fishery is again towards an equilibrium, but random fluc-
tuations in the biomass keep the fishery from reaching this equi-
librium. If environmental factors produce a higher-than-average
recruitment, this will tend to result in higher escapement, greater
investment, and hence higher fieet capacity. In the following
seasons, both the biomass and capital stock will tend to be re-
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FIGURE 4. Stochastic and deterministic policy curves for prawn-type fisheries
with low (« - 3.82) and moderate (rt = 14) biomass growth rates, and relalively
low unit cost of capital. For the n = 14 case, the deterministic equilibrium
point and the stochastic "quasi-equitibrium" point are also indicated. (From
Charles [1983b].)

duced towards the equilibrium, but this will again be disturbed
by random environmental shocks. The fishery will be in a con-
tinual state of flux but will in fact be managed optimally. A sim-
ilar result occurs if recruitment in any season is abnormally low,
except that in this case the capital stock will depreciate and the
biomass will tend to recover, until eventually new investment
becomes desirable. (However, random fiuctuations are bound
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to disrupt this trend to a certain extent and may hold the resource
at low levels for a long period of time.) Charles (1982, 1983b)
discusses this long-run behavior in more detail.

We turn now to our second and third questions, namely the
effect of uncertainty in determining optimal fleet capacity and
the role of economic and ecological parameters in this process.
We shall concentrate on two parameters which Charles" earlier
studies found to be of primary importance: the maximum bio-
mass growth rate a and the ratio of fixed costs to operating costs

Consider first the comparative dynamics when the cost ratio
is changed. (Since the parameters rand Tare held constant here,
it suffices to vary the unit cost of capital c^-) Figure 4 was based
on a relatively low cost of capital, with CK/{C-T) = 2.0 in that
case.

Optimal capacity under uncertainty is clearly higher than it
would appear from a deterministic model. If, for example, the
fishery has been previously uneconomical, with a virgin stock
of 5 = 7.0 X 10̂  kg but no fieet capacity, and a one-time change
occurred in economic conditions, producing parameter values
as outlined above, the desired investment would be /* = h{5.0
X 10̂ ) — 18.0 standardized vessels. Use of the deterministic
model produces an understatement ofthe desired investment by
22%, or 4.0 standardized vessels.

Figure 5 indicates the effect on optimal fleet capacity of vary-
ing the unit cost of capital while holding other parameters fixed.
(Uncertainty has little effect on the optimal escapement curves,
which have been suppressed here for the sake of exposition.)
With much more expensive capital (that is, a higher ratio of fixed
to variable costs) it is no longer desirable to have extra capacity
to reap the upside benefits of exceptionally good years. The
downside risk of being faced with a series of bad years now
dominates, so that a more conservative investment strategy is
preferable in the uncertain case. In other words, other things
being equal, optimal capacity will be higher under uncertainty
with a low cost of capital, and lower under uncertainty when
capital is relatively expensive.
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FIGURE 5. Deterministic and stochastic optimal fleet capacity curves are
compared, for three values ofthe unit capital cost S (with unit operating costs
fixed). The effect of uncertainty on investment strategy clearly depends on the
relative cost of capital. (From Charles [1983b].)

With regard to the effect of the natural biomass growth rate.
Figure 6 presents a typical result showing variations in the op-
timal fleet capacity curve with both the intrinsic growth rate and
the level of uncertainty. When the growth rate is sufficiently high
(e.g.. a = 560), the optimal fleet capacity is generally greater
under uncertainty. The upside benefit of extra capacity to take
advantage of occasional good years dominates the downside risk
of suffering idle capacity during a series of bad years. At lower
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FIGURE 6. The effect oi" the biomass growth rate in) on deterministic versus
stochastic optimal fleet capacity curves. K = h(S). The lower the intrinsic
growth rate, the more likely investment is to diminish with increasing levels
of uncertainty. (From Charles [1983bJ.)

growth rates, the ''memory" inherent in the population dynam-
ics becomes more important; both good years and bad years will
tend to have repercussions farther into the future. This implies
that

1. Unusually large fish stocks can likely be harvested over a
number of years, at lower effort level.

2. Unusually small fish stocks are likely to persist over several
years, increasing the downside risk of idle capacity.
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Together these effects lead to the domination of downside risks
over upside benefits in determining optimal capacity. Hence at
low biomass growth rates, optimal fleet capacity will be lower
with uncertainty than without.

Conclusions

The effects of uncertainty on the management of a fishery in
which nonmalleable capital is employed can be summarized as
follows. In most cases, but not all, optimal management of the
resource itself tends to be more conservationist in the face of
uncertainty. The trend found here is consistent with earlier re-
sults.

With respect to investment in the fleet, the effects of uncer-
tainty can go either way. Having a large fleet capacity means
that one can take advantage of exceptionally large recruitments.
It means as well, of course, having large underutilized capacity
when recruitments are exceptionally low. Whether one opts for
a larger or smaller fleet capacity under uncertainty than one
would have in a certain world depends on the relative cost of
capital and on whether the resource stock is fast growing or slow
growing.

If the resource stock is fast growing and if capital is cheap,
uncertainty has the effect of causing thc optimal fleet capacity
to be greater than what would be optimal under conditions of
certainty. If the resource stock is slow growing and capital is
expensive, then the reverse is true. This phenomenon can be
explained by considering the upside and downside risks involved
in fishery investment decisions; see Charles (1983b) for a full
discussion.

Much research, of course, remains to be done. Particularly
interesting is the problem of investment in the face of parameter
uncertainty, especially in regard to the price and the biological
parameters. (Charles [1984] provides a preliminary analysis of
this question.) In addition, issues of risk preference, together
with specific policy implications, must await future research.
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