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Abstract  Structural models can assess the effectiveness of fishery management
prospectively and retrospectively. However, when only fishery-dependent data
are available, structural econometric models are highly nonlinear in the param-
eters, and maximum likelihood and other extremum-based estimators can fail to
converge. As a solution to these estimation challenges, we adapt Bayesian
econometric methods to estimate a dynamic structural model of marine reserve
formation. Using simulated data, we find that our approach is able to recover
structural biological and economic parameters that classical estimation proce-
dures fail to recover. We apply the approach to real data from the Gulf of
Mexico reef-fish fishery. We test the effects of the Steamboat Lumps Marine Re-
serve on population growth and catchability for gag, a species of grouper. We
find that after four years, the reserve has neither produced statistically signifi-
cant losses in sustainable yield nor statistically significant gains in biological
production.
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Markov Chain Monte Carlo.

JEL Classification Codes  C11, Q22.

Introduction

There are precious few retrospective analyses of the fishery benefits of marine re-
serves. This fact has raised concerns amongst fisheries scientists (Hilborn et al.
2004; Sale et al. 2005). The policy reality is that reserves continue to be established
in spite of gaps in our scientific knowledge, and they are supported by conceptual
models in fisheries science that predict harvest gains (or only modest harvest losses)
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when large areas are closed to fishing (Polacheck 1990; Bohnsack 1993; Walters
2000). However, most economic models articulate a limited set of bioeconomic con-
ditions under which reserves would enhance fisheries (Holland and Brazee 1996;
Sanchirico and Wilen 2001; Anderson 2002; Smith 2004), conditions that appear
even more limited in models that incorporate the harvest sector’s behavior (Smith
and Wilen 2003, 2004; Dalton and Ralston 2004).1

Do actual marine reserves stimulate fisheries productivity? As more reserves are
formed throughout the world, how might we answer this question in the future? In
this paper, we take steps toward filling this knowledge gap by adapting new meth-
ods from Bayesian econometrics to estimate a dynamic structural model of the
impacts of marine reserves on fishery outcomes. As a starting place, our outcome of
interest is a change in the sustainable yield of the fishery, which necessarily in-
volves a tradeoff of lost fishing area with a potential increase in biological
productivity. We use both simulated data and real data from the Gulf of Mexico reef
fish fishery, and we explicitly test hypotheses about the effects of marine reserves.

To evaluate the effectiveness of existing marine reserves retrospectively, there
are two statistical approaches available: descriptive and structural. The descriptive
approach uncovers structural breaks and trend changes in the bioeconomic system
by examining the signs of particular parameters. In previous work, we estimated de-
scriptive panel models of marine reserves in the Gulf of Mexico that approached the
problem from the perspective of program evaluation (Smith, Zhang, and Coleman
2006a). This allowed us to incorporate a large number of regressors, seasonal ef-
fects, area-specific shifters and trends, and vessel-specific fixed effects. A limitation
of this approach, however, is that it can only tell us what has happened and has no
ability to forecast the future effects of keeping a policy in place. For a bioeconomic
system, dynamics may unfold for decades beyond the sample period. Thus, the de-
scriptive model approach may leave one with an incomplete picture of the long-run
treatment effects from a policy intervention.

Compared to a descriptive approach, structural modeling has some advantages.
Using simulated data, we found that a descriptive model can sign policy treatment
effects correctly but cannot estimate the magnitudes consistently due to the latency
of the state variable; i.e., the fish stock (Smith, Zhang, and Coleman 2005). In con-
trast, a structural model accounts for the latent state variable and can estimate
unknown biological and economic parameters consistently—as well as the direct
structural impact of a policy—with non-experimental data. As a result, the same
model can be used to analyze the effects of an existing policy and forecast the future
effects of that policy as dynamics continue to unfold.

The advantages of a dynamic structural model come at a cost. In a dynamic
bioeconomic system, elements are generally related nonlinearly, imposing a heavy
burden on the estimation process. Models become highly nonlinear in the param-
eters when the analyst uses fishery-dependent data to resolve both economic and
biological parameters of the system. Because the fish stock is not directly observed,
backwards recursion is necessary to generate an estimation equation in terms of ob-
servable quantities and parameters. Such complexity may account for the relatively
small number of empirical bioeconomic papers in the fisheries literature that are dy-
namic and simultaneously estimate biological and economic parameters (Wilen

1 Some of the more favorable bioeconomic predictions about marine reserves explicitly account for ex-
istence values (e.g., Beattie et al. 2002), or explicitly model reserves as a hedge under uncertainty (e.g.,
Conrad 1999; Grafton, Kompas, and Lindenmayer 2005). We do not model these values in our analysis
but note that fishery costs of a policy could be offset by non-fishery conservation benefits.
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1976; Homans and Wilen 1997).2 This complexity may also account for the model-
ing simplifications that are typically made; e.g., a Schaefer production function.

Bayesian techniques provide a promising new direction for estimating nonlinear
dynamic structural models for several reasons. First, the Markov Chain Monte Carlo
(MCMC) method simulates, but does not maximize, the likelihood function
(Chernozhukov and Hong 2003), an advantage over traditional methods when the
objective function is not well behaved. Thus, Bayesian estimation approaches are
capable of estimating some models for which extremum-based estimators fail to
converge. Second, Bayesian methods have a natural way of incorporating prior in-
formation on the parameters (Gelman et al. 1995). This is particularly important for
incorporating fishery-independent biological information (Hilborn and Mangel
1997), and can be useful for general bounds on the parameter space, such as non-
negativity constraints. Third, there may be computational gains from generalizing a
Bayesian model to account for economic or biological heterogeneity through ran-
dom parameters in comparison to introducing simulation-based estimation to an
already highly nonlinear maximum likelihood problem.3

We estimate two Bayesian dynamic structural models with logistic growth. The
first model uses simulated data for which we know all of the true biological and
economic parameters, as well as the true policy impact of establishing a marine re-
serve. The data assume that there is a single representative fishing vessel. We find
that the Bayesian model using MCMC converges near the true parameter values in
the simulated data exercise, and this exercise serves as a proof of concept. In the
second model, we estimate biological and economic parameters with real data from
the Gulf of Mexico reef fish fishery for which we have more than ten years of log-
book records. Two marine reserves were established in-sample, so, in principle, we
can examine the structural impact on the system. We find that the MCMC approach
estimates parameter values for one of the reserves but fails to converge for the other.
More specifically, we find in one case that the marine reserve did not reduce fishing
area enough to have a net negative effect on catchability. There is some indication
that the reserve stimulated biological production of the fishery, but the result is not
statistically significant.

In the next section, we describe the Gulf of Mexico reef-fish fishery and the bi-
ology of the gag. We then develop a discrete-time dynamic structural model of
marine reserve formation that embeds a reserve within a larger, observable harvest
area. The following section summarizes our empirical results with both simulated
and real data. We then conclude with a discussion of the limitations of our approach
and the potential applicability to other fisheries.

The Gulf of Mexico Reef Fish Fishery and Gag

The Gulf of Mexico reef fish complex is extremely diverse (with 62 commercially
harvested reef species), and involves a wide variety of gear types, thus presenting
managers with substantial challenges. The most common gear types are hook and
line (including handlines, electric bandit reels, buoy gear, and conventional rod and

2 An alternative approach is to decouple the biological and economic parameters, e.g., Bjorndal and
Conrad (1987). However, this approach assumes a stable production function and stable stock dynamics.
We are interested in testing whether reserves affect these relationships and thus cannot decouple the bi-
ology and economic model components.
3 This point is somewhat speculative, but there are results that suggest MCMC estimation estimates
faster for some classes of discrete choice models with heterogeneity. See Train (2003).
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reel), bottom long line, and traps (although traps are being phased out completely in
the next couple of years). Existing management includes limited entry (there are
currently approximately 1,200 federal commercial Gulf of Mexico reef fish permit
holders), size limits, trip limits, season closures, quota management, and more re-
cently, marine reserves. Only a fraction of permitted vessels regularly engage in
commercial reef fish fishing. For example, 25% of vessels accounted for 75% of
fishing trips over the 1993-2002 period.

Economically important species such as gag (Mycteroperca microlepis), scamp
(M. phenax), and red grouper (Epinephenlus morio) could gain some long-run bio-
logical benefits from marine reserves. These species are long-lived, slow-growing
protogynous hermaphrodites (Coleman et al. 2000). Protogynous hermaphrodites
mature first as females and then transform to males later in life. Because fishing
tends to select for larger individuals, it tends to select for males. This selection re-
duces male-to-female sex ratios (Coleman, Koenig, and Collins 1996; McGovern et
al. 1998), and some traditional fisheries management tools, particularly size limits, may
exacerbate this effect. For Gulf of Mexico gag, the percentage of males from the 1970s
to the 1990s has declined from 17% to 2% (Coleman et al. 2000). The same decline
does not appear in red groupers, which do not aggregate to spawn (Coleman, Koenig,
and Collins 1996). Thus, we focus on gag in this paper. An empirical examination of
reserves for the gag fishery is particularly timely, since recent life history modeling
of gag population dynamics suggests that, among available management alterna-
tives, closing spawning sites to fishing ranks highest for sex ratio recovery and close
to the top for overall growth rate of the population (Heppell et al. 2006).

The two marine reserves in the Gulf of Mexico that we study—Steamboat
Lumps Marine Reserve and Madison-Swanson Marine Reserve—went into effect in
June 2000 to address concerns about this skewed sex ratio. They were announced to
the fishing community one year before being established. They were authorized as
experimental reserves with a sunset of four years, and were recently reauthorized for
an additional six years, based exclusively on biological data within and outside of
each reserve and anecdotal information about the fishery outside each reserve. Sys-
tematic evaluations of these reserves as management tools are only beginning to
emerge (Smith, Zhang, and Coleman 2006a), and understanding their performance
will be critical for future reauthorizations.

The reserves are located in two of the thirteen distinct National Marine Fisheries
Service (NMFS) fisheries statistical zones in the Gulf of Mexico (figure 1). These two
zones represent the heart of the gag fishery in the Gulf of Mexico. Steamboat Lumps is
located in zone 6, comprising 104 NM2 of this 8,100 NM2 zone, whereas Madison-
Swanson is located in zone 8, comprising 115 square nautical miles (NM2) of this 9,570
NM2 zone. Each reserve captures 1.3 and 1.2%, respectively, of the total area in the
NMFS statistical zone within which they occur. There is, thus, substantial fishable area
left open within each of the statistical zones, as well as elsewhere on the West Florida
Shelf. However, percentage area is misleading in a fisheries context because not all
ocean bottom is alike. The reserves in question are located in deep water along the conti-
nental shelf edge and contain distinct patch reef formations where reef fish aggregate in
general and many grouper species aggregate to spawn (Koenig et al. 2000).

There is not a one-to-one relationship between NMFS fishing zones and what
we might reasonably deem a patch from a bioeconomic perspective. The spatial
resolution of the logbook data is extremely coarse, which is typical, and the NMFS
fishing zones are spatial aggregates of the underlying biological and economic pro-
cesses. The empirical challenge is to use this coarse information to infer how policy
changes affect fishery outcomes. In our model (next section), we exploit the fact
that gag have high site fidelity. As such, the effects of a reserve are likely to remain
within the same NMFS fishing zone that contains the reserve.
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Complete fishing logbook data exist for all reef species in the Gulf of Mexico
from 1993 through 2004. Thus, there are substantial data before and after the policy
change to assess reserve performance. We cut the data after October 2004 because
some logbook records for 2004 may not have been submitted or processed in the
most recent database that we received in February 2005. This leaves us with 142
months of data.

A Discrete-Time Model of Marine Reserve Formation

In this section, we develop a stylized dynamic structural model to understand how a
reserve might appear in a fishery that extends over a large contiguous region. While
some might argue that this exercise attempts to re-invent the wheel, the existing lit-
erature does not match the spatial scale of available data for doing ex post
assessment of marine reserves. Specifically, we do not directly observe data at the
scale of a bioeconomic patch. In many cases, a reserve will be formed within an ob-
servational unit that constitutes a much larger area than the reserve itself. In some
cases, we may only observe the entire fishery and will want to infer the reserve ef-
fect on the remaining open area in aggregate. These conditions motivate our
empirical model below. We begin with a discrete-time (t) lumped-parameter model
of the fish stock (X) and harvest (H) in each fishing zone (j):

Figure 1.  Gulf of Mexico Reef No-take Marine Reserves Established in June 2000
Source: Adapted from Smith, Zhang, and Coleman 2006a.
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The parameters r and K are the conventional intrinsic growth and carrying-ca-
pacity parameters. Z is an indicator variable that denotes when a reserve is in effect
such that:
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Thus, g1 scales intrinsic growth when a reserve is established somewhere within the
zone. The magnitude of g1 will be a function of the size of the reserve, the reserve
placement, and the connectivity of the reserve with areas outside the reserve. Our
model will be able to estimate g1 conditional on a particular reserve in place, but
will not provide a means of comparing g1’s across fisheries. As seen in figure 1, the
Steamboat Lumps and Madison-Swanson reserves are located within larger fishing
areas. The idea is that equation (1) forms a lumped-parameter description of how
biological returns would operate on the surrounding area of a reserve. That is, if a
reserve generates spillovers, it would appear to stimulate population growth in the
zone that contains the reserve. However, the reserve also closes off part of the fish-
ing area, which might affect the production function for fishermen. As such, harvest
is given by the following function of stock and effort (E):

H q E Xj t j t

Z

j t
j t

, , ,( ) .,= a g 2 (3)

In this form, q is a catchability coefficient, a is a Cobb-Douglas production param-
eter (the corresponding parameter on X is assumed to be one), and g2 scales the
production function to account for reduced fishing area when a reserve is in place.4

As above, the magnitude of g2 relates to a particular fishery. We expect that a larger
reserve will shrink g2, but given heterogeneity in habitat, this relationship is not nec-
essarily linear and limits comparisons across fisheries.5

In essence, this model allows the reserve to influence biomass in the larger zone
within which the reserve is embedded, but scaling the harvest function only permits
harvesting in the open portion of the zone. This setup is consistent with many log-
book data sets for which reserves do not correspond to an entire fishing zone.

As a first step, we take fishing effort as given and focus on estimating the bio-
logical and production parameters. This means that we do not present a fully
bioeconomic description of this system and focus only on positive analysis of the
biological system coupled with the economic production function. Quantifying these
features is necessary but not sufficient for normative analysis; to characterize the

4 It is also possible that the reserve could appear to increase catchability if reserve establishment pro-
vides spatial information to the fleet that was not common knowledge previously. This information gain
would likely apply to only a subset of fishing vessels. Our model is only able to test the net effect of
reduced fishing area and increased information.
5 An assumption throughout our structural modeling is that production relationships—both biological
and economic—are stable and only are influenced by the formation of a marine reserve. This means that
the effects of other policy instruments are assumed not to affect the analysis. At least for total allowable
catch (TAC), this assumption is innocuous in our case study. Though a TAC exists for all shallow-water
groupers, it does not bind in-sample.
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optimal policy one would need to measure prices, costs, and the discount rate as
well. So, our model should be viewed as a step towards an empirical Bayesian
bioeconomics.6 Our simplification allows us to derive and estimate a single-equation
model where the goal is to use data on catch and effort alone to infer the latent stock
dynamics. Through recursive substitution of (3) into (1), we are able to predict the
catch (H) in period t + 1 without knowing the stock (X):
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This model is equivalent to the original setup, and we will use this one as our data
generating process in both the simulated data analysis and the real data analysis. At
this stage, two comments are worth mentioning. First, even without the complication
of a reserve effect, estimating intrinsic growth and carrying capacity jointly in a sur-
plus production model is problematic because the data often do not span the
population range (Hilborn and Mangel 1997). Second, introducing marine reserves
puts sharp edges in this model. While this is what our theoretical model predicts, it
may create difficulties as a practical matter for estimation.

We add an error term (et) to the above model with the assumption that it is inde-
pendently and identically distributed normal with zero mean and variance (s2).
Variance is assumed to be known in the simulated data Monte Carlo experiment just
for simplicity and assumed to have a diffuse distribution in the analysis of real data.
The model to be estimated is thus:
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To simplify notation, we define the following:
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6 Smith, Zhang, and Coleman (2005) take the extra step of closing this model with a Vernon Smith
(1968) effort adjustment equation and derive some basic theoretical predictions based on a single-area
fishery.
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To reduce some of the nonlinearity in estimation, we re-parameterize the model as
follows:

k
r

qK
= . (10)

Then the model can be rewritten as:

H A rB qC kDt t t t t t= + + + + e . (11)

One favorable feature of the above model is that it is linear in the parameters r, q,
and k. This will allow us to use Gibbs sampling to estimate some of the parameters
and thus reduce some of the computational burden of our model.

Model Estimation and Results

In the simulated data analysis, we use 500 periods for one fishing zone. A reserve is
formed after 300 periods, so it is in place for the remaining 200 periods. For prior
information we make conservative assumptions but still impose more structure than
we will impose for the analysis of real data. Defining I as the indicator function, we
first assume I(q > 0) and I(k > 0). These are the least restrictive assumptions. Given
that groupers are slow growing, we restrict the possibilities for intrinsic growth I(0
< r < 1). Prior biological knowledge could be used in a similar fashion for other spe-
cies. We assume diminishing returns to fishing effort I(0 < a < 1). Finally, we
assume that the impact of the reserve on population growth is positive (growth is
scaled upward) but less than 100% I(1 < g1 < 2), and the reduction in fishing area is
no more than 50% I(0.5 < g2 < 1).

Given our parametric assumption on the error term, the unnormalized posterior
distribution for the parameters of the simulated data model is:
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The exact conditional posterior distributions of r, q, and k are given by:



Marine Reserves with Bayesian Estimation 129

r TN

B H A qC kD

B B

I r
t t t t t

t

T

t

t

T

t

t

T◊
- + +[ ]

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

< <=

= =

Â

Â Â
~

( )

, ( ),1

2

1

2

2

1

0 1
s

(13)

 q TN

C H A rB kD

C C

I q
t t t t t

t

T

t

t

T

t

t

T◊
- + +[ ]

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

>=

= =

Â

Â Â
~

( )

, ( ),1

2

1

2

2

1

0
s

(14)

and

k TN

D H A rB qC

D D

I k
t t t t t

t

T

t

t

T

t

t

T◊
- + +[ ]

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

>=

= =

Â

Â Â
~

( )

, ( ),1

2

1

2

2

1

0
s

(15)

where TN is a truncated normal distribution. TN is a continuous distribution that
both allows us to impose inequality constraints and permits estimation through
Gibbs sampling. We assume that the variance is known in the simulated data model,
an assumption that we will relax in the analysis of real data. In MCMC estimation,
the three parameters in equations (13) through (15) are estimated through Gibbs
sampling. Because it is difficult to find the exact conditional posterior distributions
of a, g1, and g2, these parameters are estimated through Metropolis-Hastings sam-
pling. Appendix A contains a brief overview of the estimation procedure, and further
details on Gibbs sampling and Metropolis-Hastings can be found in a textbook on
Bayesian statistics (e.g., Gelman et al. 1995).

The results of the simulated data exercise with 2,000,000 MCMC simulations
(discarding the first 1,000,000 as burn in) are summarized in table 1. Since the data
are simulated, we know the true value of each parameter. True values are reported in
the second column. The estimates are in the third column along with standard errors
in the fourth column. Qualitatively, none of the estimates are far from their true val-
ues, and none are statistically different. This suggests that the MCMC methods work
well on this difficult estimation problem, at least when the data set is ideal. Figure 2
shows the empirical distributions for each parameter.

Turning to the real data, we restrict the analysis to gag fishing. As discussed
above, gag is the species that the two marine reserves are most likely to enhance
through recovery of the sex ratio. There are 142 months of data, and we define effort
as total crew days at sea. Though not a perfect measure, this allows us to aggregate
across gear types for the gag fishery. Compared to the simulated data exercise, we
make even more conservative assumptions about priors. In particular, we now as-
sume diffuse priors for all parameters, and, with the exception of q—which we force
to be strictly positive—we do not force the other parameters to be within specified
ranges. In the analysis of real data, we also assume the prior distribution of s2 is dif-
fuse; that is, p(s2) μ  1/s. These more conservative assumptions change the
unnormalized posterior distribution for the parameters to:
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Table 1
Results of MCMC Estimation on Simulated Data

Parameter True Value Estimated Value St. Error

r 0.08 0.076 0.0091
q 0.005 0.0041 0.001
k 0.032 0.0315 0.0035
a 0.3 0.3006 0.0006
g1 1.2 1.2993 0.1078
g2 0.95 0.9498 0.0017

Note: Results are based on 2,000,000 simulations in the Markov Chain and discarding the first
1,000,000.

Figure 2.  Empirical Distributions of MCMC Simulations on Simulated Data
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with corresponding changes in equations (13) through (15). With our diffuse prior
assumption on the variance, the conditional posterior for the variance is:
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where IG is an inverted gamma distribution. IG is a standard parametric assumption
for variance in Bayesian estimation because it does not force one to incorporate
strong prior information but is easy to draw from in the MCMC routine.

We estimate the MCMC model on NMFS Zone 6 data to measure the effects of
the Steamboat Lumps Marine Reserve. Table 2 reports estimates and standard errors,
while figure 3 shows the empirical distributions for each parameter. All of the pa-
rameters are statistically significant; i.e. they are statistically different from zero.
The magnitudes of g1 and g2 are of greatest interest. Under the null hypothesis that
the marine reserve has no effect on population growth of gag, g1 = 1. Though the
mean of the distribution of g1 > 1, this result is not statistically significant (t = 0.70).
Thus, we fail to reject the hypothesis that the reserve has no effect on gag popula-
tion growth. Similarly, under the null hypothesis that the reserve does not have a net
effect on catchability, g2 = 1. Here again, we fail to reject this hypothesis (t = 0.21).
Table 2 also reports implied carrying capacity and maximum sustainable yields
(MSY) without and with the marine reserve. Here we take the point estimates as
given, and thus the MSY with the reserve is 35% higher.

Though the signs of the parameters are sensible, the intrinsic growth parameter
appears unrealistically high. After all, gag is known to be a relatively slow growing
fish. Similarly, the implied carrying capacity appears unrealistically low. Taken to-
gether, these parameters suggest that the fishery is taking a large portion of the total
biomass in each period, and the population is replenishing rapidly. These problems
illustrate a classic problem in empirically resolving logistic growth parameters from
fishery-dependent data (Polacheck, Hilborn, and Punt 1993; Hilborn and Mangel
1997). Data are often consistent with two possibilities: (i) a low carrying capacity
and high intrinsic growth rate, and (ii) a high carrying capacity and low intrinsic
growth rate. The two parameters are theoretically identified, and the analysis of the
simulated data illustrates this fact. Empirically, however, there may be insufficient

Table 2
MCMC Results for the Gag Fishery in NMFS Zone 6

Parameter Estimate St. Error

r 0.46083 0.15457
q 1.65410 0.54001
k 0.00012 0.00005
a 1.03811 0.10200
g1 1.35215 0.50517
g2 1.04560 0.19261
s2 8,579 1,059

Implied Carrying Capacity in Zone 6 (pounds) 234,774
Implied MSY for Zone 6 (no reserve) 27,048
Implied MSY for Zone 6 (with reserve) 36,573
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variation in the data to resolve both intrinsic growth and carrying capacity because
the analyst often observes data only from a narrow range of the net growth function
of a stock. With simulated data, one can ensure that observations are drawn from the
entire range of the net growth function.

We next attempt to estimate the model for NMFS Zone 8 to capture the effects
of the Madison-Swanson Marine Reserve. However, the model fails to converge. We
tried a number of approaches, including putting more restrictive priors on the model
based on the parameter estimates that we obtained for Zone 6. One possible explana-
tion is that the error term does not enter additively. The error entered additively by
construction in the simulated data analysis, but for the real data, it could enter in any
number of ways. Another possibility is simply that there are too many confounding
factors that are not controlled for in the estimation. This illustrates a fundamental
tension between structural and non-structural modeling. Non-structural approaches
often can accommodate a wide range of covariates without complicating the estima-
tion problem. In contrast, it is more problematic to build other shifters and trends
into the structural model.

Discussion

Many authors have used modeling to predict that marine reserves enhance popula-
tion growth of fish species, but demonstrating actual growth empirically in a
functioning marine reserve is the real currency of a reserve effect. Only a handful of

Figure 3.  Empirical Distributions of MCMC Simulations on Gulf of
Mexico Gag Fishery Data (NMFS Zone 6 Only)
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papers have conducted retrospective analyses of the empirical effects of marine re-
serves on fisheries (McClanahan and Kaunda-Arara 1995; Murawski et al. 2000;
Roberts et al. 2001; Russ and Alcala 1996; Russ et al. 2004; Smith, Zhang, and
Coleman 2006a). To our knowledge, no previous paper has done so with a structural
model. Our structural approach uses a simple surplus production model and adds
two features to account for the effects of marine reserves. Although our model can-
not measure the mechanisms through which reserves could contribute to fish
population growth, it serves as an important step towards assessing the net effect of
a policy change in a bioeconomic system. In contrast, non-structural approaches
may be subject to bias due to the presence of nonlinearities, dynamics, and latent
state variables.

Although our approach works well on simulated data, the results on real data
from the Gulf of Mexico are inconclusive. We are unable to obtain results for the
Madison-Swanson Marine Reserve, suggesting that either the model does not work
for this location or that the signal to noise ratio is simply too small. We do find re-
sults for the Steamboat Lumps Marine Reserve; it neither produces a statistically
significant increase in population growth nor a statistically significant decrease in
catchability associated with decreased fishing area. These results may simply be the
truth of the matter with regard to gag; the reserve has had neither positive nor nega-
tive effects on gag fishing. It is also possible that we need more than 4.5 years of
data post-reserve to resolve the treatment effects that we are trying to measure em-
pirically.

We recommend that policy-makers maintain and continue to enforce Steamboat
Lumps and Madison-Swanson Marine Reserves. In a descriptive (or quasi-struc-
tural) statistical model, we found that these reserves produced modest catch
decreases for all reef fish lumped together (Smith, Zhang, and Coleman 2006a), but
we were unable to make any statements about the future effects of the reserves. In
the current paper, we present a model that, in principle, can make statements about
the future of reserves. It focuses on just one species, and for one of the reserves,
finds no statistically significant gains or losses in sustainable yield. Taken together,
these results suggest that there is much we still do not know about the fishery effects
of these reserves. As marine reserves gain policy momentum, it is important not
only to develop tools for measuring their effects but also to keep them in place long
enough to measure these effects. Otherwise, managers will continue to be in the
dark about how actual reserves affect actual fisheries.

One might reasonably argue that logistic growth is simply the wrong model for
gag population dynamics. In fact, we have parallel empirical bioeconomic modeling
underway that draws on recent work in fisheries ecology (Heppell et al. 2006),
specifies gag population dynamics with age structure, and includes gag’s unique re-
productive characteristics (Smith, Zhang, and Coleman 2006b). This work relies on
a substantial amount of fishery-independent data that is unavailable for most ex-
ploited fish species. This is especially true for reef-fish species in developing
countries where marine reserves are so heavily touted as a policy solution. We sub-
mit that understanding the importance of marine reserves is of such great policy
significance that it is worthwhile to pursue multiple modeling strategies, including
both non-structural analyses of treatment effects and diverse structural ways of cap-
turing dynamics. We also note that in many fish stock assessments, analysts
frequently use multiple models of population dynamics to ask different sorts of
questions about the stock or to explore the robustness of policy recommendations.

While no model is ever perfect, we believe that if a marine reserve generates
large, long-run catch changes, and the reserve has been in effect long enough for
these impacts to materialize, these changes would show up in a lumped-parameter
model like the one in this paper. With the steady emergence of new marine reserves
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throughout the world, it is important to develop tools for assessing them that match
the likely spatial and temporal scales of data collection. The spatial resolution of
fishery data is likely to be coarse, and managers will be forced to infer effects of a
reserve from data on a much broader spatial area. Our model is not the only possi-
bility for addressing this problem but serves as an example.

The approach in this paper is potentially applicable to a wide range of
bioeconomic problems. By focusing on the biological system and the economic pro-
duction function, our model structurally characterizes the effects of a policy change
on two critical components of the bioeconomic system. The advantage of Bayesian
estimation in our case is that it can handle the highly nonlinear estimating equation
that emerges from recursive substitution of the dynamic structural model. This is po-
tentially applicable to analyzing a wide range of policy interventions in
bioeconomic systems such as territorial use rights, gear restrictions, and seasonal
closures. Nevertheless, we study only a portion of the bioeconomic system. A full
description would also include a model of harvest sector behavior. Thus, our model
is only a step towards a Bayesian bioeconomics.
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Appendix A

Details on MCMC Estimation for Known sssss

The MCMC estimation algorithm uses the following steps:

1.  Start at an initial parameter vector q0 = (r0, q0, k0 , a0, g0
1, g0

2);

2.  Generate qi+1 from p(qj|qi
j, x) sequentially, which includes two parts in this study:

2.1  Gibbs sampling (for r, q, and k with exact posterior distributions):

r p r q k H Ei i i i i i+1
1 2

2~ ( , , , , , , , ),a g g s

q p q r k H Ei i i i i i+ +1 1
1 2

2~ ( , , , , , , , ),a g g s

k p k r q H Ei i i i i i+ + +1 1 1
1 2

2~ ( , , , , , , , ).a g g s

2.2  Metropolis-Hasting sampling (for a, g1, and g2):

2.2.1   With ri+1, qi+1, and ki+1 generated in the last step, draw qnew(a, g1, and g2)
from a proposal density q(qnew|qold) sequentially. We adopt the random walk
sampler with a normal kernel:

q new old
new old

proposal

( ) exp
( )

,q q
q q
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μ -
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2.2.2   Set qi+1 = qnew with a probability of u, and qi+1 = qold with a probabil-
ity of 1 – u, where:

u
p q
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3.  Increase i and repeat step 2.
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