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Abstract This article presents a simple combination discrete-time/continuous-time
model that incorporates continuous population dynamics and fishing activity together
with periodic, rather than continuous, instrument adjustment into the decision
process for choosing the optimal type and level of regulatory instrument. A per-unit
tax and an allocated instantaneous harvest rate quota each drive the system along
different time paths, and each results in a different present value of the stream of net
benefits generated by harvesting the resource. The choice of instruments is fishery
specific; it depends on the parameter values of the fishery in question.

Introduction

In theory, regulation can potentially improve economic efficiency in markets that exhibit
externalities. A wide variety of basic regulatory instruments is available for this pur-
pose, including taxes, allocated quotas, price controls, input controls, and combinations
of two or more basic instruments. The question of which type of instrument is superior
has been argued in the literature for some time.

Consensus has been reached on the point that in an economically near-perfect world,
marred only by the presence of externalities, properly designed instruments of many
types all rank equally on the basis of economic efficiency (e.g., see Weitzman 1974;
Laffont 1977; Yohe 1978; Dasqupta and Heal 1979; Brown and Boontherawara 1982).
Tbere may be distributional, political, administrative, or enforcement considerations that
swing tbe balance in favor of one instrument or another, but in terms of maximizing the
sum of consumer and producer surpluses, none can be proved superior.

This conclusion follows from the fact that wben perfect information is available, the
optimal rate of production, or of effluent discharge, etc., is known. If there are no
constraints on the levels at wbicb regulatory instruments can be set, any correctly de-
signed instrument can be set at tbe level that elicits this rate.

The literature initiated by Weitzman, however, demonstrates that wben relatively
simple regulatory instruments must be used in tbe face of "imperfections" other than
externalities, such as uncertainty, one instrument or combination of instruments may
outperfonn the others. Which one performs best depends on the assumptions and param-
eter values of the model being used to describe a particular activity.

275



216 E. E. Anderson

Anotber imperfection in our economic world is the presence of significant costs of:
(1) assessing tbe physical and economic environments of a regulated activity, and (2)
adjusting instrument levels as may be warranted by cbanges in tbese environments.
Because of such costs, instrument levels are often not adjusted as frequently as condi-
tions cbange. For example, wben the size of a renewable natural resource stock changes
continuously, tbe optimal level of whatever instrument is used also changes continuously.
Yet instrument levels are adjusted only at periodic intervals. This paper considers the
question of optimal instrument choice wben instrument levels are periodically fixed
while stock size is varying continuously.

The existence of instrument adjustment constraints affects the relative performance
of regulatory instruments in dynamic settings. This is due to the fact that different fixed
instruments drive tbe system along different time paths, and bence yield different present
values of tbe stream of net benefits.

Clark (1980) notes that a tax or transferrable quota that is fixed for tbe duration of
the fisbing season is suboptimal, and briefly discusses the optimal level of the fixed tax.
The fact tbat adjustment constraints have differential efficiency effects across instru-
ments is mentioned in passing by Dasgupta and Heal (1979), and is alluded to by
Rosenman (1986) and by Roserunan and Wbiteman (1987). However, this fact has other-
wise been largely ignored in tbe literature on optimal instrument choice. And to date, not
many researchers bave attempted to apply the methods of the optimal instrument choice
literature to apply the methods of tbe otpimal instrument choice literature to regulation
of fisheries. Tbere bave been a few, including Beddington and May (1977), Andersen
(1982), Koenig (1984), and Anderson (1987). But all of these papers were concemed
with the effect of uncertainty on relative performance of instruments. Anderson's model
included periodically fixed instrument levels, but only so that be could analyze the effect
of uncertainty wben the fishery system is in a temporary steady state. He did not con-
sider the effect on relative performance of the adjustment constraints themselves.

Most previous studies of optimal fishery regulation, with or without uncertainty,
have used models and dynamic optimization methods that essentially consider time to be
either strictly discrete or strictly continuous. Neither approach, used alone, is capable of
dealing with the adjustment constraints problem. On one hand, continuous-time analyses
assume continuous monitoring of stock size and continuous adjustment of the cbosen
regulatory instrument. Results from discrete-time analyses, on tbe other hand, are usu-
ally limited to fisheries in wbicb no natural stock growth or decline occurs during the
fisbing season. Tbis structure can be realistically assumed only for fisheries with very
sbort open seasons.

Anderson's study, bowever, developed a combination discrete-time and continuous-
time stocbastic fisbery model. In this study, I have constructed a similar deterministic
model and have used it to incorporate instrument level rigidity into tbe decision process
for choosing tbe optimal type and level of regulatory instrument. Tbe objectives were:
(1) to demonstrate that instrument adjustment constraints have differing economic effi-
ciency effects across instruments, and (2) to detennine whether tbere are any generaliza-
tions to be made about tbe ranking of instruments.

The remainder of this article presents an analytical approach based on assumption of
linear marginal benefit, marginal cost, and stock growth rate functions, and with har-
vesting capital that eitber is fixed permanently or is perfectly variable. It considers two
alternative regulatory instruments: a per-unit tax and an aggregate instantaneous harvest
rate quota, which is assumed to be optimally allocated among tbe individual fishing
firms. Expressions are derived for single-period net benefits under each instrument.
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Then rules are obtained for setting the instruments at optimal fixed levels when stock
size at the beginning of the following period does not depend on the quantity harvested
during the current period.

Net benefit expressions for each instrument are compared, and it is shown that
neither instrument is consistently superior in this simple one-period model; the ranking
of instruments depends on the values of the model parameters. Moreover, the relation-
ship between instrument ranking and parameter values is complex, and it is not possible
to identify specific combinations of parameter value ranges in which the choice is clear.

There are two exceptions, or special cases, but both are highly restrictive. The first
special case is characterized by (1) a constant price of landed fish, (2) a constant instan-
taneous marginal harvest cost rate, (3) a year-round open fishing season, and (4) an
instrument level that is set once, and then never adjusted. In this case, the tax dominates
the quota.

The second special case does not require linear marginal benefit, marginal cost, and
growth functions. It is characterized simply by a marginal external cost of fishing that
does not depend on the size of the stock. Here again, the tax dominates the quota.

While both special cases are quite implausible, they are helpful aids to understanding
the general conclusions of the paper. It is for that reason that they are discussed at some
length here.

The Model

NotaHon

r The (constant) social discount rate.
z The length of the open fishing season. It may take any value between zero

and 1.
i The period index. It measures time discretely, and goes from one to infin-

ity (i - I. . . . .oo).
t Time measured continuously. It goes from i - 1 to i during period i.
X, The stock size (harvestable biomass) at instant t.
X,, The stock size at t =• 0.
h, The instantaneous aggregate harvest rate at instant t.
Qi The level of the aggregate instantaneous harvest rate quota during period i.
T, The level of the per-unit tax during period i.
B(h() The instantaneous rate of accrual of total consumption benefit.
C(X,, h,) The instantaneous rate of total harvest cost incurrence.
R,(X,_|, Qi) The present value of the net benefit stream during period i, discounted to

the beginning of the period, when a quota system is used. It is the single-
period net benefit funciton under a quota.

R,(Xi_,, Ti) The present value of the net benefit stream during period i, discounted to
the beginning of the period when a per-unit tax is used. It is the single-
period net benefit function under a tax.

Fishing activity and fish population dynamics take place in continuous time, whereas
regulatory behavior takes place in discrete time, i.e., the level of the chosen instrument
is assumed to be adjusted only at the beginning of each period. It is assumed that the
level of capital is either exogenous and permanently fixed, or endogenous and instanta-
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neously variable in either direction. Thus capital does not explicitly appear in the harvest
cost function.

Both single-period net benefit functions are obtained as follows:

- f e-"[B(h,) - C(X,,h.)]dt.

They are functions of beginning-of-season stock size, X,_|, and of instrument level
because of the effect both of these variables have on the time paths of stock size, X,, and
harvest rate, h,, during the period.

Basic Functions

In order to make additional progress, it is necessary to assume specific functional forms.
The three basic functions of the model are (1) the instantaneous total consumption bene-
fit rate function, (2) the instantaneous total harvest cost rate function, and (3) the instan-
taneous net stock growth rate function:

B(h.) - boh. - I hf, (I)

C(X.. hj - (Co - c,X,)h. + ^ hf, (2)

dX/dt = fo - f,X, - h,, (3)

where fo - fjX, is the stock growth rate without fishing. The subscripted b's, c's, and
f's are fixed, known parameters, and all parameters are assumed to be nonnegative.
Following much of the literature, the total benefit function is quadratic in the harvest
rate, h,, and the total cost function is quadratic in the harvest rate and linear in the stock
size, X,. In order to permit derivation of analytical results, the growth function is linear
in both harvest rate and stock size. The form fo — fiX, can be viewed as an approxima-
tion to the right side of the more familiar dome-shaped growth function.

Quota Regulation

The quota considered here is optimal in every way, except for the constraint on fre-
quency of adjustment. Thus it is an instantaneous harvest rate quota, controlling the
extraction rate at every instant and not just the cumulative quantity extracted each pe-
riod. It is also allocated among the members of the industry, or fleet, in a way that
minimizes aggregate cost of any given instantaneous catch rate.

For notational convenience, the following discussion refers to the first period, in
which time goes from zero to one, but all expressions are identical in every period.
Moreover, the period subscript i is omitted.

Assuming that the individual and aggregate quotas are binding constraints at all times
during the fishing season, the instantaneous harvest rate is fixed at the level of the.
aggregate quota, Q. Employing the fixed quota thus precludes continuous adjustment of
the harvest rate, which generally is necessary to achieve a full (unconstrained) optimum.
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The present value of the net benefit stream during the first period, discounted to time
t - 0, is

R(Xo, Q) - e " " boQ - ^ Q' - (Co - CjX^Q - ^ Q' dt, (4)
Jo (̂  2 2 J

where z is the time at which the fishing season closes, perhaps by decree, e.g., for the
protection of gravid females, or perhaps by natural event, such as the onset of winter
weather or the annual departure of the fish. The parameter z can take any value between
zero and one, inclusive. The open season and the period both begin at time t — 0.

The time path of stock size during the fishing season is governed by the stock growth
rate equation:

dX/dt - fo - f,X, - Q. (5)

Solving this differential equation yields

X[ — -^—-— (1 — e '') + Xoe~ ''. (6)

Substituting this expression for X, into equation (4), and rearranging and integrating,
gives the present value under a quota:

„ Q) - (A + BXo)Q - CQ\ (7)

-" - 1 Cfn 1 e"*''*'*' - 1

-(f. + r)

- - 1 e-'^'-'' - A ^ [b. -H c
J V - r -(f. + r ) ; I 2 j - r

Under the assumption of nonnegativity of all model parameters, B and C are also unam-
biguously nonnegative. A may be negative, but only if bo - Co is sufficiently negative to
bring this about.

In some fisheries, effort during the current period may have little effect on the size of
the harvestable biomass at the beginning of the following period, assuming that the stock
is not completely depleted. For example, species with density-independent recruitment
and very high fishing or natural mortality rates in the recruited population support
single-cohort fisheries. Species that may approximately fit this model include the blue
crab, Callinectes sapidus, (Richkus 1980), and the American lobster, Homarus ameri-
canus, (Richardson and Gates 1986).

At any point in time during the fishing season, however, fishing prior to that point
always affects the size of the stock available at each instant in the remainder of the
season, as shown by equation (6). In such fisheries, the objective of the manager, after
observing the size of the stock at the beginning of each period, is to set the quota at Q*,
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the level that maximizes R(XQ, Q ) , provided that this policy does not result in extinction
of the stock. To find Q*, partially differentiate R(-) with respect to Q and set it equal to
zero:

RQ(XO, Q*) - A + BXo - 2CQ* - 0, (8)

where RQ( ' ) represents the partial derivative of R with respect to Q.
Solving for Q* gives

In a world with perfectly adjustable instruments, optimal quota management would
involve continuously adjusting the level of the quota as the size of the fish stock varies
throughout the fishing season, with the correct level of the quota at each instant being
determined by the principles of dynamic optimization in continuous time. In a world of
only periodically adjustable quotas, the fixed (for one period) quota in equation (9)
represents a constrained optimal altemative, where Q* is a kind of average of all the
levels an optimally set adjustable quota would take during the course of the period.

Note that using a fixed quota set at Q* is not necessarily the second-best management
altemative. It is possible under seme cor.diticns that no regulation at all would be prefer-
able to regulating with a fixed quota. This possibility is ignored in the remainder of the
paper.

Equation 9 gives the correct expression for Q* only under the assumption that the
feasible range for optimal instantaneous harvest rate is not bounded. Note especially that
for some combinations of the b, c, and f parameter values, we may have to admit the
feasibility of negative harvest rates. In such cases, of course, this is an unrealistic
assumption because implementing a negative optimal instantaneous harvest rate will not
always be practical. The constrained optimal harvest rate would then be zero. However,
a bounded range for optimal instantaneous harvest rate is difficult to deal with analyti-
cally, although it poses no particular problem in numerical modeling.

It is also necessary to assume that the quota is always binding, even though in fact,
the unregulated equilibrium harvest rate might at times be less than the decreed harvest
rate. This would be the case when stock size is so low it makes fishing insufficiently
profitable to attract all of the needed effort.

Substituting Q* into equation (7) gives the maximum possible present value obtain-
able from a quota, by setting the quota at its optimal level:

R*(Xo) - R(Xo, Q*)

The second order condition for a maximum to exist is - 2 C < 0, or C > 0. As
noted above, this condition does hold, given the assumption of nonnegative values for all
model parameters and provided that the effect of stock size on fishing cost, Cj, is not
zero.

Again as noted above, the term B is unambiguously nonnegative. However, A may
take either sign, giving rise to the possibility that the optimal quota could be negative.
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This would be the case when fishing is prohibitively expensive at small stock sizes, i.e.,
bo - Co is negative, and when initial stock size is low.

\,
Tax Regulation

The discussion in this section again refers to the first period for notational convenience,
and the period subscript i is again omitted. The analysis here and in the following section
applies only when the slopes of the instantaneous marginal benefit and cost functions are
not both zero.

Equilibrium instantaneous harvest rate is determined by equatirig the inverse demand
function with the marginal harvest cost function plus the tax, T, and solving:

h - bo - Co + c,X, - T b^ + (.,:)t 0. (U)h,
b, + Cl

Thus, whereas the harvest rate is not fixed under tax regulation, as it is under a quota, it
will not follow the fully optimal time path. In general, the fully optimal path can be
followed only when the tax is continuously adjusted.

The present value of the net benefit stream in the first period is

R(Xo, T) - t ' e--^ j boh, - ^ h? - (Co - c,X,)h, - ^ hf j dt,
*'o t_ 2 2 J

(12)

with X, and h, both being functions of XQ and T, as shown below.
Substituting equation (11) for h, in the stock growth rate function, equation (3), gives

dX/dt - ^ + ^ X, ^ , (13)
- ( b , -H c,) - ( b i -H c,) - ( b , + Cl)

where D = bo - Co - (b, -)- c,)fo,

E - Cl -H (b, -I- c,)f,.

Solving this differential equation for X, gives

X, - 5 _ ^ (1 _ e-^) + Xoe-^, (14)

E
where F -

b, + c,

Substituting expressions (11) and (14) for h, and X, in equation (12), and rearranging
and integrating yields

R(Xo, T ) - G - H j X o + KX^ + (L-H MXo)T - NT^ (15)

where
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G - - ; ; c^ -H 2Cj bo - q, - - c, - [
E VJ -r H V " E 7EJ -(F-Hr)
- (2F + r)z

-(2F-H r)j2(b, -He,)

D / e "̂̂ ^ — 1 . 2 \ D / e *^' — 1
+E 'J - ( F + r) ' CEJ -(2F -I- r)J

1

(b, + c,)

K
-(2F + r) 2(b, + c.)

_ 5 1 e~" - 1 _ [H _ - ? 2
E K " -' E*̂ ]̂ - r r "" E'̂

-ar.r,z _ j] J
- — c

M - ^

E 'J -(2F + r)J (b, + c,)

r)i 1 ^-(2F+rU i
— 1 e — J

- ( F -h r) -(2F -h r ) / (b , -H c,) '

Ij W j - r ^ [UV j V -(F + r) -(2F + r)
2(b, + c.)

All of the above expressions except J and L can be shown by inspection to be
nonnegative. L can be proved nonnegative by anotber approach, as explained below. J
may be positive or negative, but it will be negative only if bo - Co is sufficiently
negative.

If the size of the stock at the beginning of the next period is independent of fishing
during the current period, the maximization problem has a one-period planning horizon.
The objective of the regulating authority is to select the level of T that maximizes
R(Xo, T); this is accomplished by partially differentiating R(-) with respect to T and
setting the derivative equal to zero:

RT(XO, T*) = L + MXo - 2NT* = 0. (16)

Solving for the optimal tax, T*, gives

J* _ L + MXQ .._.

2N • ^ '

As with quota regulation, perfect adjustability would permit the desired continuous
adjustment of the tax level throughout the fishing season. When instruments are only
periodically adjustable, the optimal fixed tax given by equation (17) represents a kind of
average of all the levels an optimally set adjustable tax would take during the course of
the period. Here again, as in equation (9), the above expression (equation (17)) for the
optimal fixed level of a regulatory instrument is correct only under the assumption that
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the feasible range for optimal instantaneous harvest rate is not bounded. Note that,
unlike the fixed quota, Q*, T* is a true second-best altemative to its perfectly adjustable
counterpart. This is because the fixed tax can be set at zero when no regulation is
preferred to constrained regulation.

Substituting equation (17) into equation (15) gives the maximum possible present
value of net benefits under a tax:

, T*)

The second order condition for a maximum in T to exist is - 2N < 0, which in tum
requries that N be positive. This condition is met under the assumption that all model
parameters are positive.

The term L is difficult to sign by inspection, except when bo — CQ — 0, when it is
clearly positive, but it can be indirectly signed by referring to equation (17). The optimal
tax will never be negative, since the inherent tendency in unregulated fisheries is always
toward excessive effort, which must be restrained, not encouraged. Since this must be
true even if XQ is zero, L must be nonnegative.

Tkx Versus Quota Regulation
with a One-Period Planning Horizon

Neither of the two fixed instruments will drive the fishery system along the fully optimal
time path, and each will drive it along a different suboptimal time path. Thus the choice
of instmment is a matter of selecting the suboptimal time path that produces the highest
present value.

Continuing the assumption that stock size at the beginning of the next period is
independent of fishing in the current period, one can make the choice between a tax and
a quota system based entirely on their relative performance in a single period. The
choice is made by comparing the two instmments, assumed to be set at optimal levels,
on the basis of present value of net benefits to be accrued over the course of the upcom-
ing season, given the size of the fish stock at the beginning of the season. The "coeffi-
cient of comparative advantage of tax over quota" (the CCA) can be defined, following
Weitzman (1974), as

CCA - R*(Xo) - R*(Xo)
- G WX« ^ lOa ^ ^ L ^ t M M ^ ( A ± B M . (19)

4N 4C

If the CCA were positive, a tax would be superior, and if the CCA were negative, a
quota system should be chosen. The sign of G -I- JXo + KX^ must be nonnegative,
since this expression represents the present value of net benefits when the tax is set at
zero, and net benefits can never be negative, even when the tax is set at a suboptimal
level. The sign of G -H JX^ -I- KXj can also be obtained by inspection, since it can be
shown to be the integral of a squared expression. Thus if there were conditions under
which (L -I- MXo)V4N is always larger than (A + BXo)^/4C, then the superiority of the
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tax would be guaranteed under those conditions. However, no such conditions can be
readily identified, and in general there can be no presumption about the sign of the CCA.

Expression (19) is quadratic in XQ. Written in standard quadratic form, it is

CCA - f G + ̂  ^ 4^
V 4N C 2N 2 C / ^ \ 4N 4 C /

(20)

If all three coefficients of this quadratic were of the same sign, the CCA would also have
the same sign for all positive X .̂ Again, however, the signs cannot be determined
without specific values for the parameters of the model.

By differentiating the CCA with respect to each of the various parameters of the
model, one could hope to gain some idea of the effect that changes in the parameter
values would have on relative performance of the two instruments. Unfortunately, how-
ever, the resulting expressions for the partial derivatives cannot be signed either, without
specific parameter values.

The First Special Case

There is a special case in which the CCA can be signed when only some of the parameter
values are specified. This is the case of (1) a constant price of fish, (2) a constant
instantaneous marginal harvest cost, (3) a year-round open fishing season, and (4) an
instrument level that is set once, and then never adjusted. In this case, the tax dominates
the quota.

With perfectly elastic demand and supply, and an infinite planning horizon, the fully
optimal management program generally calls for driving the stock as rapidly as possible
to an optimal steady-state level (Clark and Munro 1975). If the initial stock size is
greater than the optimal steady-state level, X*, all available fishing effort should be
applied to the stock until it is reduced to X*. If initial stock size is less than X*, there
should be no fishing at all until the stock grows to X*. Then once the stock size reaches
X*, optimal harvest is constant at the rate that maintains the steady state.

Figure 1 explains the optimaiity of "bang-bang" management graphically. The first
order condition for an interior optimum at each instant is P - 4'(X,) - MC(X|), where
P is the constant price of harvested fish, $ is the marginal external cost of extracting fish
from the stock, a function of stock size, and MC is the instantaneous marginal harvest
cost, which is constant with respect to harvest rate but which varies inversely with stock
size. But for all stock sizes other than X*, P - *(X) and MC(X) are parallel lines,
resulting in comer solutions with optimal harvest rates of either zero or the maximum
feasible rate for the current stock size. When the stock size reaches X*, the two lines
coincide, and the optimal harvest rate becomes h*, which equals the natural rate of stock
growth at X*.

Thus ideally the regulating authority would adjust a quota continuously through time
until the stock size reaches X*. If, as depicted in Figure 1, initial stock size, XQ, is larger
than X*, the optimal quota program consists of a series of aggregate quota levels at least
as large as the maximum feasible harvest rate for each stock size, i.e., nonbinding
constraints, until X* is reached, and then resetting the quota to the binding level h*.
Similarly, a tax set equal to *(X) would vary as stock size declined until the steady state
was attained.



Efficiency of Fishery Charges and Quantity Controls 225

X

CJ

•a

I
•S

* -̂



226 E. E. Anderson

A quota that is set once and never changed is not able to drive the system along the
fully optimal time path. It will take longer for the system to reach a steady state under a
fixed quota because it will be a binding constraint on the harvest rate during at least part
of the transition to the steady state. Moreover, the optimal level of the fixed quota is not
h*, since Q* is a kind of average of all the values the fully optimal instantaneous harvest
rate takes, both before and after the steady state is reached. Therefore, the final steady-
state values of all variables, including X, will differ from those of the fully optimal
solution.

However, there is a fixed tax level capable of driving the system along the fully
optimal time path; adjustment during or after the transition to steady state is not neces-
sary. This tax level is equal to 4>(X*), the value that the marginal external cost will take
when the optimal steady state has been reached. As long as stock size is greater than X*,
the marginal harvest cost line will be lower than the price net of the tax, P - 4»(X*),
and fishermen will voluntarily commit all available effort to the fishery. When stock size
equals X*, the marginal cost line coincides with the net price line, and h* is the equilib-
rium harvest rate.

Obviously, the fact that a full optimum can be achieved with a fixed tax, but not with
a fixed quota, implies that the tax is the sujwrior instrument in this special case. The
argument for the superiority of the tax follows symmetrical lines when initial stock size
is less than X*.

To prove tax superiority mathematically, it is first necessary to determine the limits,
as bi + C| approaches zero and as z approaches infinity, of the terms A, B, and C in
equation (7) (single-period net benefit under quota), and terms G, J, K, L, M, and N in
equation (15), the single-period net benefit under tax.

Throughout the proof that follows, it is assumed that bo — Cg in order to reduce the
size and complexity of the resulting expressions, but this assumption is not necessary for
the conclusion of tax superiority over quota in the one-period model.

Let y = bi + Cp By l'Hospital's Rule, the limits of the quota terms are found to be:

lim lim A ^
y-O z-» r(f, + r)

lim lim B = —,
, -o ,^» f, + r)

lim lim C
r(f. + r)

By similar procedures, the limits of the tax terms are:

lim
y-O

lim
y-O

lim
y-O

lim
1—06

lim
z—»

lim
I—00

G

J

K

= 0,

- 0,

4
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lim iim L - ^ ,
y—0 I—00 I"

lim lim M - - ,
y-O . - - 2

lim lim N — —• .

As noted above, optimal control theory generally dictates that when the chosen
instrument is perfectly adjustable and the planning horizon is sufficiently distant, the
optimal time path of the fishery system leads to a steady state. An expression for the
optimal steady-state level of the fish stock, designated X*, is derived in Anderson (1987,
equation (18)). It is written as follows for the constant price and marginal cost case:

X *
2f, + r

Equation (10) gives the maximum possible net benefit attainable under the quota. It
is written for the constant marginal consumption benefit and harvest cost case by replac-
ing A, B, and C with their respective limits to obtain

+ Xo t X^ .
4r(f, -h r) 2(f, + T)^ 4(f, + r ) ^

Equation (18) gives the maximum possible net benefit attainable under the tax, by
setting the tax according to equation (17). However, equation (17) gives the best fixed
tax level only when b, and Cj are not equal to zero. It represents an average of all the
levels that an optimally set adjustable tax would take during the period, and this consti-
tutes a second-best optimum, compared with the full optimum that could be attained
under an adjustable tax.

But as also noted above, when b, and Cj are both zero optimal control theory pre-
scribes "bang-bang" harvest management, and it is not necessary to set the adjustable
tax equal to the marginal external cost at each instant. It is not necessary to vary the tax
at all in order to drive stock size along the fully optimal path to the optimal steady-state,
X*. Instead, the tax can be fixed from the beginning at a level equal to the level that the
marginal external cost will reach when the system reaches the steady state.

The optimal level of the fixed tax, then, is the marginal external cost of fishing, i.e.,
the marginal present value of stock, at X*. An expression for this tax level is derived in
Anderson (1987, equation (19)). Here, it is designated T*, for optimal steady-state tax
level, and in the zero bj and c, case it is given by

Thus the correct expression to use for maximum attainable net benefit under tax
regulation when price and marginal cost are constant is obtained from equation 15 as
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R*(Xo) - R(Xo, Tf) = G -I- JXo + KX^ + (L -H MXo)T* -

Replacing I, J, K, L, M, and N by their respective limits yields

as C-)inf4fi "¥ T) C f̂n Ci J

" 4r(2f, + r)' "̂  2(2fi + r) ^ "*" ^ ^ '

If the fish stock is already at the optimal steady state when regulation begins
X*), the two instruments work equally well:

R*(X*) - R*(X*)
r(2f, + rf

The first derivatives of the net benefit functions are equal at X*:

- Rx*(X*)
2f, + r

which means the two functions are tangent to each other at X*.
Finally, the second derivatives of the net benefit functions are not equal at X*:

c,r
2(f, + r ) '

The second derivative of R*(Xo) at X* is clearly greater than that of ft*(Xo), so net
benefit under a tax is greater than net benefit under a quota for all initial stock sizes other
than the optimal steady-state stock size.

The Second Special Case

When marginal external cost of fishing is constant as stock size changes, then the fully
optimal tax level is constant through time. Obviously, a fixed tax, if set at the optimal
level, is capable of driving the system along the fiilly optimal time path. However, the
fully optimal harvest rate will still vary continuously, so a fixed quota cannot drive the
system in a fully optimal way.

This case may be a mathematical impossibility. It is mentioned here only as an
additional expository device to aid in understanding the basic idea of differential effi-
ciency effects of instrument adjustment constraints.

Conclusions

The fundamental conclusions of the foregoing analysis are as follows: (1) different
periodically fixed instruments drive the natural resource harvesting system along differ-
ent time paths, and therefore yield different present values of the net benefit stream, (2)
which instrument yields the highest present value depends on the parameter values of the
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model, and (3) the structure of the dependence is complex, and it is not possible to
generalize about conditions under which one instrument or the other will usually be
preferred, except in highly restrictive special cases.

The last conclusion is disappointing because it offers no relatively simple rules to
guide fishery managers in their decision making. But then simple rules carry the poten-
tial for careless application, and may or may not be beneficial.

These results were obtained from a very simple model in which the size of the stock
at the beginning of each period is assumed to be independent of the catch in the previous
period. It is a straightforward extension to incorporate the expressions for single-period
net benefit into a multiple-period dynamic programming model, dropping the assump-
tion that stock size is independent across periods. However, this exercise yields nothing
in the way of additional insight into the instrument choice problem. The present values
produced by each instrument in such an analysis depend in even more complex ways on
the parameter values, and the relationships again cannot be characterized in general
terms.

In order to render the problem analytically tractable, it is necessary even in a one-
period model to make rather implausible assumptions regarding the linearity of func-
tions, the variability of capital, the feasibility of negative harvest rates, etc. The analyti-
cal approach is not useful, therefore, for actually managing real fisheries, and numerical
work with a more realistic model is necessary to put the ideas of this paper to work in a
specific fishery. The value of the analytical approach lies simply in demonstrating the
differential efficiency effects of adjustment constraints, and their dependence on parame-
ter values.

There is a similarity between the analysis of instrument performance under adjust-
ment constraints and under uncertainty. In both situations, the problem is essentially that
it is impossible to set any regulatory instrument at the fully optimal level at all times.
Thus the system is going to be driven along a less than fully optimal time path, regard-
less of which instrument is chosen. The choice of instrument is a matter of finding the
one that is the best of a group of suboptimal alternatives.

Finally, when the adjustment interval is not exogenously fixed, as assumed here, the
problem of determining the optimal adjustment interval arises. It obviously involves
balancing the gains in efficiency realized from more frequent adjustment against the
additional costs incurred. But that is a matter beyond the scope of this study.
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