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Abstract The multicohort fishery subject to random en-
vironmental disturbances is examined within a market frame-
work. The free access problem is considered and optimal se-
lective and proportional harvesting policies are discussed.

Introduction

Optimal harvesting of the multicohort fishery must take into ac-
count the effects of environmental disturbances on the growth
and age structure of the population. Sueh disturbances may in-
clude predatory populations, fish species that compete for the
same food supplies, changes in available food supplies, water
temperature, and currents. Models of the multicohort fishery
such as those developed by Spulber (1983) and Clark et al. (1973)
have focused attention on optimization within a fixed price
framework. The present paper explicitly introduces the market
for the resource. The analysis of renewable resource markets
presented by Levhari et al. (1981) and of resource markets under
uncertainty by Mirman and Spulber (1983) is applied to the mul-
ticohort problem.

Multicohort population dynamics are described here within a
general model in which the next period's vector of cohort bio-
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mass levels depends upon the vector of current biomass levels
and the environmental disturbance. The age structure ofthe pop-
ulation will affect recruitment and cohort growth rates through
cohort interaction. The size of each cohort will also affect its
own growth rate, as in the standard lumped parameter model.
Thus, the distribution of biomass levels across age groups will
affect growth rates since marginal growth generally varies with
age. By entering the growth relation in a general way. environ-
mental disturbances are allowed to affect recruitment, cohort
interaction, and cohort growth rates.

The paper begins with an examination of free access harvesting
ofthe multicohort fishery. Myopic harvesting of a multicohort
fishery creates additional problems not present in the lumped
parameter case. Extinction of the population is made more likely
for two reasons. First, because the total biomass harvested is
selected for current market sale, there is no incentive to adjust
the harvest of each cohort separately. Thus, a sustainable har-
vest level may lead to extinction if the total harvest is made up
of excessive harvesting of recruits or spawners. This explains
regulations on minimum size of capture. Second, the total har-
vest should be adjusted to reflect the age composition, even if
the take from each cohort appears sustainable. The presence of
environmental disturbances, particularly those that affect re-
cruitment, may worsen the impact of free access harvesting.

The paper examines the optimal harvesting decision of a cen-
tral planner or regulatory agency charged with managing the mul-
ticohort fishery. The optimal solution is examined for the cases
of selective and nonselective harvesting. If the decision maker
may selectively adjust harvest and escapement levels for each
cohort, and if the net market valuations of each cohort are equal,
then expected rates of return are equal across cohorts. The op-
timality conditions for each cohort resemble the optimality con-
dition for the lumped parameter fishery. The rate of return to
conservation includes the ;th cohort's contribution to recruit-
ment as well as the marginal growth of the cohort itself.

In the ocean fishery, it is unlikely that selective harvesting of
individual cohorts will be feasible. While it may be possible to
determine the age of first liability to capture, it may not be pos-
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sible to separately harvest adult cohorts. The decision maker is
assumed to choose the proportion ofthe total cohort biomass to
be harvested. An optimality condition is obtained that differs
from the lumped parameter case in that the marginal effect of
harvesting on growth is a sum of the marginal effects of cohort
biomass levels on cohort growth, recruitment, and interaction.
Using stochastic dynamic programming we may calculate the
value of the fish population to the decision maker as a function
of the vector of cohort biomass levels. Because of nonselective
harvesting, the marginal internal valuations of each cohort are
shown not to be equal to the market valuation of a unit offish.
However, the sum of internal valuations of the cohorts equals
the market valuation ofthe total population biomass.

The paper is organized as follows. The biological framework
is presented in the next section. Free entry harvesting is then
examined for some special cases, after which the optimal solu-
tion with selective harvesting is considered. Finally, the optimal
solution with nonselective harvesting is examined.

The Biological Framework

Consider a single species offish for which growth and recruit-
ment depend on the age distribution ofthe population. Given a
maximum age n. we may fully describe the population at date t
by the vectors, = Cv,',. . . ,.t"), where .v; represents the biomass
level of a cohort of age / at the beginning of time period /. The
growth and recruitment rates for the population are assumed to
depend on biomass levels as well as age structure. In addition,
environmental disturbances may affect cohort recruitment,
growth, and interaction. Given the biomass levels x, and envi-
ronmental disturbance u', e O, the transition equation describing
the growth of the fish population over a single time period is
represented as follows:

^,+ 1 = G{x,, w,)

G{x,, Hv) = IG'U,. uv), G\x,, Hv) G%x,, w,)] *̂ *

The function G' describes the recruitment relation and the func-
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tions G', i ^ 2 n describe the age- and stock-dependent
growth of each cohort as well as the interaction among cohorts
in the years after recruitment. The interaction between adult
cohorts represents competition for food sources and effects of
predators on cohort mortality rates.

The growth relation G is assumed to be difTerentiable, in-
creasing, and bounded so that the equilibrium population is
bounded. The marginal growth rates of each cohort are assumed
to be a decreasing function of their own biomass levels. Let
Gfe , w,) = dG'ix,, w,)/dx',. The environmental disturbances are
independently and identically distributed according to the cu-
mulative distribution F{\v).

The population growth described by G may be quite complex.
Clark (1976) states that for even a single cohort in a discrete time
model, "modifications in the life-bistory model can produce
growth curves . . . of almost unlimited complexities" (p. 232).
An interesting form of G that allows for spawning by the oldest
cohort only is given by

xU, = H'(X';,W,) (2)

x'tX\ = g-^'{xi,w,) i = \ n - \. (3)

This form allows us to consider the n cohorts separately. We
will consider this form as a special case in the next section.

Consider now some other special forms of the growth relation
G. Clark (1976) observes that certain fish populations such as
the North Atlantic plaice and haddock and other demersal spe-
cies have high fertility rates and highly variably recruitment (p.
218: see also Beverton and Holt [1957]). Optimal harvesting using
the Beverton-Holt model is discussed by Clark et al. (1973) and
Hannesson (1975). For populations where the size of the adult
stock has little effect upon recruitment, the recruitment relation
will depend only on the state of the environment:

x}^i = gHw,) (4)

Hannesson (1975) states that there is "very little evidence of a
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significant stock-recruitment relation with regard to cod"' be-
cause of "exogenous, stochastic factors controlling the survival
of eggs and larvae at a critical age, resulting in wide fluctuations
of recruitment" (p. 159). If we assume no interaction between
adult cohorts, the growth equations G'^ ' for / = 1 n - I
have the form given in Equation (3). Employing Equations (3)
and (4) in a harvesting model essentially assumes away all cohort
interaction. Obviously, if selective harvesting is possible and the
harvesting return function is additive, there is no multicohort
harvesting problem since the framework breaks down into n
lumped parameter problems. This framework appears, for ex-
ample, in Mendelssohn (1978). Without selective harvesting, the
age structure of a population described by Equations (3) and (4)
does affect harvesting decisions, since age-dependent growth
rates cause each cohort to have a different effect on total biomass
levels in the next period.

The population biology literature has focused great attention
on linear forms of the transition rule G. If we assume that G'
has the form x]^^ = X;L t&x', and that each G'' ' for / ^ 1. . . . ,
n - 1 hastheformxfti = 7'xi. where a'.-y'are scalar parameters,
then / - I n - 1 implies that fertility rates and growth
rates are age-dependent but not stock-dependent. This is the
familiar Leslie matrix employed for the study of age-structured
populations by Leslie (1945, 1948), Keyfitz (1968), Emlen (1973),
and others. Stochastic Leslie matrices are considered by Pollard
(1973), Boyce (1977), and others. The resource harvesting prob-
lem with a Leslie matrix description of growth is surveyed in
Mendelssohn (1976): see also Beddington (1974) and Beddington
and Taylor (1973). The Leslie model allows unlimited growth
and, as Mendelssohn (1976, p. 348) points out, "does not provide
ecologically interesting solutions" for problems of harvesting
policy.

Free Entry Harvesting

The Market Framework

We assume that the market demand for fish and harvesting costs
are the same in each period. The inverse demand for fish is as-
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sumed to depend only on the total biomass harvested Q and not
on the age of the fish caught. The inverse demand is given by
P = DiQ), where P is the market price of fish. The industry
marginal cost function is given by CiQ) and is assumed to be
independent of the characteristics of the harvested population.
A topic for further research would be an extension of the analysis
to allow costs to depend upon the biomass and age composition
of the fish population. Individual firm cost functions are not ex-
amined here. For a discussion of market decentralization of the
planner's problem see Levhari etal. (1981) and Mirman and Spul-
ber (1983).

The Free Entry Problem

In the many discussions of nonoptimal harvesting in the free
access fishery, beginning with Gordon (1954) and Scott (1955),
it is emphasized that free entry harvest levels are not adjusted
to current biomass levels because of the nonappropriability of
returns to conservation. Since firms are not able to obtain bio-
logical and market returns to resource growth they pursue a my-
opic harvesting strategy. For the multicohort fishery, the free
entry problem may be more critical for two reasons. First, if the
free access harvest level is chosen on the basis of total biomass
that can be sold at the market equilibrium, there is no incentive
for firms to selectively harvest each cohort separately. Thus, a
reasonable harvest level may cause problems if the composition
of the catch involves too many new recruits or too many mem-
bers of the parent stock. Second, the total harvest itself is not
adjusted to the age composition of the population. These effects
may be worsened by the presence of environmental disturb-
ances.

We illustrate the problems that may arise under free access
for a very simple two-cohort model. Consider first the deter-
ministic case where A','+, = g\x^) and xu\ ^ ^'(-v'), where x]
are recruits and x^ is the parent stock. This is similar to a two-
stage mode! in Clark (1976, p. 212). The population dynamics
are given in Figure I. For this growth relation, we may identify
two cohorts in any period.
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45'

FIGURE 1. Population dynamics—two-cohort model.

Suppose now_that the market clearing harvest level is given
by Q, where D{Q) = C{Q) and suppose for simplicity that the
same amount of recruits and parents are harvested in any period,
Qil. Then the population dynamics are given by

fl^, = g\a]) - Qll
ahi = gHal) - Qll

where a], aj represent the escapement of recruits and parents.
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45°

g'(g(o|l-Q/2)-Q/2

FIGURE 2. Two-cohort model with constant harvesting.

respectively. The dynamics of the escapement levels are given
in Fjgure 2. The cohort dynamics are given by jy'[^(c/') - Q/2]
- Q/2. It is easy to see that for a harvest level to be sustainable
at the free entry equilibrium it must allow sufficient numbers of
parents and recruits. The case of ^ sustainable is shown in Figure
2.

Environmental disturbances complicate the free entry prob-
lem:



The Mitlticohort Fishery Under Uncertainty 273

FIGURE 3. Average growth utider uncertaitity.

al,, = g\aj,w,) -Q/2

ahx = g\al,w,) -Q/2

The dynamics of a single cohort depend on the environmental
disturbances in two periods, with one disturbance affecting re-
cruitment and the next period's disturbance affecting growth of
recruits into parents:

= g\g\a], Q/2, - Q/2

Thus the survival of a cohort will depend on the environmental
effects on recruitment and growth.

The estimation of sustainable yield by observing average
growth and recruitment may be very misleading. The sustainable
yield must be calculated given a succession of "bad years." Sup-
pose u- takes values in tbe set [w, w] with dg\a~, w)/dw > 0 and
Sg^{a\ w)/dw > 0. Then consider tbe range of values for al,2
given al for w, = w,^, = w and w, = M',4 i = w (see Figure 3).
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It is possible that on average the free entry harvest Q may be
sustainable. This is represented by the dotted line in Figure 3.
However, because the "worst case" curve lies entirely below
the 45° line, free access to the fishery will result in extinction of
both cohorts with probability one. This occurs since there is a
positive probability of a succession of low values of the envi-
ronmental parameter vr.

Selective Harvesting

Consider now the harvesting decisions made by a central planner
or regulatory agency managing the multicohort fishery. It is as-
sumed that the planner or regulator may set harvest levels for
each cohort. This is termed selective harvesting. The optimality
conditions for the regulator's problem are shown to resemble the
conditions obtained in the lumped parameter problem.

The central planner or regulatory agency chooses the total
harvest levels and escapements for each cohort. Let cj, = (ql,
. . . , q'l) represent harvest levels from each cohort and let a, =
(al, . . . , a',') represent escapement levels for each cohort. In
vector notation, the dynamics of the harvested population satisfy

(/,+ , + fl, + i = x,+ i = G{a,, w,) / = 1, 2, . . . , (5)

Let Q, - XjLif// represent the total biomass offish harvested at
date /. The regulator chooses harvest and escapement levels to
maximize the expected consumer's surplus discounted with a
factor 5. The regulator's problem is then

max E 2 S'-' [Dis) - Cis)] ds (6)

subject to .V| given, q^ + a, = x, (5) and Q, = X"=\q'r^ t = 1,
2 Using stochastic dynamic programming (see Easley and
Spulber [1981] and Spulber 11982]), we may obtain stationary,
valued functions V: U", x Q-^ E that are differentiable on W!
and measurable on O. The value functions satisfy the well-
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known recursive equation of dynamic programming:

V(x,) = max -̂  [D(.v) - C'{s)] ds
q,.a, [ -/"

\ (7)

subject to

q\ •¥ a\ = x\ ( = 1, . . . ,n (8)

We may rewrite the problem stated in Equations (8) and (9) as
a Lagrangean problem:

C{s)] ds + 2 XJU; - q',- a[]

+ 5 J V[G(«,, w,)] dFUvt) (9)

where \ ; represents the shadow price on the stock constraint for
cohort /. The first-order conditions are then

D{Qr) - CiQr) = K /• = 1 n (10)

E V;;[G(a,. M',)]GJ(rt,, uv) c/F(M-,) = k',

/• = 1 n (11)

and Equation (8), where Vj = dV/dXj. From Equation (10) we see
that since the market values of al! cohorts are equal and since
marginal harvesting costs are also equal, the shadow prices for
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each cohort stock constraint will he equal. Furthermore, we may
show that by the envelope theorem.

^'t = K= Vi(.Xr) (12)

T h u s w e may rewr i te Equa t ions (10) and (11) to obtain

D{Q.) - C'{Q,) = K (13)

iia,, w,)dF{w,) = K i = \ n (14)
l l

Given Equations (13) and (14), we may obtain stationary policy
functions that give the shadow price harvest levels and escape-
ment levels as a function of the current vector of cohort biomass
levels, K = Mxr) = XtG(^,_,. u-,_,)J, q', = q'{x,) = q'[G{a,.u
M',_|)] and a', = a'ixt) = a\G(a,-x, w,^,)] for / - 1 n.
Note that since a" - 0. q'l = x" for all t.

Suppose that the regulator's discount rate equals the market
rate of interest, 5 ^ 1/(1 -I- /) . Then. Equation (14) may be re-
written as

w,)dF{w,) - \,
= \1 +

K
i = \ n (15)

Thus, expected rates of return are equal for each cohort. Equa-
tion (15) is very similar to the lumped parameter case under un-
certainty described in Mirman and Spulber (1983). The difference
with the lumped parameter case is that the marginal effect of
additional escapement on growth is the sum of the marginal re-
cruitment, marginal growth of the cohort itself, and marginal
cross-effects on other cohorts.
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Applying the special form of the growth function given in
Equation (3) and letting ^''(a,. u-,) represent the recruitment func-
tion, then Equation (15) becomes

L ' ,) - X,

1 +
L ,) - X,

= \ / - 1, n (16)

Thus when there is no interaction among adult cohorts, we may
identify two rates of return to conservation: the rate of return
to recruitment and the rate of return to cohort growth. The rate
of return to cohort growth has the same form as is observed in
the lumped parameter model (Mirman and Spulber, 1983).

If we eliminate the dependence of recruitment on the adult
population and assume that given some minimum adult popu-
lation, recruitment is essentially random as in Equation (4),
Equation (16) then reduces to

1 +
- X,

(17)

The shadow price X, +1 is random even though the cohort growth
is deterministic since X,^| = X[^ ' (H' , ) , ^"^(al, w,), . . . ,
g"ia" ~ ', w,)]. The occurrence of large fluctuations in recruitment
should be sufficient to cause variations in the resource rent, since
the shadow price X, must reflect future stock effects.
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Nonselective Harvesting

For the ocean fishery, it is generally not possible to harvest in-
dividual age groups from a multicohort population. Thus, the
optimal selective harvesting solution obtained in the previous
section may not be attainable. Without selectivity, a given har-
vest level may involve taking different proportions of each age
group depending upon their liability to be captured and the fish-
ing techniques employed. For ease of presentation, we assume
that a unit of fish harvested may come from any cohort with
equal likelihood. Thus, the central planner or regulatory agency
faces the problem of choosing the proportion ofthe current stock
to be harvested.

It is assumed that gear selectivity is fixed. Also, no distinction
is made between the age of recruitment and the age of first li-
ability to capture. Clark (1976. p. 286) states that while this dis-
tinction is commonly made in the fishery literature, it is not
needed in theory when gear selectivity is fixed.

As before, let Q, = XiLiq', represent the total harvest. Also,
let A, = S;'=!«; and X, = S"^ ix', represent the total biomass of
the fish that escape and ofthe current stock, respectively. Then,
given the total harvest and the current stock, the proportion of
each cohort harvested is given by (3:

(3 = QJX, (18)

Thus, since Q, + A, = X,, the escapement from cohort / equals

ai = {\ - ^)xi = (1 - Q,/X,)x', = {A,/XM (19)

With nonselective harvesting the regulator must choose only the
total harvest and escapement levels. Thus, the planner's problem
is given by

r
max £ 2 S'- ' [D{s) - C(s)] ds (20)
Q A\ Jo

subject to Xi given, (/, + «, = .v,, Q, =XUxq\,
Qt + A, = X,, and

(21)
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The value function for the planner's problem is again obtained
by using stochastic dynamic programming:

max ( r [D{s) - C'{s)] ds
Q,. A, yJo

+ 5 J^ y{G[{A,IX,)x,, w,]} dF{w,)\ (22)

subject to

Q, "r A, = X, (23)

Rewriting the planner's problem as a Lagrangean one, we obtain

L - ^^ {Dis) - C{s)] ds ^ UX, - Q, - A,]

+ 8 Ĵ ^ V{G{{AJX,)X,, w,]] dF{w,) (24)

where X, is the shadow price on the total biomass constraint.
The first-order conditions are then

D{Q,) - C{Q,) = K (25)

S S V'/ S mAJXMr, wAixi/X,) dFiw,) = X, (26)

and Equation (23) for r - 1, 2, . . . . Equations (23), (25), and
(26) may be solved for stationary harvesting, escapement, and
shadow price functions:

Q, = Qix,) - Q{G[{A,.ylX,.,)x,.u H'.-i]}
A. = Aix,) -
X, - X(.v,) -

These policy functions depend on the vector of cohort biomass
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levels. This emphasizes that even though harvesting is not se-
lective, the age structure of multicohort populations should be
taken into account in choosing harvest and escapement levels.

From the envelope theorem and Equations (21) to (26), one
may derive

r
'r = \,(1 - A,/X,) + {A./X,) 5

- pX, + (1 - P) 5

= V,Cv,) (27)

Multiplying both sides of Equation (27) by x', and summing over
(. one obtains

n R

2 {dUdx'M - k,X, - y V,(x,)jt:; (28)

The last equality follows from Proposition 4 in Spulber (1983).
With selective harvesting we saw in Equation (13) that the

marginal valuation OIL each cohort equals the current market val-
uation of the last unit harvested. Clearly, Equation (25) resem-
bles Equation (13). However, in Equation (25), the shadow price
k, is the shadow price on the total biomass constraint and rep-
resents the rent on the entire resource stock. The marginal in-
ternal valuation of cohort / given by Equation (27) represents a
weighted average of the market valuation X, and the expected
marginal future return to conservation of cohort /. The current
and future valuations are weighted by p and (1 - p) where p
equals the proportion of the total current stock that is harvested.
Thus, the marginal interval value of cohort / does not equal its
market value. However, we see from Equation (28) that the sum
of internal marginal valuations of each cohort sum to the total
market value k,X,. This implies that some cohorts are internally
valued above their market value and others are valued below
their market value. The optimal proportional harvest policy as-
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sures that the marginal return to investment in the entire resource
stock equals its current market value, as shown in Equation (26).
Clearly, selective harvesting is preferable since the decision
maker may then adjust each individual cohort so that its expected
marginal return equals its current market value. The analysis
presented here points out the complexities of harvesting deci-
sions, which are often hidden in lumped parameter models.
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