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Abstract A major concept in fisheries management is the optimal age for first
capture. Because there can be separate market categories for fish of different sizes
and different costs for their harvest, a more rational statement of the problem would
be to find the optimal range of harvest sizes in any given year. Two models for solving
this problem are presented. The shrimp model discusses optimal harvest of a single
cohort of shrimp as it grows through a season. The lobster model discusses optimal
simultaneous harvest of several cohorts over several seasons. The difficulty of
defining a cost per fish in the lobster model makes it a much more complex
undertaking.

Keywords Optimal harvesting, intraseason, interseason, variable price, fisheries
management.

Introduction

Because of their joint effect on total weight of harvest and stock recruitment relation-
ships, fishing mortality and age at first capture are both important in determining man-
agement controls. However, the latter has received relatively little coverage in the fish-
eries economics literature. This is somewhat surprising because price per pound can
sometimes vary with the size of the individual fish, and hence for economists there is a
third reason why age at capture is important.

This is not to say that the age size relationship and its effects on optimal utilization
have been ignored. One approach focuses mainly on the effect of age at first capture on
total physical yield. "Rirvey (1964) presents a general statement on the optimal combina-
tion of mesh and effort controls. Clark et al. (1973), Hannesson (1975), and Clark
(1976, p. 276 ff) present a more rigorous analysis of the optimal harvest timing of a
single cohort fishery to take advantage of the growth of the individuals in the stock.

Coming at the problem from a slightly different angle. Gates (1974) showed how
the relationship between fish size and the price of fish makes it difficult to correctly
specify the demand curve and demonstrated the adverse effects this can have on policy
derivation. More recently, Conrad (1982) derived the optimal utilization of a multiple
cohort fishery when price varies with size of individual.

The purpose of this article is to formalize the issues in the size price conceptualiza-
tion of the problem. Admittedly, it may apply to only a small subset of active fisheries,
but where it is applicable it can be very important. A general model will be derived to
present the essence of the management problem in this case. Obviously practical applica-
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tions will call for adaptations to this model. Some of them will call for detailed specifica-
tions of the benefit function, but at the same time, others will require more restrictive
assumptions and economic and biological simplifications to take into account data limita-
tions and institutional constraints. The results of the model are only modest extensions of
the standard dynamic fisheries model, but they do provide a template against which
suggested management regimes for these types of fisheries can be compared. The tem-
plate is useful because when price does vary with individual size, the goal is not neces-
sarily to fmd the optimal age at first capture as it is when the focus is on the amount of
the physical catch, but rather to fmd the optimal range of harvest sizes.

The discussion will focus on two very important fisheries where price varies with
individual size, the gulf shrimp and the northern lobster, although the results can easily
be generalized. The two have distinct differences, which make it worthwhile to construct
a separate submodel for each. Gulf shrimp is a one-cohort, single-year fishery where the
stock migrates over the season such that restrictions on time of harvest are effectively
restrictions on size of capture. The lobster fishery, on the other hand, has many cohorts
each of which lives several years and each of which is subject to the same gear. Hence,
there is no easy way to focus effort on individuals of a particular size.

The principal regulation in the New England lobster fishery is the prohibition of
taking lobsters with a carapace of less than a specified length (see Acheson 1985, Ache-
son and Reidman 1982, Botsford et al. 1986. Richardson and Gates 1986, Wang and
Kellogg 1984, 1986). The principal regulation in the Gulf shrimp fishery is the closure
of inshore fishing grounds so that more of the annual crop (which gradually migrates
offshore as the season progresses) may be taken later in the year at larger sizes, see
Poffenberger (1984).

The implicit assumption behind these regulations is that each and every larger indi-
vidual caught at a later time will be more valuable than the same individual harvested
earlier. However, this ignores the possibility that these fisheries can each simultaneously
supply several interrelated markets. There is a downward sloping demand curve for each
market-defined size classification and although those for larger individuals may be
higher than those for smaller ones, the last unit of "big" lobsters in the next period may
have a lower present value than the first unit of "little" ones in the current period. In
maximizing the net present value of harvest it is necessary to consider the full range of
markets available.

The article will proceed as follows. The recruitment of an annual crop that can be
harvested in distinct locations with directly attributable marginal costs as in the shrimp
fishery will be discussed in the first section. The basics of the intertemporal allocation
by size can be easily introduced in the context of this relatively simple case. The more
complex case where different cohorts are simultaneously harvested by the same effort
will be discussed in the second section. The relationship between recruitment and size of
the parent stock (and hence on the amount of harvest), a topic of theoretical and empiri-
cal controversy, will be ignored in the formal analysis. This makes the problem tractable
with little loss of authenticity, especially for shrimp fisheries. The policy implications of
this assumption will be discussed, however. For notational simplicity and ease in inter-
pretation of first-order conditions, the number of cohorts and/or time periods under
consideration will be limited, but the discussion will generalize the results. The final
section will provide a summary and a set of conclusions.
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Optimal Utilization of a Singie Cohort: The Shrimp Fishery

The fundamentals of optimal interperiod utilization of a cohort of a given size can be
presented in terms of a model that closely mimics the workings of a typical shrimp
fishery. Consider a fishery with a dichotomous market for two sizes of shrimp where the
value of each is dependent on the quantity consumed of both. At the beginning of each
year, a certain stock enters the fishery and the season can be conveniently divided into
periods where exclusive or predominant catches of small and large individuals, respec-
tively, may be made. As with other fisheries, open-access utilization will be suboptimal
in that too much effort will be produced because the firms will use average rather than
marginal valuation to make private decisions (Anderson 1986) and in addition (subject to
constraints on fleet size) the shrimp will all be exploited at the minimum market size
(Smith 1968).

Because there is no stock-recruitment relationship in shrimp fisheries, the size of the
annual crop is essentially a random variable and is not known until the beginning of the
year. Optimal utilization, therefore, reduces to maximizing the net value of production in
both periods for each year. The optimal utilization in any year can be posed as a con-
strained maximum problem.

Let B{NQ, Ny) represent the gross benefits from harvesting, where A', represents the
number of individuals harvested in the ith period. Because the cross-elasticities of de-
mand between the different sized individuals are likely to be quite high, this specifica-
tion, rather than using individual demand curves, simplifies matters without any loss of
substance. The first partial derivatives of the gross benefit function can be interpreted as
the ceteris paribus gross marginal willingness to pay. Further, let the cost in each period
be a function of the amount harvested and the size of the fish stock: Q — QiN^. 5,).

Given an initial stock size of SQ, and a natural mortality rate between periods of m,
the stock size at the beginning of the next period will be 5, — (1 — m)(So — Ng). Given
the above, the constrained maximum problem can be formally stated as

Maximize 1

(1 -

?(N,

m)

)» N,
St

(So

i) — Co(7'

So — N(
- N o ) -

^ , So) -
, > 0

N, a 0

In addition, the catch in each period is constrained to be nonnegative.
The appropriate Lagrangian and the two first-order maximizing conditions are as

follows:
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The first three terms in (2) are tbe marginal net benefit from harvesting an individual
small fish in period 0, MNBQ. It is the algebraic sum of gross marginal willingness to
pay for that fish minus tbe cost of its harvest minus the marginal interperiod stock
externality cost. Tbe latter is the increase in cost in period 1 due to the decreased stock
size in tbat period because of harvest in period 0. Tbe first two terms in (3) are the
marginal net benefit from harvesting an individual large fisb in period 1, MNB,. Be-
cause this is the last period, tbere is no interperiod stock effect.

For practical purposes, only one of the constraints can be binding, because if the
first constraint is binding (i.e., NQ - SQ) there will be no stock in tbe second period.
Therefore, the constraint in period 1 is no longer relevant. Formally, this means that in
the solution to the basic problem. Equations 2 and 3 will both hold as equalities. Further
X will be positive and X, will be negative. From the Kuhn-Tbcker conditions, the latter
means tbat tbe associated constraint is not a limitation and the solution can be obtained
by maximizing the original objective function after removing the period 1 constraint.
Therefore, tbere are only three relevant possible alternatives for the signs of tbe multipli-
ers. These are listed below with the corresponding relationships of harvest to stock size
in eacb period.

(a) \-0,No< So
X, - 0, A'; < S,

(b) \o = O,No< So
X, > 0, TV, = S,

(c) Xo > 0, No - So
N, - 0

A full graphical explanation of each case follows.
(a) If neither of tbe constraints are binding, which is to say there is more than

enough fisb than can be profitably harvested in eitber period, tben by the Kuhn-Tbcker
theorem, both of the X's will be zero. The optimal solution for this case is depicted in
Figure la. The left and right graphs depict Equations 2 and 3, respectively. In tbe left
graph So is tbe beginning stock size, while S^ in the right graph is tbe stock size at the
beginning of period 1. As indicated above, it is a function of S^ and NQ in tbe left grapb.

In this case, the marginal net benefit curves of the two periods both intersect the
horizontal axis at a point to the left of the stock constraint for tbat period. Altbough catch
could be increased in either period, tbe extra fisb would yield negative benefits. Tbere-
fore, these intersection points represent the optimal level of harvest in eacb period.
Recall that MNBQ bas the negative interperiod stock externality term and is therefore
lower at each A'o than it otherwise would be. This is to say tbat to keep the cost of
harvesting in period 1 at the optimal level, tbe optimal catch in period 0 is lower tban it
otherwise would be.

The relative sizes of AQ and A', depend on the relative values of harvest in each
period. For example, the lower the relative value of smaller shrimp, the lower is the
MNBo, and the smaller will be A'o. Therefore, 5, and the potential harvest in period 1
will be bigher. Further, tbe larger tbe value of large shrimp, tbe higher is MNB,, and the
more of the remaining stock that will be barvested.

(b) Carrying the example of a bigher MNB, to tbe extreme results in the second
general case where the constraint is binding in period I. In tbis case X, will be positive.
The X, term appears in botb Equations 2 and 3, and the optimal allocation is depicted in
Figure Ib. In this case, the MNB, curve intersects tbe 5, constraint curve, which is
determined by the amount of harvest in period 0. Because of the constraint, harvest must
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Figure 1 Shrimp fisheries: When the stock constraint is not binding, the marginal net benefit of
the last fish in each period will be zero. When it is binding, the time pattern of harvest must be
such that no switch will increase net harvest value.

Stop in this period before MNB, falls to zero. If more fish were available, it would make
sense to harvest thetn. The net value of the last fish harvested is X[, the shadow price of
an extra unit of fish in period 1.

The optimal harvest of small fish in period 0 is where MNBQ equal X|(l — m). This
has a rather straightforward interpretation. Assume that fish are measured in units of 100
and m equals 0.1; therefore 100 small shrimp at the end of period 0 will result in 90
large shrimp at the beginning of period 1. Because of natural mortality, this is the rate at
which the potential for harvest can be transferred between size classes by foregoing
harvest of small shrimp. The marginal net value of the last small shrimp should only be
90% of the marginal net value of the last large shrimp because only 90% of the time will
that small shrimp be available for harvest as a large shrimp. Put differently, the optimum
allocation occurs where MNBQ — (1 - m) MNB,, see Equations 1 and 2.

Although there is no constraint in terms of what is available to catch in period 0, the
optimal harvest pattern necessitates that production stop before MNBQ falls to zero.
There would be positive benefits from expanding harvest beyond A'o, but there are even
greater benefits from allowing the extra shrimp to grow to offer the potential that those
that are still alive to be harvested the next period. The shadow price of an extra fish in
period 1, X|, corrected for natural mortality, becomes a user cost for harvest in period 0.
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Therefore, when the stock constraint is binding in the last period, there are two interpe-
riod costs effects: the stock externality cost and a user cost.

An extreme form of this case is where the vertical intercept of the MNBQ is less than
X(l — m), where X, is determined by the intersection of the MNB, curve and the 5,
constraint curve which is generated by an N^ equal to zero. In that case, NQ should equal
zero, and all shrimp that survive natural mortality should be harvested in period 1. In
terms of the fonnal Kuhn-Tueker conditions, this is where Equation 2 holds as an
inequality and so N(, must equal zero.

(c) The final case is where the stock constraint is binding in period 0. In this case
only Xo is positive, see Figure \c. The value of small shrimp is high enough that the
MNBQ intersects the 5o stock constraint curve and it is optimal to harvest the entire stock
in period zero. The value of the last fish harvested that period will be equal to XQ. Since
all fish are harvested in the first period, both 5, and Â , must equal zero. If this is truly to
be an optimum, the vertical intercept of the MNB, curve must be less than XQ. Other-
wise, the total value of harvest could be increased by allowing some shrimp to go
unharvested in period 0 so that they would he available in period 1.

Optimal Utilization of Many Cohorts Simultaneously:
The Lobster Fishery

The analysis of the lobster fishery is different from that of the shrimp fishery in several
respects, although there are some obvious similarities. The main differences are that
different cohorts are harvested simultaneously by the same effort and that cohorts can
live from one season to the next. The first difference is the most fundamental hecause it
means that it is not possible to define a separable cost function for lobsters of a particular
size. Costs must be defined in terms of fishing effort but there is no way to apportion
them to catches of various sized individuals. It is for this reason that effort rather than
catch must he used as the main controi variable in this section. The analytical effects of
this change in the control variable are discussed at various points in this section and in
the appendix.

Because of the problem of defining separable cost functions and the possibility that
the optimal catch of each of the sizes in any period will not be obtained by the same level
of effort, the statement of the problem is very complex.'

Perhaps a hetter appreciation of these complexities, the different issues they raise,
and the way in which they may he examined can he obtained by a closer examination of
the differences between the lobster model and the shrimp model. In the first place, if
lobsters of different ages could be harvested independently of each other, the problem
would be nothing more than a simultaneous, but independent, operation of the shrimp
model (expanded to a multiyear horizon) on the various lobster cohorts.

However, the harvest of different-aged lobsters is an interdependent operation.
When pots are put in the water, there is no way to strictly control the age of the
individuals that are captured. Fishing effort will obtain output from the various cohorts
roughly in proportion to the total cohort sizes. However, if lobster fishing is truly a joint-
product operation with no control over the proportions, the analysis boils down to a
simple problem of determining the optimal amount of effort to produce in any year. The
potential to decide the optimal amount of harvest by size is precluded.

But since lobsters can be returned to the sea with relatively low discard mortality,
there is some flexibility in the makeup of the total harvest. Indeed, the current mode of
regulation is to prohibit the landing of small lobsters. Let directed effort at a particular
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sized cohort be defined as that part of nominal effort when catch of that cohort is kept
rather than returned to the sea. For example, in the current situation, directed effort at
legal lobsters is equal to nominal effort, whereas directed effort at undersized lobsters is
presumably zero. This is not to say that small lobsters do not come up in traps, but that
whenever they do, they are to be returned to the sea.

For simplicity assume a lobster fishery where the individuals live 2 years after
recruitment and there is a distinct market for 1- and for 2-year-olds. Assume also that
there is a known and constant recruitment each year.

The object is to find the optimum catch of 1- and 2-year-old lobsters in any year
where catch is a ftinction of directed effort and cohort size. That is, catch of the ^th
cohort in the /th year is N^j - NJ^E^j, S,y). E^j is the directed effort at theyth cohort in the
ith year It is that proportion of total effort in the ith period when lobsters of age) which
are taken may be kept. If Ey is the amount of effort produced in the ith period and E^j is
less than £"„ then j-year-old lobsters must be returned to the sea for part of the season.
Cost in each period will be a function of effort only. The stock externality enters through
the production function when effort is the control variable.

In terms of the constrained maximization problem, the control variables for each
period are £, (total effort in period /), f,, (effort in period i during which 1-year-old
lobsters are retained), and Ea (effort in period / during which 2-year-old lobsters are
retained). It is a formal necessity to include the constraints that both £",, and E^ must be
less than or equal to E^. Also the catch from any cohort in any year cannot be larger than
that cohort at that time. The same rule for natural mortality between periods will hold;
i.e., 5|2 — (1 - m) (5oi - A'oi). The formal maximization problem, stated in terms of
a 2-year horizon, is

Max fioCA'o, ̂ 02) - ^(£"0) + p[fi(N,,, ^,2) - C,(£,)]

St /S/QI ^ So, where Sm is recruitment in period 0
NQ2 < S(,2 where S02 is determined from recruitment and catch the pre-

vious year, but is given as far as this problem is con-
cerned

N,i <i Su where S,, recruitment in period 1

£"02 ^

All other terms are as analogously defined in the shrimp model except that p is the
discount factor.

The appropriate Lagrangian and first-order conditions are as follows. For ease of
interpretation, the multiplier for the constraint on effort in period i has been made a
current value shadow price by including the discount term.

L - Bii[NQi(Efn, Soi), ^02(^021 ^02)1 — Co(£'o)
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- ^01) + '^02(^0 - ^02)

, - £„) + p0,,(£:, - £„) (4)

^ _ aBodI% ^ dB, aN,; 35,2 3A/o,

<0 (5)

\ " ' 0 2 J, n /£\
Aflj — (pnj S U l O l

•'01 ^ V02002 - ^ ^ 0 (7)

A • - A, I - p^n < 0 (8)

I N â " I a£'

as,

~ = P0M + P * , . - P ^ < O (10)

at a£
The first-order conditions are subject to the normal interpretations and fiill description of
their economic significance wiii be provided below. For the moment note that the terms
preceding the Lagrangian multipliers in Equations 5 and 6 and Equations 8 and 9 repre-
sent the marginal gains from efforts directed at the various cohorts during periods 0 and
1 respectively. Equation 5, which shows the marginal benefits of effort directed at the
entering year cohort in period 0, has a term to show the stock externality affects on the
harvest of that cohort in period 1. Because this problem has been defined over only two
periods to keep the notation as simple as possible, there is no analogous term in Equation
8 that sbows the marginal benefits of effort directed at the entering year cohort in period
1. The interpretation below will be modified to correct for this omission, however.

By solving Equations 5, 6, 8, 9 for the 1̂  terms, expressions for the marginal
revenues of the various directed efforts can be obtained. Viewed in tbis light, the inter-
pretation of Equations 7 and 10 is quite simple. The sum of tbe marginal revenues of the
directed efforts in both years must equal tbe marginal cost of producing effort. As will
be pointed out below, however, there is more to tbis interpretation than first meets the
eye.

By stating tbe problem in these stark simplistic terms, it is easy to see the main
difference between the shrimp and the lobster models. In the lobster model, in addition
to allocating effort at the entering cohort in tbis and tbe coming year, simultaneously it is
necessary to allocate effort at tbe remainder of the cohort that entered the previous year
and at tbe cohort that will enter in tbe next year. Therefore, instead of the three possible
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types of solutions In the shrimp model, there are 12 in the lobster model, see Table 1.
Cases a-c are analogous to those described for the shrimp model. For each of these three
ways to use an entering cohort, there are four possible ways to use the end of last years
cohort and the first of next years cohort: (1) part of both can be used, (2), (3), part of
one and all of the other can be used, and (4) all of both can be used. Which of the 12
possible types of solutions will actually occur depend in part on the relative values of
young and old lobsters.

An economic understanding of the complete problem of the dynamically optimal
utilization of a multicohort stock can best be obtained by graphically examining some of
the possible solutions listed.in the table. Because Equations 5, 6, and Equations 8, and 9
are subsumed in Equations 7 and 10, respectively, this can be done by studying the plots
of the latter two equations.

Consider first case al, the simplest situation where the catch of all cohorts in both
years is never constrained by cohort size. Then by the Kuhn-Tucker theorem, all of the
X's will equal zero. In this instance, assuming the marginal cost of effort in both years is
constant. Equations 7 and 10 can be plotted as in Figure 2. Ignore for the moment the
dotted curve. The optimal amounts of aggregate effort in periods 0 and 1 are £"0 and f,,
respectively. At those points, the sum of marginal revenues from both directed efforts is
equal to marginal cost of effort in each year. Because both directed efforts are needed to
cover production costs in each year, the directed effort for both cohorts is equal to
aggregate effort. In this situation, although there are more fish from every cohort avail-
able for harvest, it does not make economic sense to produce the effort to catch them.

In calculating the optimal levels of effort, note that revenues and costs in period 1
are discounted to period 0 terms. In addition, the stock externality effect of the harvest
of/VQ, on the harvest of A',; is included in <̂ oi-

It is not always the case, however, that the directed efforts at both cohorts will equal
aggregate effort in this situation. For example, if 0oi is represented by the dotted curve,
but the sum of the two <j> expressions remains the same, aggregate effort and the directed
effort for 5o2 will equal EQ. Directed effort at 5o, will equal £'0,. This is because the
retum from harvesting the entering cohort in period 0 will fall to zero when aggregate
effort gets as high as E'Q^. This could occur if there were a very limited market for small
lobsters and when catch gets too high the price falls dramatically. However, directed
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YearO

a)

b)

dC,

/T

Figure 2 Lobster fisheries case al; When the stock constraints are not binding, the optimal
amount of aggregate effort is where the returns from both cohorts equal the marginal cost of
effort.

effort at last year's cohort can, by itself, cover the expenses of an increase in aggregate
effort to £o-

It may be argued that the cost of catching the last individual from any particular
cohort is very high, and hence this is the only relevant case. However, it has been
estimated that as much as 90% of aU northern lobsters are caught. (Townsend 1988,
personal communication). Therefore, some of the other cases may be of more than mere
theoretical interest.

For a slightly more complicated circumstance, consider case a2 where in period 0
the size of the remaining stock of the cohort that entered the previous year is an absolute
constraint on its harvest. In this case, of all the multipliers only XQ̂  will be positive. A
possible depiction of this situation is found in Figure 3. In the period 0, when aggregate
effort reaches £02, all of the fish in 5o2 will have been captured. Therefore, this is the
total amount of directed effort at this cohort. As depicted here, directed effort at the
stock entering in period 0 will by itself cover the costs of increasing effort to EQ. Stated
more formally, the optimal amounts of aggregate effort in the two periods will be EQ and
£i, respectively. Directed effort for both cohorts in period 1 will both equal the aggre-
gate effort, hut in period 0 only £0, will equal aggregate effort. Aggregate effort will not
be a hinding constraint on the production of £03 and, hence, in the final solution the
multiplier Xo2 will he zero. At the point where the stock of old fish becomes a binding
constraint on the production of EQJ, the <j>02 expression is eliminated and the level of
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aggregate effort is determined exclusively by ^oi* the marginal revenue from the catch of
young fish. Aggregate effort in period zero occurs where 4>o] equals the marginal cost of
effort. At EQ2, the point where S^ runs out, the marginal return for directed effort at SQJ
is equal to \o2 (^^02/^^02)' see Equation 6. The first component, X02. is the shadow priee
of another unit of S^a, and the entire term is the shadow price for the ability to produc-
tively use another unit of EQ2-

Analogous to the situation in Figure 2, it is also possible that Ê ,, can be less than
aggregate effort. If the <̂o] curve is so low that it intersects the marginal cost curve at a
point to the left of £02 but the sum of the <̂  terms remains the same, aggregate effort
would equal Eg; ^"^ 0̂1 would occur where the <̂ (,, curve intersected the marginal cost
curve. Under these circumstances the difference between 0̂2 an̂ l the marginal cost of
effort would be equal to XQ̂  (97VO2/3£^O2)- This situation could occur if the market for Soi
individuals is saturated in the season, but the market for S02 individuals will support the
cost of aggregate effort until the stock constraint is reached.

Case bl is slightly more complicated and allows for a direct comparison of optimal
allocations of fish across years. In this case, only 5,2 acts as a binding constraint on
production. Because the stock of 2-year-old fish in period 1 is a constraint on harvest,
there is obviously a trade-off with 1-year-oId fish in period 0. An example of an optimal
solution of this type is pictured in Figure 4. The markets for 0̂2 and 5,, are strong
enough by themselves to support aggregate levels of effort in the two periods of E^ and

YearO

Figure 3 Lobster fisheries case a2: When there is a constraint on older fish in period 0, directed
effort at that stock ceases when all are harvested, but optimal directed effort at the other steock
may be higher if returns can cover the marginal effort costs.
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E./T

Figure 4 Lobster fisheries case bl: When there is a constraint on older fish in period 1, t here will
be a user cost on the harvest of young fish in period 0.

£•,, respectively. In both years, however, the optimal level of directed effort at the other
stock is less than this. In year 1, the optimal level of effort directed at 5,2 is E^2, because
at that point the last unit of this stock is harvested. The value that would be generated by
the effon that would be possible if more 2-year-old fish were available in period 2 is
equal to X.̂  (dNJdEi2), see equation 9. In period 0, although there are still unharvested
individuals in the So, stock, it is optimal to cease directed effort at that stock at EQ,.
because the remaining units of fish will be more valuable as a potential harvest in period
I. At this point the marginal value of EQ, directed effort is

dN,

See Equation 5. This amount Is the user cost in terms of lost production next year from
producing another unit of £"01 this year. As is shown in the appendix, the optimal rela-
tionship between the marginal values of directed effort in the two periods is analogous to
that of the marginal values of fish in different periods in case h of the shrimp model.

As in the previous cases, the relationship between the two directed efforts in both
years and the determination of which, if either, will be less than aggregate effort will
depend upon the height of 0o2 and 0,, curves, respectively.

It is not necessary to go over the other cases in detail. They are similar to, or
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combinations of, the cases described above. However, the basic results and economic
conclusions from this section can be summarized as follows.

The dynamic optimal utilization of a multicohort fish stock involves an annual
simultaneous decision on how much directed effort to allocate to each of the available
cohorts. Except for the oldest cohort, it is necessary to consider both a stock effect on
the productivity of (i.e., the cost of harvesting) that cohort in future years, and the
possibility that all available fish will be harvested in some year such that there is a user
cost of taking a fish. Because it is not possible to attribute aggregate effort costs to the
directed effort at any cohort when more than one is being fished, it is necessary to
compare the marginal gains from all active directed efforts against aggregate effort
costs. Therefore, the optimal amount of a particuiar directed effort in any year will
depend in part on the markets for, and the stock constraints imposed by, all cohorts.

Summary and Practical Conclusions

The analysis has shown that optimal utilization of fish stocks where value varies with
individual size requires a specific pattern of harvest by size. It does not necessarily call
for a single optimum age at first capture. The nature of the pattern depends on the
relative net values by size, the natural mortality rate, and the discount rate. The policy
implications are that the prohibition on inshore shrimp fishing and a single size limit on
lobsters may not be taking full advantage of the potential gains from considering the
price-size relationship. An optimal shrimp policy may require specified catch both in-
shore and offshore. Similarly, the optimal lobster policy may be annual quotas by size.

The above conclusions, of course, must be tempered by the realities of institutional
constraints, enforcement costs, efficiency of producing effort, and recruitment. Whereas
the optimal pattern of harvesting has been described, the process of moving to it from
the existing harvest pattern has been ignored. For example, current lobster utilization
has left very few large individuals in the water. The imposition of annual quotas of
various size lobsters could place severe restrictions on the industry until there are suffi-
cient large lobsters to make up for the restricted catches of small ones.

The practicalities of enforcing quotas by size may be quite difficult especially in the
lobster fisbery where the different sizes would be harvested simultaneously. Preventing
the continued harvest of one size after its quota is filled would require surveillance of
individual fishermen. This is already required for the existing size limits to some extent,
but the problems will likely increase. Because harvest by size is separated by time and
space, the enforcement problems will be less severe in the shrimp fishery. General
seasonal or area restrictions would likely suffice.

The exact method of achieving the catch limits by size is also important because of
the effect cenain regulations can have on the efficiency of producing effort (Crutchfield
1961, Anderson 1986, chapter 6). Transferable individual quotas by size may eliminate
these side effects, however.

Recruitment poses a problem in two ways. First, it is necessary to know the size of
the recruiting cohorts so that the quotas by size can be set for the next periods (shrimp)
or years (lobster). It may be difficult and expensive to obtain estimates of sufficient
accuracy. In addition, because recruitment can sometimes vary significantly from year to
year, the optimal policy in any one year may appear silly to industry participants. For
example, industry support and voluntary compliance may suffer if the quota on, say,
medium-sized lobsters is absolutely and relatively smaller compared to other sizes.

Recruitment is also important to the extent that it is dependent on stock size and
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hence on the size of harvest. Whereas this is not the case for shrimp, at least over the
relevant range of harvest, stock size may well be an important determinant of lobster
recruitment. Unfortunately, the exact relationship has not been identified. The problem
is made more difficult because other things may affect recruitment as well. For example,
it may well be that sea water temperature is a very important variable (Townsend 1986).
In any event, to the extent that a program to optimize utilization through time and across
sizes increases the average size and age of the stock, it will have serendipitous effects on
recruitment relative to existing management.
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Appendix

The purpose of this appendix is to show the equivalency of the marginal trade-off rules
between two periods in the multicohort lobster model where, of necessity, effort is the
control variable, and the more simple shrimp model where output is the control variable.
The rule is applicable only when the stock size of a cohort is a binding constraint on
harvest (i.e., when all of the fish either die or are caught). The basic trade-off rule can
be derived in the shrimp model. By solving Equations 2 and 3 for X(remember if X, >
0, then Xo - 0) it can be shown that

MNBo - (1 - m)MNB, (Al)

See above for the exact formulations of the marginal net benefit (MNB) of a unit of fish
in both periods. In essence, condition Al says that the marginal net benefit of the last
unit of fish of a particular cohort in period 0, including any stock externality costs, is
equal to the natural mortality corrected marginal net benefit of a unit of fish of that same
cohort in period 1.

The optimal trade-off in the multicohort lobster model depends on which, if either,
of the directed efforts are not constrained by the amount of aggregate effort produced.
The mathetnatics will be reduced by starting with the most general case and then show-
ing how the basic formulation is modified in other instances.

The equations in the multicohort model that describe the optimal harvest of fish of
the same cohort in the different years (i.e., stocks 5o, and 5,2 are (5) and (9). In the most
general case where all directed efforts in both periods are equal to the aggregate efforts,
all of the first-order conditions are necessary to derive the optimal trade-off rule. Be-
cause the 5,2 stock constraint is binding, it follows that X.̂  > 0 and X,,, = 0. To keep
things uncluttered, assume that the S02 and 5,, stock constraints are not binding and so

Because aggregate effort in both periods is a binding constraint on all directed
efforts, all of the <{> terms will be positive.

By substituting (5) and (6) into (7), noting that
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and (8) and (9) into (10), we obtain

3^02 ^£"0 ^^^12 ^-^i: ^£"0 <^^o

^ f ^ " l (A2)

_

Because all directed efforts are assumed to always be equal to aggregate effort, the
distinction between aggregate and direct effort is dropped.

Dividing equations (A2) and (A3) by dNoildEo) and dNi2/dEi2, respectively, will
express tbe marginal conditions in terms of units of fish from stocks SQ, and 5,2, respec-
tively, ratber tban in units of directed efforts. By performing tbese operations and solv-
ing each for X,2, we obtain

(A4)

p M L - p N M C . , " \,2 (A5)
"12

wbere NMC, represents the net marginal cost of fish from the /tb cohort as follows:

dBA fdNu\ fdQ
dEj \dE,

a£,

Tbat is, the net marginal cost of another unit of A'o, is tbe loss due to tbe marginal cost of
producing the effort to obtain it plus tbe gain of the benefits tbat are obtained from
selling the units of N^ that will be jointly produced witb it.
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Equilibrating Equations A4 and A5 obtains

- m) (A6)

Close observation will reveal that the left side is analogous to MNBQ in Equation 2. The
first two terms are the net benefit of the last unit of Noi harvested in period 0. The third
term is the stock externality effect. It shows the cost of keeping the harvest of Â î  the
same with the lower initial stock size. Similarly the right side is analogous to MNB, in
Equation 3. Therefore, (A6) is the multicohort equivalent of (Al).

The other potential cases can be handled in short order. The only difference is the
nature of the NMC, terms. If the directed efforts for NQ2 and A',, are less than their
aggregate efforts (that is, fishing for those stocks ceases before the year ends) then <̂ (,,
and <̂ ii are both zero. Therefore, only Equation 5 is used to derive Equation A2 and
only Equation 7 is used to derive Equation A3. The only effect of tracing these changes
through all the calculations is that the NMC, terms are replaced with a more traditional
marginal cost expression

MC,^,

rfC,

Because there are no direct efforts for iVo2 and iV,, at the margin, all effort costs can be
allocated to Âo, and A',;, respectively.

The final case is where the directed efforts for A'Q, and N,; are less than aggregate
effort. In this case the trade-off conditions can be derived from Equations 5 and 9
directly. Because of the nonbinding constraint on the production of directed effort at 5o,
and 5,2, the marginal costs are zero. Therefore, all cost terms, including the stock
externality term, drop out, and the relevant expression is

dB, .. ,
—2 = p (1 - m) dN,

The gross marginal benefits of a unit of fish in each year, properly discounted and
corrected for natural mortality that must be equal.
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Notes

1. Clark {1976) states "We come now to the dynamic optimization problem for a multicohort
fish population. Even with the simplifying assumption to be made here that recruitment is indepen-
dent of stock size, an analytic solution for the general problem seems completely unattainable. We
therefore make an additional assumption that the costs of fishing are negligible."

It is the direct cognizance of costs in the current model that provides most of the complexity.
The difficulty of analytical solutions notwithstanding, the presentation does allow for a rigorous
description of the economic issues involved in the dynamic utilization of multicohort fishery,
something that has heretofore not appeared in the literature.

2. For example, suppose total effort in the present year, EQ. is 200 pot lifts, which, under
existing conditions, would yield 600 one-year-old lobsters and 100 two-year-old lobsters. How-
ever, it may be optimal to return 300 of the 1-year-old lobsters to the sea for potential harvest next
year.

Assuming that catch is spread evenly throughout the fishing season, directed effort at 1-year-
olds, £i)|, would be iOO pot lifts. During the first 100 pot lifts all lobsters would be retained, but
for the second 100 lifts only the 2-year-olds would be kept.
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