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Potential Gains from Cooperation
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Abstract  In this paper, we consider a model in which fishing boats or firms
share the stock of fish in a fishing ground. The catches made by each firm reduce
the stock available for the rest of the firms, which directly affects their profits.
We aim to quantify in a static framework the gain in welfare obtained by the
firms if they decide to cooperate in order to attain an individually rational effi-
cient outcome. One of the main results is that, both the incentives for the firms
to cooperate and the minimum level of catches which permits any gain in wel-
fare decrease as real wage increases. On the other hand, the greater the
asymmetry among boats or firms, the more difficult it will be to reach any coop-
erative agreement.
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Introduction

Even though there are some relevant exceptions, the main bioeconomic models used
in the analysis of the management of fisheries usually suppose that the catches made
by each firm or country affect the profit of other countries or firms only through the
future variation in the size of the stock of fish in the grounds. In this way, the catches
made by firms are not considered to be interdependent at the same moment, as the non-
existence of congestion in using fishing resources is implicitly accepted. Interdepen-
dence among firms only occurs in the usual models as a factor which determines in
part, the size of future available stock for them all, and therefore, their profits.1

In this paper, we consider the possibility that the catches made by each firm in
period t affect the rest of the firms’ profits also in t, that is to say, that the catches of
each firm diminish the possibilities of exploitation of the resource by all the other
firms at the same moment. In this manner, we will suppose that each firm does not
consider the catches of rival firms to be insignificant, but that they take them into
account and incorporate them into the problem of the firm’s decision, precisely
through their function of catches.

The objective of this paper is to quantify, in a static model, the potential gain in
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welfare of different boats competing for a stock of fish, if they decide to cooperate
in order to reach an efficient solution which provides each boat a higher profit re-
spect to a noncooperative situation, or in other words, a rational individually effi-
cient solution or belonging to the core.2 On the other hand, we calculate the interval
within which the maximum number of allowable catches should be contained in or-
der to maintain a biological equilibrium in such a way that there exist solutions, ef-
ficient or not, for which it is possible to reach greater individual profits as far as the
noncooperative equilibrium is concerned.

In the following sections, we set out the general model of competition, when the
players are boats, and we get the result that noncooperative catches exceed efficient
ones, and even more so if there exist an effective restriction on maximum allowable
catches. Subsequently, we set forth the problems involved if instead of considering
the vessels as competitors, we regard countries or different groups of vessels taken
by nationality, obtaining the result that the functions of national or aggregated
catches undervalues the total number of catches carried out by the vessels of the
country, to the effect that the national quotas laid down under an agreement differ
from the efficient quotas. Finally, we put forward a concrete model and simulate the
results for different values of real costs, as well as the rates of efficiency that may
characterize the competitors, and compare the conclusions reached.

The Noncooperative Equilibrium

Let us suppose that there exist n vessels, or alternatively, n firms. Each of these aims
to maximize its profit given a function of catches

max Bi = phi – wEi (1)

s.t. h f E X hi i i ji j= ≠∑( ; – )

i, j = 1, 2, …, n

where p is the competitive price of the fish, w is the average competitive price of the
inputs, Ei is the fishing effort of i (number of workers, number of boats, etc.), hi are
the catches of i, X is the stock of fish, and Σi≠jhj are the catches of the competing
firms.

Let us suppose that the catches of firm i increase with the fishing effort of i, in
the same way as the difference between the stock of fish and the catches of rival
firms. On the other hand, if X = 0 or Ei = 0, then hi = 0. Let us also suppose that hi is
concave in its two arguments. It can be seen that the profit of i decreases with the
catches of rivals, at an increasing rate. In this way, the catches of rival firms exert a
negative effect on the profits of firm i. Besides this, i’s profits, Bi, vary drastically
when its rivals’ catches are great in relation to the stock, X.

Obtaining Li as a function of hi and X – Σi≠jhj, the profit of firm i

ph wg h X hi i i ji j– ( ; – )≠∑ (2)

Let us suppose that Bi is strictly concave in hi. In this case, in order that catches
hi should be a maximum of i’s profits, it is a necessary and sufficient condition that
the marginal profit of firm i should be equal to zero. From this condition we can ob-

2 See Friedman (1991) and Shubik (1959).
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tain the reaction function of firm i as a function of the rival firms’ catches

∂
∂

= ⇒ = ( )≠∑
B

h
h R hi

i
i i ji j0 (3)

In the same way we would obtain the reaction functions of the n – 1 remaining
firms. Solving the system of n equations formed by the reaction functions of the
firms, we would obtain the Nash equilibrium or noncooperative equilibrium in this
model

( ; ; ; )* * *h h hn1 2 …

Under the considered assumptions concerning the profit functions, a unique
equilibrium exists.3 On the other hand, the equilibrium would give each firm an in-
dividual profit, Bi

*.

The Cooperative Solution

Let us now suppose the existence of a social planner that maximizes the sum of the
individual profits weighted by a determined constant

max α i ii

n B=∑ 1 (4)

s.t. α ii

n ==∑ 11

Solving the problem we obtain the efficient combinations of catches
( ′ ′ … ′h h hn1 2, , , ), corresponding to the limit of possibilities of profits, varying the
value of the weights of the firms.

Comparing the first order conditions of the problems of individual and social
maximization, we can conclude that the Nash noncooperative equilibrium catches
are excessive, as shown in figure 1, where Bi is the profit of firm i as a function of
its catches hi, and of the catches of its rivals, hj in the figure. Thus, given a number
of catches, hj, the individual maximization by the firm would lead to a number of
catches hi

*, whereas the planner would dictate a number of catches ′hi .
In this way, in the noncooperative equilibrium, firms are not aware of the reper-

cussions that their catches have on their rivals’ profits. If such externalities were in-
ternalized through the joint maximization of profits, as done by the social planner,
firms could place themselves at the limit of profit possibilities, and could obtain in-
dividual profits superior to those in the Nash equilibrium. This situation is shown in
figure 2, for the case of two firms, where ( ′Bi ; ′Bj ) are the profits of i, j in some effi-
cient outcome ( ′hi ; ′hj ).

In the model previously specified, the planner does not take into account the
biological equilibrium. However, the stock of fish in a period t would be

X X h F Xt t i
t

i

n= +=∑– – ( )1 1    t = 1, 2, … (5)

that is, Xt would coincide with the previous period’s stock plus the natural growth of
the stock F(X), minus the total of catches carried out by firms in t.

3 See Friedman (1983), Friedman (1991), and Shapiro (1989).
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Figure 1.  Noncooperative and Cooperative Equilibria

Figure 2.  Firms’ Profits in Efficient and Inefficient Outcomes
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In a biological equilibrium, the stock of fish is invariable throughout time, that
is, Xt = Xt–1 and therefore

F X hi
t

i

n( ) = =∑ 1     t = 1, 2, … (6)

This restriction should be incorporated into the problem to be solved by the
planner if it is logically desired that the stock of fish does not diminish with time.

On the other hand, and as reflected in figure 2, not all the efficient combinations
of catches imply a gain in welfare for all the firms simultaneously, with regard to
the profits obtained in the Nash equilibrium. Therefore, in order to reach a coopera-
tive agreement it could be necessary, as a starting point in negotiations, to obtain in-
dividual profits superior to the corresponding ones in the Nash equilibrium: to ob-
tain an individually rational solution for all the firms. Accepting this fact, the plan-
ner should incorporate in the problem n restrictions of the type

B Bi i≥ *

Quantity Bi being the profits of firm i corresponding to efficient catches.
In this case, it can be assured that the individual catches, the solution to the

planner’s problem, would be even less than the catches corresponding to the prob-
lem of the planner without restrictions. That is to say, the marginal profit of firm i in
the restricted optimum would be positive and greater than the marginal profit in the
optimum without restrictions (as represented in figure 3), where ′′hi  is the catch of
firm i, the solution to the planner’s problem with restrictions.

Once we have solved the problem of the planner, we will have at our disposal,
for different combinations of weights, the individual efficient catches ( ′′h1 , ′′h2 , ...,

′′hn ). If the vessels belong to a group m of countries, the international distribution of
quotas resulting from an agreement is obvious: each country could benefit from a
quota equal to the sum of the efficient catches of its vessels. Apart from this, the
problem of the redistribution of the quota among the national firms is already
solved.

Competition and Cooperation When Competitors are Countries

If the competition is between m countries, the logical method would be to start from
national functions of catches like the following

h f E X hi i i j
j i

m= ≠∑( ; – )     i, j = 1, 2, …, m (7)

where the superscripts refer to the country in question. Thus, hi would be the total
number of catches of country i; the first argument of the function would be the total
of the variable factors used in country i; the second argument of the function would
be the total stock of fish minus the catches of rival countries.

The step from considering firms as competitors, to considering their countries
of origin as being so, presents a series of problems difficult to solve.

The function of catches of each country depends on the stock of fish minus the
total number of catches of the other countries. In this way, it is supposed that the
vessels of the same country do not compete among themselves, but rather would
have a reaction function not on rival vessels in general, but only on those of other
countries. This would mean that we suppose that each vessel of one country calcu-
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lates the catches of the other vessels of that country as zero, which is quite doubtful,
especially if the dimension of the rest of the national vessels is not insignificant, or
if the grounds are small in area.

The function of national catches also depends on the variable factors used in the
country, Ei. However if all vessels had the same technology, if the running costs of the
firms are strictly convex, or, what comes to the same thing, if for each firm there are
decreasing marginal returns on the variable factor, then the first argument of f i should be
different from the sum of the variable factor used by all the firms in the country.

For example, let us say that there are two vessels in country j, each with a func-
tion of catches:

h E X hj
i
j i

i j

m
1

1 2 1 2= ≠∑( ) ( – )/ / (8)

where the unrealistic assumption that each vessel only competes with foreign firms
has been incorporated. Then,

h h h E X h E X hj j j j i
i j

m j i
i j

m
1 2 1

1 2 1 2
2

1 2 1 2= = = +≠ ≠∑ ∑( ) ( – ) ( ) ( – )/ / / / (9)

= + ][ > +≠ ≠∑ ∑( – ) ( ) ( ) ( ) ( – )/ / / / /X h E E E E X hi
i j

m j j j j i
i j

m1 2
1

1 2
2

1 2
1 2

1 2 1 2

The national catches are greater than those established by the “aggregated”
function.

On the other hand, if each vessel presents constant marginal returns on the vari-
able factor, the first argument of f i would be, in fact, the sum of the variable factors
used by all the vessels of the country, although in this case each firm’s problem
would not have a defined solution.

Therefore, if the planner maximizes the weighted sum of the profits of the m coun-

Figure 3.  Solution to the Planner’s Problem with Restrictions
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tries, based on functions of national catches as previously designed, in general the solu-
tions (h1, h2, …, hm) will differ from the first-best solutions ( Σhi

1″ , Σhi
2″ , …, Σhi

m″).

Simulation of the Model

In this section we shall set forth concrete functional forms for the agents’ catches,
and calculate the Nash equilibrium, h*, as well as the ideal points for each firm or
extremes of the core, that is to say, those combinations of efficient catches which pro-
vide each firm with the maximum possible profit if its rivals maintain their Nash profits.
We will also calculate the minimum combination of quantities which will provide each
firm with the noncooperative profit, h–. In this way, the dimension of the area of coop-
eration is quantified and an interval of maximum allowable catches which respects a
biological equilibrium may be obtained, while maintaining welfare profits for all
firms. In the case of two firms, the area of cooperation is shown in figure 4.

The curves described in figure 4 are isoprofit curves for the firms. Thus, the
curve marked B1

*  represents all the combinations of catches, (h1, h2), which provide
the firm 1 with the Nash, or noncooperative profit. The curve marked ′B1  shows all the
combinations of catches, (h1, h2), which provide firm 1 a ′B1  profit. On the other
hand, with the functions we will use, BG

1  > ′B1  > B1
*. For firm 2, we use BF

2  > ′B2  > B2
*.

Point h* represents the Nash equilibrium, where each firm receives a profit, Bi
*.

Point h′  is an efficient combination of catches, as would be that which, for example,
maximizes the sum of the profits of both firms, each obtaining ′Bi . Point F is the ideal
point for firm 2—it is the combination of catches which offers firm 1 the Nash profit,
Bi

*, and firm 2 the maximum possible profit compatible with an efficient situation, BF
2 .

Point G is the ideal point for firm 1. The combination of catches h– marks the lowest
extreme of the lens, and in this case, the firms obtain the noncooperative profit.

Let A+ be the sum of catches taken by the firms in h*, and A– be the sum of

Figure 4.  Two Firms Cooperation Area
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4 w is the average competitive price of factors included under the fishing effort variable. For simplicity,
we will use the word “wage” to name w.

catches in h–. If the allowable maximum number of catches exceeds A+ , the firms
may reach either the Nash equilibrium or any individually rational efficient solution
either belonging to the core like h′ , F, G, or some other combination of catches
within the lens. If the allowable maximum number of catches is inferior to A+ and
superior to A–, the firms still have incentives to cooperate if they agree to stay in the
interior of the lens. If the maximum number of allowable number of catches is infe-
rior to A–, there are no incentives to cooperate, let alone accept restrictions since the
profits obtained in this case are inferior to those of the noncooperative equilibrium.

We propose to quantify figure 4 in the following pages.
Following the specified model, let there be n firms competing in grounds with X

stock of fish. Let us suppose that the function of catches for vessel i is the following

h a E X hi i i ji j

n= ≠∑1 2 1 2/ /( – )    ai > 0 (10)

The catches for each boat depend positively on the fishing effort, Ei, as well as
the stock of fish available. In addition, the function of catches is concave in both its
arguments.

Parameter ai differentiates the boats as to their efficiency in catches, so that if ai

is greater than aj, firm i makes greater catches than firm j for the same amount of
variable factors and stock. In this way, the parameter ai reflects the possible differ-
entiation of technology among firms.

The function of catches used in the simulation is relatively simple and includes
those desirable assumptions which ensure the existence and uniqueness of equilib-
rium. However, the calculation, especially of efficient allocations, is very difficult,
so we have simplified the simulation using only two firms, 1 and 2, with parameters
of efficiency a1 and a2, respectively.

In the absence of cooperation, each firm maximizes its profits, given the catches
of the rival firm. The reaction functions and the equilibrium quantities have the fol-
lowing expressions

h
a p X h

wi
i j=
2

2

( – )
(11)

h
a pX w a p

w a a p
i ji

i j

i j

*
( – )

–
, , ,= =

2 2

2 2 2 2

2

4
1 2    (12)

For strictly positive values of ai, p, and X, the quantities of equilibrium will be
positive if

a p w ii
2 2 1 2< =      , (13)

These are conditions which we shall impose in the simulation and which also guar-
antee the stability of the Nash equilibrium.

It can be seen as in symmetric cases, where a1 = a2, the individual catches in
equilibrium diminish with the increase of real wage.4 On the other hand, given a
level of prices, the individual noncooperative profits also diminish as w/p increases.
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Besides this, given a wage and a price level, the Nash profits and the individual
catches in equilibrium increase with the parameter of efficiency of the firms. In the
asymmetric cases, these results are only obtained by determined values of the con-
sidered variables.

Furthermore, in equilibrium the catches and profits of each vessel depend posi-
tively on its own efficiency parameter and negatively on that of the rival vessel. On
the other hand, the asymmetry of catches and profits of the vessels will be greater
the greater the difference between ai and aj. On the contrary, if ai = aj, the two ves-
sels will have equal catches and profits in equilibrium. In figure 5, the reaction func-
tions and the Nash equilibrium for the case ai < aj are shown.

Let us examine in some detail the results of the simulation.
We have observed two symmetric cases, (a1 = 1, a2 = 1), (a1 = 2, a2 = 2) and

three asymmetric cases: (a1 = 0.5, a2 = 1.5), (a1 = 0.5, a2 = 2), (a1 = 0.5, a2 = 3), but
for simplicity, we will only show one symmetric case and one asymmetric case. All
the values of catches appear in function of the stock, X. On the other hand, the
catches depend on the real wage, w/p, but not on the value of the wage and the
prices separately. For this reason, the real wage is used as a variable in the simula-
tion. The profits depend on the values reached by w, y, and p, although the foreseen
profit increase only depends on the real wage.

In table 1 it is supposed that a1 = a2 = 1 and for different values of the real
wage, w/p, the Nash equilibrium, h*, is obtained, as well as the ideal points for the
firms, points F and G. In the symmetric cases, point F, or the efficient point where
firm 2 has the maximum profit since firm 1 reaches the noncooperative profit, is ex-
actly the opposite of point G, that is, hF

1  = hG
2 , hF

2  = hG
1 . The lowest extreme of the

lens, h–, is also obtained; that is the combinations of catches that, without being an
equilibrium, gives each firm the Nash profit. The gain in welfare is also quantified,
as firm 1 goes from point F, with B1

*  profit, to point G at percentage terms, which is
identical to the gain of firm 2 as it goes from G to F.

Figure 5.  Noncooperation Catches in an Asymmetric Case
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In table 2, the values of weights of firm 1, which should be included in the Wel-
fare Function of the planner to reach points F and G, alternatively, are related.

In table 3, the levels of maximum allowable catches which permit any gain in
welfare appear. Thus, if the maximum allowable catches exceed A+, any individu-
ally rational solution, efficient or not, may be reached in a cooperative way. If the
allowable catches are inferior to A–, cooperation is not possible.

It can be observed how, given a value of a1 = a2, the greater w/p, the smaller hi
*

and hi
– . The coordinates of points F and G are also smaller. In this way, we could

say that the zone of cooperation moves toward the origin of coordinates. Logically,
both A+ and A–, and also the percentage difference between them, are smaller the
greater the real wage.

On the other hand, the distance5 between points F and G diminishes as w/p in-
creases, that is to say, the lens narrows. The distance between points h* and h– is
also reduced when the real wage is greater (the lens shortens). In this way, the di-
mensions of area of cooperation are reduced as the real wage increases.

As the welfare gains of the firms reach their ideal point, they are reduced as w/p
increases (these gains are recorded in the last column of table 1). Therefore, the
Nash profits of the firms decrease as the real wage increases, so that the difference
between noncooperative profit and profit corresponding to the ideal point of each
firm is reduced; that is, the combination of noncooperative profits is nearer and
nearer to the limit of profit possibilities. Therefore it can be said that the incentives
for the firms to cooperate depend negatively on real wage.

Moreover, given a real wage, the greater the efficiency parameter of the firms,
the greater are h* and h– and also F and G (the lens moves in the opposite direction
to the origin of the coordinates). The distance between h* and h–, and between F
and G, also increases (the lens lengthens and widens, the dimension of the area of
cooperation is greater).

The limits of the interval of total catches which would permit any cooperation
gain, A+ and A–, increase with the efficiency parameter. So, for example, at a real
wage 3, with efficiency parameter equal to 1, and the permitted catches equal to
28.58% of X, the firms could obtain cooperative gains simultaneously. However, if
the parameter of efficiency is 2, the total number of catches to ensure any coopera-
tive gain would have to be 80.00% of X.

Finally we may conclude that the greater the efficiency parameter of the firms,
the farther from the profit possibilities limit are the allocations of noncooperative

Table 1
Upper and Lower Points of the Lens, Ideal Points and Gains from Cooperation  (a1 = a2 = 1)

(BG
1  – B1

*)/B1
* • 100

w/p hi
* (hG

1 ; hG
2 ) = (hF

2 ; hF
1 ) hi

– = (BF
2  – B2

*)/B2
* • 100

1 0.3333X (0.3068X; 0.2788X) 0.2500X 5.7734
2 0.2000X (0.1882X; 0.1784X) 0.1667X 1.9710
3 0.1429X (0.1363X; 0.1314X) 0.1250X 0.9893
5 0.0909X (0.0880X; 0.0861X) 0.0833X 0.3959
10 0.0476X (0.0468X; 0.0462X) 0.0455X 0.1075
100 0.004975X (0.004965X; 0.00496X) 0.004950X 0.0011

5 The distance between two points with coordinates (x1; x2) and (y1; y2) has the following expression d =
( – ) ( – )x y x y1 1

2
2 2

2+ .
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profit, so that the incentives for the two firms to cooperate increase with the param-
eter of efficiency. In this way, the Nash profits grow with the firms’ productivity, so
that the difference between the noncooperative profit and the profit which corre-
sponds to the ideal point of each firm should increase with the parameter of effi-
ciency.

Tables 4 to 7 show the results obtained for the asymmetric case. It can be
seen that, given a1 and a2, the greater w/p the less the distance between h* and
h– (the lens shortens). Also, the differences between h1

*  and h2
* , and h1

–  and h2
–

are reduced, with a tendency towards a greater symmetry in the allocations
which provide the noncooperative profits. Moreover, the distance between F
and G also diminishes, so that the lens narrows. Besides this, there is again a
tendency towards a smaller difference between individual catches correspond-
ing to each ideal point.

As to the maximum gains in welfare attainable by the firms if they decide
to cooperate, the gains of firm 2 (the more efficient), when situated in its ideal
point, are reduced in general as w/p increases. The Nash profit of firm 2 decreases in
w, given a price level p, for which the last column of table 5 shows how, as w/p in-
creases, the allocation of noncooperative profits is nearer and nearer to the alloca-
tion of profits corresponding to the ideal point of firm 2. In this way, the incentives
for firm 2 to cooperate diminish. In the case of firm 1, given p and with the increase
of w, its noncooperative profits may increase, or on the contrary, descend, so that
the incentives for its cooperation do not have a clear relation with real wage.

Table 3
Total Allowable Catches, A+ and A–  (a1 = a2 = 1)

w/p 1 2 3 5 10 100

A+ 0.6666X 0.4000X 0.2858X 0.1818X 0.0952X 0.00995X
A– 0.5000X 0.3334X 0.2500X 0.1666X 0.0910X 0.0099X

Table 2
Weights of Firm 1 in F and G  (a1 = a2 =1)

w/p 1 2 3 5 10 100

α 1
F 0.4802 0.4648 0.4582 0.4523 0.4475 0.4430

α 1
G 0.5198 0.5352 0.5418 0.5477 0.5525 0.5570

Table 4
Upper and Lower Points of the Lens  (a1 = 0.5, a2 = 1.5)

w/p ( h1
*; h2

*) ( h1
–, h2

– )

2 (0.0283X; 0.5466X) (0.0220X; 0.5059X)
3 (0.0264X; 0.3651X) (0.0223X; 0.3429X)
5 (0.0195X; 0.2206X) (0.0176X; 0.2113X)
10 (0.0111X; 0.1113X) (0.0105X; 0.1086X)
80 (0.00154X; 0.01403X) (0.001532X; 0.014X)
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The conclusions drawn from the symmetric cases about A+ and A– are the
same.

As to the weights of firms in their ideal points, we observe that the weights of
firm 1 (the less productive), both in F or G, increase with the real wage. In this way,
the importance that the planner must give this firm is greater and greater if a solu-
tion in the core is desired. On the contrary, the weights corresponding to firm 2 (or
the more efficient), being situated in the ideal point F, or alternatively in G, decrease
with the real wage. Furthermore, notice how the weight of firm 1 always exceeds
0.5, while those of firm 2 never reach this value, so the efficient solutions which
would result in identical weights for the firms do not belong to the core.

Moreover, given w/p, the greater a2, the greater are the equilibrium catches of
firm 2, the same as A+ and A–. Also it can be shown that, given w/p, the greater a2

the higher is the noncooperative profit of firm 2 and the lower the profit in equilib-
rium of firm 1. The welfare gains of firm 1 increase with a2, but the gains of firm 2
increase in some cases and decrease in others. The incentives to cooperate, mea-
sured as the difference between the Nash profit and the ideal profit, do not have a
clear connection with the differences of efficiency between firms.

Table 5
Ideal Points and Gains from Cooperation  (a1 = 0.5, a2 = 1.5)

(BG
1  – B1

*)/B1
* • 100

w/p ( hF
1 ; hF

2 ) ( hG
1 ; hG

2 ) = (BF
2  – B2

*)/B2
* • 100

2 (0.0241X; 0.5318X) (0.0261X; 0.5216X) 3.809 0.342
3 (0.0237X; 0.3567X) (0.0249X; 0.3512X) 1.569 0.212
5 (0.0183X; 0.2170X) (0.0188X; 0.2148X) 0.550 0.095
10 (0.0107X; 0.1102X) (0.0109X; 0.1100X) 0.137 0.028
80 (0.001534X; 0.014023X) (0.001536X; 0.014013X) 0.013 0.001

Table 6
Weights of Firm 1 in F and G  (a1 = 0.5, a2 = 1.5)

w/p 2 3 5 10 80

α 1
F 0.5974 0.6098 0.6163 0.6199 0.6226

α 1
G 0.6677 0.6902 0.7049 0.7147 0.7229

Table 7
Total Allowable Catches, A+ and A–  (a1 = 0.5, a2 = 1.5)

w/p 2 3 5 10 80

A+ 0.5749X 0.3915X 0.2401X 0.1224X 0.01557X
A– 0.5279X 0.3652X 0.2289X 0.1191X 0.01553X
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Conclusion

The principal aim of this paper has been to quantify the area of cooperation and
the welfare gains to be obtained by firms if they decide to cooperate, reducing
their catches with the object of individually increasing their profits. To this end,
we have used determined functions of catches and we have analyzed two cases:
one symmetrical and one asymmetrical. The results depend, obviously, on the
functions used, and this should be taken into account when making any norma-
tive consideration.

As was to be expected, the results in the symmetrical case showed greater
consistency than in the asymmetrical one. Therefore, we have been able to ob-
serve how, in the symmetrical case, the lower the real wage, the greater the incen-
tive for firms to cooperate. Although in the symmetrical case, the minimum number
of total catches A+, which guarantees any individually rational efficient solution,
could be very high. What is more, the greater the firms’ productivity, the greater the
incentives to cooperate, but again in this case, A+ may be very high. We can then
conclude that there is a negative relation between the incentives for firms to coop-
erate and the level of the total number of catches which would allow any indi-
vidually rational efficient allocation. Therefore, if the limitations on catches are
great, cooperation may lack adequate incentives for firms.

In the asymmetrical case, our results indicate that the incentives to cooper-
ate for the firm with most catches are fewer, when the real wage is greater. In
all the cases we examined, however, the maximum gains in cooperation for the
most productive firm are very low (never reaching 0.5%) because the asymme-
try of catches situates such a firm very near the limit of possible profits. In the
asymmetrical cases, therefore, and the greater the asymmetry among the firms,
it could be very difficult to establish any kind of agreement, especially if it is
costly.

Summing up, the incentives for firms to cooperate may be very small, espe-
cially if real wage is high. If, besides this, the restrictions on catches are heavy,
there could be no incentive to cooperate. Thus, to reach an agreement to limit
catches would require, in a large number of situations, another type of argument
to incorporate in the objective functions of the agents implied.
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