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Abstract  We develop a simple extension of the theory of multispecies fisheries
management to analyze a problem where one fish or animal stock has no com-
mercial market but instead is valued passively. We interpret a typical bycatch
problem as a standard multispecies fisheries management problem, and we de-
velop a multispecies model incorporating both monetary damages associated
with bycatch and variable biological relationships. We examine the behavior of
the model with a numerical example focusing on the case of the bycatch of spot-
ted and other dolphins in the eastern tropical Pacific (ETP) yellowfin tuna
fishery.

Key words  Biological association, bycatch, eastern tropical Pacific, incidental
take, multispecies fishery, passive use value, spotted dolphin, yellowfin tuna.

Introduction

In this paper we present an extension of the theory of multispecies fisheries manage-
ment to analyze a problem where one fish or animal stock has no commercial market
but instead is valued passively.1 This formulation has relevance to a fisheries
“bycatch” problem: the conservation of biological stocks that are taken “incidental
to” the commercial harvest of another stock.

This paper serves two functions. First, we construct a bioeconomic model to
analyze a situation in which the commercial exploitation of one renewable resource
has an external effect on individuals who value another renewable resource. Al-
though the approach is straightforward, it has not yet been considered in the litera-
ture. The model helps to clarify the social tradeoffs involved in the implementation
of a policy to reduce or eliminate bycatch of noncommercial stocks. Second, the pa-
per serves as a prospectus for further research on the problems associated with bio-
logical or technological linkages among resources, where only one resource has a
ready market.

We start with a discussion of the importance of understanding the institutional
setting when analyzing fisheries bycatch problems. Following that, we suggest a
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straightforward relationship between the bycatch of a noncommercial stock and
monetary damages. A multispecies model is then developed followed by a numerical
analytical example that focuses on the case of the bycatch of spotted and other dol-
phins in the eastern tropical Pacific (ETP) yellowfin tuna fishery. Results and sug-
gestions for further research are considered in the conclusion.

Defining Bycatch

Bycatch is the capture of nontargeted cohorts or stocks in a directed fishery
(Alverson et al. 1994). Bycatch can have economic significance because it may re-
sult in opportunity costs. Opportunity costs arise because real resources must be
used to discard and replace bycatch or because some proportion of bycatch is often
lost either to the ecosystem or to others who value the bycatch (Boyce 1996; Ander-
son 1994; Arnason 1994).2 Note that the occurrence of a bycatch problem, and po-
tentially its economic effects, may depend upon the relevant institutional setting (cf.
Bromley 1986). This fact has not yet been fully recognized in the burgeoning litera-
ture on bycatch.

Take, for example, a fishery in which two commercial stocks exist. Fishers di-
rect their efforts on the two stocks using one kind of nonselective gear, so that when
they target one stock, they also catch individuals from the other. If the institutional
setting is such that the two stocks are regarded as separate fisheries, and fishers who
target each of the stocks have rights to do so, then externalities exist when bycatch
occurs in each fishery. This type of bycatch problem has been analyzed by
Androkovitch and Stollery (1994) for the cod and haddock fisheries off the coast of
Nova Scotia.

However, if the two stocks are considered to be part of one fishery, with no
preferential allocation of rights to distinct stocks within the fishery, then, by institu-
tional arrangement, inefficient levels of bycatch cannot occur. Overharvesting can
occur, if the fishery is open access.3 In such a fishery, in theory, a level of effort can
be selected to optimize economic yield, given, as constraints, the biological relation-
ships between stocks and the technological selectivity of the gear. In determining an
optimal level of effort in such a fishery, the biological and technological relation-
ships must, of course, be fully specified. Even if discarding of individuals from the
lesser-valued stock occurs, there is no economic bycatch problem as long as the ef-
fects of both discard costs and mortalities are accounted for and effort is controlled
at the optimal level (cf. Arnason 1994).

Invoking the proper assumptions, we might expect the outcome, in terms of
yields and effort levels, to be invariant of the institutional arrangement. However,
some of the most interesting features of bycatch problems may turn out to be the
economic or distributional effects of transactions or management costs associated
with alternative institutional arrangements.

Here, for purposes of presentation, we will ignore transactions and management
costs to interpret a bycatch problem within the context of a standard multispecies
modeling framework.4 We focus on a case in which one stock is harvested commer-
cially. Another stock is caught, but it is discarded because it has no market. Legal
rights to the target stock are distributed to fishers, and protection of the nontarget

2 Note that the size and sign of any opportunity costs may depend upon the relevant biological relation-
ships among stocks in a marine ecosystem.
3 In such a fishery, overharvesting might be considered a type of “own” bycatch.
4 This approach is analogous to the case of “rival exploiters” studied by Bishop and Samples (1980),
although here we examine multiple stocks.



Bycatch and Passive Use 13

stock implies the distribution of legal rights to those who value the existence of the
latter.5 Thus, due to institutional arrangements, the situation is analogous to the case
of two fisheries in which fishers have rights to each separate stock.

Because the nontarget stock is valued passively, damages are incurred when in-
dividual nontarget fish or animals are harmed. A managing agency must reconcile
the rights of the fishers with those of individuals who value the existence of the
nontarget stocks. The agency is, therefore, responsible for selecting an optimal level
of effort to result in efficient levels of combined target stock harvest and nontarget
stock bycatch.

Damage Function

Consider the case of the bycatch of fish or animals that are not used or consumed
directly but whose existence is valued by some segments of society. Assume first
that these segments are opposed “in principle” to the bycatch of fish or animals from
a nontarget stock in a commercial fishery so that they experience a damage associ-
ated with any level of bycatch (this damage can be represented as a step up to some
positive damage level at one “unit” of bycatch expressed in terms of a suitable mea-
sure such as numbers of animals or biomass). Assume next that increasing levels of
bycatch imply that higher damages are incurred.6 Finally, assume that if a nontarget
stock approaches eradication, a threshold effect is encountered where the damages
increase sharply.

A simple damage function associates a constant marginal damage with each unit
of bycatch. The damage function might look like the one represented in figure 1,
which plots damages as a function of bycatch in each time period. A more compli-
cated damage function might associate varying levels of marginal damage with
varying levels of the stock, but we focus on the simple function in this paper.

 Measuring the damage in any specific case obviously involves serious empiri-
cal issues when no market for the passive use of a nontarget fish or animal exists.
We recognize that some individuals or groups may feel that it is inappropriate or
even repugnant to attach a “value” to certain marine animals, such as cetaceans. For
example, D’Amato and Chopra (1991) argue on both philosophical and legal
grounds that the evolution of international law is such that cetaceans (particularly
whales) are entitled to a consideration as moral entities—in other words whales
have a “right to life.” Consistent with these arguments, others may believe that ma-
rine animals have very large or “infinite” values.

As a practical matter, these arguments are difficult to substantiate when the indi-
viduals or groups that make them face the true opportunity costs involved in tradeoffs
among the different things that they value. Some social scientists are sanguine about
the potential of survey approaches to clarify these tradeoffs and, thereby, to help re-
veal passive use values (Hanemann 1994; Mitchell and Carson 1989).

In reality, however, social institutions may be organized such that certain indi-
viduals or groups do not face the true opportunity costs of these tradeoffs, thereby
allowing them to ascribe infinite values to some things. Further, survey techniques,
as currently practiced, have come under sharp criticism (Binger et al. 1995; Dia-
mond and Hausman 1994; Phillips and Zeckhauser 1989). Additional difficulties
may arise when willingness to accept compensation for the damage incurred may be

5 In the case of passive-value stocks, the existence of protection rights is not a necessary condition for
an externality to occur.
6 The presence of “scope” effects as suggested by this assumption have been found in many other
nonmarket environmental resource problems (Hanemann 1994).
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the appropriate welfare measure, as in a case in which individuals have legal rights
to the protection of a resource (cf. Bromley 1995).

It may be difficult to measure the loss of passive use value occurring through
the bycatch of noncommercial stocks. However, if a society agrees on a policy to
reduce bycatch in a fishery, then there is, at least, a crude indication that protection
of the nontarget species has value.7 Even if that value can be determined only
roughly, it is useful and appropriate to begin to clarify the tradeoffs thereby implied.
For our purposes, we will assume that individuals or groups have rights to the pro-
tection of the nontarget stock, to which they ascribe an economic value, but they do
not or cannot place infinite values on these rights.

Bioeconomic Model and Interpretation

There are many models that could be chosen as descriptions of the growth and equi-
librium behavior of biological stocks (Clark 1990; May 1981). In order to develop a
general theoretical understanding of the behavior of an ecological system (two
stocks), we choose first a simple model. This theory can be modified later induc-
tively as empirical evidence is gathered and understanding is enhanced.

We employ a conventional surplus production model, where all state and control
variables are functions of time. Let the commercial stock be denoted x and the
bycatch stock be denoted y. Subscript the parameters in the following system ac-

Figure 1.  A Damage Function

7 Within the context of the model described in the next section, it is possible to impute a damage associ-
ated with the bycatch of noncommercial stocks. In an economic sense, this should be considered to be a
lower bound on the passive use value of dolphin stocks. Mitchell and Carson (1989, p. 75) point out the
difficulties of using a damage function to estimate passive use values.
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cording to the stock that each represents. Define α  = ρ/K and β = (γρ)/K, where ρ is
a stock’s intrinsic growth rate and K is a stock’s carrying capacity, with no initial
restrictions on the sign of γ. Write the system:

˙ – ( , )x x x xy F x yx x x= + =ρ α β2 (1)

˙ – ( , )y y y yx G x yy y y= + =ρ α β2

This system has been widely used to handle a range of possible multistock inter-
actions (e.g., Hannesson 1983). We account for the interaction between stocks by
evaluating the sign of γ. If sgn{γi} is negative for i = (x, y), then the two stocks are
described as competing over some biological dimension such as a common food
source or space. If γi = 0 for i = (x, y), then the two stocks are described as being
independent. If sgn{γi} is positive for i = (x, y), then the two stocks are described as
mutualistic (benefiting each other). If γi > 0 > γj then the relationship between stocks
i and j is described as parasitic (or predatory). Finally, if γi > 0 = γj, then the rela-
tionship between i and j is described as commensalistic.

We make the following simplifying assumptions. The surplus production models
are symmetric (i.e., they do not exhibit depensation, and they are not skewed). As-
sume that all inputs other than the stock can be combined into a single variable
called effort, E.

Using a restrictive form of the technology, we examine the technical interac-
tions with the following catch equations. Catch per unit of effort is modeled simply
as a linear function of the stock. Assume that the bycatch stock is caught according
to the same functional form but with a different catchability, qy. Because of gear
nonselectivity, the effort (E) involved in bycatch is identical to the effort involved in
the harvest of the target stock. In principle, qy could adjust to reflect technological
developments designed to reduce bycatch. Thus, harvests of the target stock (hx) and
the bycatch (hy) can be defined as:

hx = qxxE (2)
hy = qyyE

Now subtract the harvest of the target stock and the bycatch of the noncommer-
cial stock from the relevant state equations in the system:

˙ ( , ) –x F x y hx= (3)

˙ ( , ) –y G x y hy=

We formulate the problem as that of a fisheries management agency seeking to
maximize the net economic benefit from the fishery. Assume that an optimal level of
effort can be achieved costlessly through the application of an instrument or combi-
nation of instruments such as taxes or (tradeable) quotas. Within the context of a
single-season model, Boyce (1996) discusses cases of bycatch by one fleet of
another’s target stock and bycatch by one fleet of nonmarket stocks. He finds that a
system of tradeable quotas is capable of maximizing social welfare.

The economic benefit associated with the harvest of fish from the target stock
(x) can be defined as:

B h p dx

hx

( ) ( )= ∫ η η
0

(4)
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Thus, for a linear demand function, p = p0 – kxhx with p0 as the choke price and kx as
the slope, we have:

B E x p q xE k q xEx x x( , ) – ( )= 0
1
2

2 (5)

The damage associated with bycatch hy may be calculated as

D h b dy

hy

( ) ( )= ∫ ζ ζ
0

(6)

Similarly, for a linear damage function,8 b = b0 + kyhy with b0 as the intercept (e.g.,
value of first unit of y) and ky as the slope, we have:

D E y b q yE k q yEy y y( , ) ( )= +0
1
2

2 (7)

The cost of fishing operation, cE, is linear in effort.
The objective of the agency is to choose a level of fishing effort (E) at each in-

stant in time to maximize the net present value of the multistock fishery (total ben-
efits less the sum of total damages and total costs) over an infinite horizon, subject
to the flow of the target and bycatch stocks, bounds on feasible effort levels, and pa-
rameter values that describe the relevant biological scenario. Assume that the values
of all parameters (p, b, c, q, δ, ρ, α , and β) are exogenous.

A managing agency chooses E to solve

max [ ( , ) – ( , ) – ]
{ }

–

E

tB E x D E y cE e dt
0

∞

∫ δ (8)

with B and D defined as in equations (5) and (7), respectively.
Subject to equation (3) and additional constraints

0 ≤ x, 0 ≤ y, 0 ≤ E ≤ Emax (9)
α i, ρi > 0; 0 ≤ qi ≤ 1; for i = (x, y)

The current value Hamiltonian is:

˜ ( , ) – ( , ) – [ ( , ) – ]H B E x D E y cE F x y q xEx x= + λ (10)

+ λ y[G(x, y) – qyyE] + + + +µ µ µ µ1 2 3 4x y E E E( – )max

As in Clark (1990, p. 318), assume that an interior solution exists (µj = 0, ∀ j). The
first order conditions include:

∂
∂

∂
∂

=
B

E

D

E
q x q y cx x y y– – –λ λ (11)

– ˙ –λ δλ λ λx x x x y

B

x

F

x
q E

G

x
+ =

∂
∂

+
∂
∂







+
∂
∂

(12)

8 For simplicity, we assume that the demand function and the loss function are independent.
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– ˙ – –λ δλ λ λy y x y y
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y

F
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q E+ =
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∂

+
∂
∂

+
∂
∂







(13)

Equation (11) requires that, at the optimum, the marginal net benefit of an incre-
ment in effort (LHS) must equal c, the marginal cost of an increment in effort. At
any instant, the marginal net benefit is defined as the difference of the sum of the
benefit available from harvesting x and the user cost (or user “benefit”) from the
bycatch of y and the sum of the damages from the bycatch of y and the user cost
from harvesting x.

We now have four equations [(3), and (11) through (13)] that, in principle, can
be solved to yield optimal values of five unknown variables (E, x, y, λx, λy). Due to
the complexity of the differential equations, a purely analytical solution to this prob-
lem may be difficult to derive.9

Assume that the multistock system reaches a steady-state equilibrium and that
the system responds instantaneously with an equilibrium steady state (Clark 1990, p.
197). Conrad and Adu-Asamoah (1986) employ an “iterative method” to solve a
steady-state multispecies system for optimal values of the control, state, and costate
variables. This method involves solving equations (3), (12), and (13) at the steady-
state for the relevant costate and state variables as functions of the other variables
and then solving these equations simultaneously to derive x(E) and y(E) and λx(x, y, E)
and λy(y, x, E). Next, the linear stock equilibrium functions are transformed into sus-
tained harvest functions (Anderson 1986). Finally, an equilibrium level of the target
and bycatch stocks can be determined.

In order to solve for the steady-state, we employ the following approach. Set-
ting each equation in (3) equal to zero, we have:

y

q
q Ey

y x

x

y x

x
y

y
x y

x

=
+ +







ρ
β ρ
α

β
α

α
β β
α

–

–
(14)

x
y q Ex x x

x

=
+ρ β

α
–

(15)

From equation (1), we obtain:

∂
∂

= +
F

x
x yx x xρ α β– 2 (16)

∂
∂

=
F

y
xxβ (17)

9 Using a combined approach of analytical and numerical techniques, Mesterton-Gibbons (1987) has
solved this problem for an optimal equilibrium and optimal approach path when γi is constrained to
equal zero for both stocks (independency). In practice, numerical approaches can be employed to seek a
solution (Conrad and Clark 1987).
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∂
∂

=
G

x
yyβ (18)

∂
∂

= +
G

y
y xy y yρ α β– 2 (19)

Also, from equations (5) and (7), we have:

∂
∂

=
B

E
p q x k q x Ex x x0

2 2– (20)

∂
∂

=
B

x
p q E k q xEx x x0

2 2– (21)

∂
∂

= +
D

E
b q y k q y Ey y y0

2 2 (22)

∂
∂

= +
D

y
b q E k q yEy y y0

2 2 (23)

Using equations (12) and (13), λy and λx can be calculated as:

λ
δ

δ δ
y
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y x

D

y

F

x
q E
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F
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q E
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(24)
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q E
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=

∂
∂

+
∂
∂

+
∂
∂

–
(25)

Finally, we rewrite equation (11) as:

Q E
B

E

D

E
c q x q yx x y y( ) – – – –=

∂
∂

∂
∂

=λ λ 0 (26)

The solution at steady-state (E, x, y, λx, λy, B, and D) can be determined using
the systems of equations (14) through (26). Specifically, find an E such that Q(E) = 0. In
this study, we employ the bisection technique (Conrad and Clark 1987) to solve
equation (26).

Because of the possibility of multiple and suboptimal equilibria, these condi-
tions are necessary, but not sufficient, for an economically efficient outcome. These
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possibilities exist because the sustained “benefit minus damage” for both stocks (B′
in figure 2) is the sum at each level of effort of the sustained benefit function for the
target stock and the sustained damage function for the bycatch stock.

Using a static analysis, figure 2 depicts graphically four out of many possible
shapes that the sustained “benefit minus damage” function might take. Figure 2a
shows two possibilities depending upon the total cost function that is used. If total
cost is represented by TC1, then E1 is an efficient outcome. This effort level exceeds
the level at which stock y can continue to exist, and y is eradicated.

If, instead, total cost is represented by TC2, then there are two outcomes where
the slopes of the sustained “benefit minus damage” and total cost curves are equal.
The first is inefficient because total costs exceed sustained “benefit minus damage.”
The second coincides with the discontinuity where, again, stock y is eradicated. Fig-
ure 2b depicts a situation where the total damages from harvesting stock y are so

Figure 2.  Static Model Scenarios

Some static model scenarios examining sustained benefit (B), sustained damage (D), resultant sustained
“benefit minus damage” (B′), and total costs (TC) as functions of effort per unit of time (E/T). Static
efficient levels of effort are labeled as E*. Panel A considers a case in which the carrying capacity for
the passive value stock is much smaller than that for the commercial stock and damages are relatively
small. When TC2 is the total cost curve, two outcomes exist in which marginal “benefit minus damage”
equals marginal cost. One is inefficient (Ẽ2) and one is at the discontinuity (E2

*). When TC1 is the relevant
cost, one efficient outcome exists (E1

*). Panel B considers the case in which the carrying capacity for the
commercial stock is much smaller than that for the passive value stock and damages are large. No effi-
cient outcome exists. Panel C considers the case in which carrying capacities for the two stocks are the
same and damages are not as large in absolute value as benefits. One efficient outcome exists. Panel D
considers the case in which the double-humped shape of the sustained benefits curve results from inelas-
tic demand for the commercial stock. One efficient outcome exists where the difference between sus-
tained “benefits minus damages” and total costs is maximized.
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great that it is economically inefficient to allow any positive level of effort. Figure
2c depicts the situation where the combination of carrying capacity and stock inter-
actions is such that the two stocks have approximately the same eradication point,
and one efficient outcome exists. Figure 2d depicts the situation where the slope of
the demand for stock x is increased, resulting in the two-humped shape of the sus-
tained “benefit minus damage” function (Anderson 1986). In the case shown here,
the point at which the difference between sustained “benefit minus damage” and to-
tal costs is the greatest is the efficient outcome.

An Example

We turn now to the ETP yellowfin tuna fishery for an example. In this fishery, large,
mature yellowfin tuna are the target stock, and several stocks of dolphin are
bycatch. Values for model parameters have been selected from a combination of
published and unpublished sources and credible guesses (table 1).

The institutional setting within which the ETP yellowfin tuna fishery is man-
aged is complex. The fishery is an international, high seas fishery. Historically, ves-
sels with many different nationalities have participated in the fishery. Quotas on
tuna are recommended by the Inter-American Tropical Tuna Commission (IATTC),
but there is no strict enforcement. The United States has acted to reduce the level of
dolphin bycatch through restrictions on its own vessels, embargoes on tuna from other
nations, and international negotiations. Over the years, these efforts have been increas-
ingly successful in reducing dolphin takes. Several rounds of international negotiations
have resulted in an agreement, known as the “Declaration of Panama, “ to reduce the

Table 1.  Parameters for Tuna-Dolphin Models

Variable Value Unit

ρx 1.911 a time–1

ρy 4.5 x 10–2 b time–1

αx 2.967 x 10–3 a (ST x 103 x time)–1

αy 6.818 x 10–5 c (ST x 103 x time)–1

βx 0 Independent
2.5 x 10–3 Commensalistic (ST x 103 x time)–1

–1 x 10–5 Competitive
βy 0 Independent

0 Commensalistic (ST x 103 x time)–1

–5 x 10–5 Competitive
qx 3.9 x 10–5 a 10–3

qy 1 x 10–6 10–3

δ 0.1 -
p0 860 d when kx = 0 $ST–1

42,860 when kx varies
kx 0 $(ST x 103)–2 x 103

b0 104 $ST–1

ky 0 $(ST x 103)–2 x 103

c 4.362 e 103$/SD

Sources: a IATTC (1990), b Allen (1985), c IWC (1983), d NMFS (1992), e Conrad and Adu-Asamoah (1986).
Notes: ST = short ton, SD = standard fishing day.
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incidental take of dolphin species in the fishery.10 In this section, we assume that the
bycatch problem can be described as a multispecies fisheries management problem.
Rich descriptions of the evolution of the institutional arrangements can be found in
Buck (1997), Joseph (1995, 1994), NRC (1992), and Cicin-Sain et al. (1986).

One interesting feature of the tuna-dolphin system is that both the sign and the
size of γi for i = (x, y) are unknown. One hypothesis is that the two stocks are inde-
pendent (Clark 1990, p. 316), and therefore γx = γy = 0. The interaction under this
hypothesis is not one that limits the size of either stock. A second hypothesis is that
the two stocks are competitors for a common food source (Allen 1985). If the food
source is limited, then the interaction parameter will be negative for both stocks. A
third hypothesis is that the tuna follow the dolphin because of the dolphin’s ability
to echo-locate food sources with sound (Allen 1985). Under this hypothesis, the
tuna receive some benefit from the presence of dolphin in a commensalistic relation-
ship. As a result, the interaction term for tuna might be positive.

Table 1 lists parameter values for the three biological scenarios: independent,
commensalistic, and competitive. In all three models, joint harvest of tuna and take
of dolphin occurs. The biological interaction parameters are credible guesses made
to demonstrate the behavior of the model. Parameters for the growth, carrying ca-
pacity, and catchability of the tuna stock were approximated from IATTC data
(IATTC 1990). Dolphin growth and carrying capacity is uncertain, but estimates
from Allen (1985) and averages from data gathered by the International Whaling
Commission (IWC 1983) were used. When converted into biomass units, the dol-
phin stock is roughly the same size as the tuna stock. The model is sensitive to the
choice of the catchability parameter for dolphin. We employ a credible guess for
dolphin catchability, and, because technological innovations to reduce bycatch will
affect this parameter (as well as the cost of effort), more careful identification of the
value of this parameter should be an important focus of further research. We employ
an average of cost estimates reported by Conrad and Adu-Asamoah (1986), con-
verted to 1990 dollars.

There is no market for dolphin existence (ETP dolphins are not “used” for this
purpose—even in the sense of “whale-watching”), but we have assumed that the ex-
istence of ETP dolphin stocks conveys benefits to some individuals and groups. In
theory, it may be feasible to measure the passive use benefits of dolphins through
survey techniques. Hageman (1985) has used contingent valuation to estimate the
willingness to contribute to a fund to prevent populations of bottlenose dolphins and
other marine mammals from falling to levels that would both endanger the popula-
tions and decrease the respondents’ chances of seeing them. Loomis and Larson
(1994) have used contingent valuation to demonstrate positive but diminishing mar-
ginal valuation of non-marginal increases in grey whale populations. However, nei-
ther study attempts to evaluate the economic effects of incidental dolphin takes.

In figure 3, we have plotted optimal levels of effort E* (panel A), incidental
take of dolphin hy

*  (panel B), and gross economic benefits B* (panel C) against unit
damage (B) for each of the three hypothesized biological relationships. For clarity,
we have set kx = ky = 0 for the simulations depicted in figure 3 (and also in figures 4
and 5). Under all three scenarios, optimal effort declines smoothly and monotoni-
cally as unit damage increases from zero to the point at which the fishery must shut
down. Under the independent and competitive relationships, as unit damage in-
creases from zero to the point at which the fishery must shut down, both incidental
take of dolphin and gross benefits decrease smoothly and monotonically. At low lev-

10 Declaration of Panama, October 4, 1995, http://www.greenpeace.org/~usa/campaigns/biodiversity/
panama.html.
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els of unit damage, however, incidental take and gross benefits increase for increas-
ing levels of damage under the commensalistic scenario. The reason for this result is
that, for the values of the parameters examined, lower levels of effort imply higher
levels of dolphin stocks (y) and tuna stocks (x), which in turn allow higher levels of
tuna harvest and incidental take [see equation (2)]. The damage associated with the
higher levels of incidental take is more than compensated for by higher benefits
from tuna harvests.

Figure 3.  Variation of Optimal Levels of Effort (Panel A), Incidental Take
(Panel B), and Gross Economic Benefit (Panel C) with Increasing Unit Damage

Units: Effort (thousands of standard days); incidental take
(thousands of short tons); gross economic benefits
($millions); and unit damage ($thousands)
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The horizontal line in panel B of figure 3 represents the limit on take of dol-
phins under the provisions of the Declaration of Panama, which limit total incidental
take of dolphins from the ETP yellowfin tuna fishery at 5,000 in any year. Even un-
der the independent scenario, the damage per short ton of dolphin is fairly large. The
biological interaction scenarios suggest that unit damage could be much larger, but
we recognize that the interaction parameters are unknown. These results imply that
an understanding of the biological association is quite important for management
purposes.

In figure 4, panels A and B, we take a closer look at the commensalistic model.
Panel A represents, for varying levels of unit damage, the optimal levels of two of
the components of the objective function, gross economic benefits B and gross dam-
ages D, and a measure of net benefits, excluding user costs, of B – D – cE. Panel B
displays the corresponding optimal values of the user costs λx and λy. Panel A shows

Figure 4.  Commensalistic Scenario: Variation of Optimal Levels of
Gross Benefits, Damages, and Net Economic Benefits (Panel A)

and User Costs (Panel B) with Increasing Unit Damage

Units: Benefits, damages, net benefits ($millions); user cost
($thousands per short ton); unit damage ($thousands)
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net benefits declining over the entire range. As seen in panel B, the user cost for
tuna is declining over the entire range, but the user cost for dolphin starts out posi-
tive, becomes negative, reaches a minimum, and reverses direction.

Referring to the shape of the gross damage curve, D*, in panel A, as unit dam-
age increases, the optimal level of gross damage increases at a decreasing rate,
reaches a maximum, and declines. The main reason for this decline is the reduction
in the level of effort at high levels of unit damage. At low levels of unit damage, it
is costly to take dolphin because of the positive biological relationship under com-
mensalism. As effort declines fairly rapidly with increasing unit damage, however,
the increase in gross damages slows. As a result, the future penalty for taking a dol-
phin in the current period declines and, at very high levels of unit damage, there is a
user “benefit” (the opposite of user cost). What happens is that the influence of the
biological relationship diminishes for low levels of effort and concomitant high lev-
els of both stocks. At high levels of unit damage, λy is negative just as it is under the
independent and competitive specifications. Intuitively, a lower stock of dolphin in
future periods implies lower levels of damage; thus there is a user “benefit” to tak-
ing dolphin in the current period.

Figure 5 examines the change in optimal levels of effort, E*, user costs for tuna
harvest, λ x

* , user “benefits” for dolphin take, λ y
* , and damage due to incidental take,

D* (on the right hand scale) for the independent biological relationship as the dis-
count rate is varied. In a typical single-species model, we expect optimal effort lev-
els to increase monotonically as the discount rate is increased from zero to ∞ (open
access). In our model, however, we find that effort decreases at low levels of the
discount rate. Hannesson (1983) describes a similar situation in which, depending
upon the levels of the parameters, the size of the stocks of either one or both species
in a two species model can increase as the discount rate is increased. There may be
no elegant explanation for what is occurring here. The discount rate δ enters into the

Figure 5.  Independent Scenario: Variation of Optimal Levels of Effort,
User Costs, and Damages with Increasing Levels of the Discount Rate

Units: Effort (thousands of standard days); user costs ($thousands
per short ton); damage ($millions)
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expressions for both λx and λy, and we have depicted the optimal levels of these vari-
ables as the discount rate varies. For example, increasing the discount rate lowers
the user “benefit” of the incidental take of dolphin over the range depicted in figure
5. Also, damages, D*, drop sharply over the policy-relevant range from 0 to 0.1; in
combination, these two effects imply that lower levels of effort are optimal over the
policy-relevant range. As a result, as the future is valued more heavily by lowering
the discount rate, particularly over the policy-relevant range from 0 to 0.1, optimal
levels of effort may be higher. Once again, this result depends upon the parameter
values that are employed.

A final simulation involves the change in the optimal level of effort as the slope
of the demand function is increased. In our example, the change in slope has little
effect on the optimal level of effort until it reaches a critical point at which optimal
effort drops significantly with increases in the slope of demand. The critical point
appears to be more pronounced under the commensalistic relationship than under the
independent and competitive models. The critical point corresponds to the situation
depicted in figure 2, panel D, in which the net sustained benefit function develops a
double humped shape. At this point there may be three equilibria. In this case, the
maximum net economic benefit is associated with the lowest level of effort, hence
the sharp drop in effort. Our simulation suggests that the results of the analysis are
not particularly sensitive to small changes in the elasticity of demand for a good for
which we expect demand to be elastic, such as tuna.

Discussion

Conflicts among the different kinds of uses for renewable fishery resources are per-
haps most striking in the case where two stocks interact biologically and technologi-
cally, and one stock is commercially exploited while the other has no market but is
valued passively. In this paper, we propose a method for constructing a multispecies
model that incorporates the external effect of the bycatch of fish or animals from a
noncommercial stock in a commercial fishery.

There may be several reasons why this method has not been employed in the
past to analyze the management of bycatch. First, the biological relationships may
be uncertain. Traditionally, the stocks have been assumed to be biologically indepen-
dent. Allen (1985) has suggested that there may be commensalistic or competitive inter-
actions. In this paper, we have shown that the choice of an optimal level of effort is sen-
sitive to the biological interaction that exists. Further research efforts should be di-
rected at identifying the nature of the biological relationship and understanding the
extent to which the relationship may change due to environmental factors.

Second, surplus production models have not been constructed to model the sta-
tus of dolphin stocks in the ETP. The IATTC has focused its efforts on monitoring
stock sizes and incidental take of dolphin but, until recently, has not published em-
pirical estimates of parameters for dolphin such as intrinsic growth rate, carrying ca-
pacity, biological interaction, and catchability. A serious limitation to the use of a
surplus production model for dolphin is that the data on dolphin bycatch have been
considered inadequate. Dolphin bycatch data have been collected by government ob-
servers on tuna boats, and observer coverage has become more complete in recent
years. Regardless of the approach taken to manage the fishery, if the reduction of
dolphin bycatch is to remain a goal, monitoring must play an important part in both
data collection and ensuring conformance with the management objective. With im-
proved data, we might expect that a surplus production model could be constructed
and applied more easily.

Third, application of the method proposed in this paper is hampered by the diffi-
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culties associated with assigning a marginal damage to the incidental take of dol-
phin. In theory, it is possible to measure the benefits associated with avoiding the
incidental take of dolphin, but the proper application of direct valuation methods
can be quite costly. If all nations participating in the fishery agree to set a limit on
dolphin bycatch, then the reduced levels of effort in the tuna fishery implied by such
a policy can give us a rough indication of how much these nations value avoiding
the incidental take of dolphin.

In this paper, we have proposed a damage function for the incidental take of
dolphin. The shape of the function appears plausible over a broad range of dolphin
takes. If dolphin bycatch rises to a level that threatens the viability of a stock, then a
threshold effect might occur. The threshold effect has not been incorporated specifi-
cally into the model presented in this paper. Because some dolphin species (spinner
dolphin, striped dolphin) have very small ETP stocks, explicit modeling of the
threshold effect might be an important component of a more complete analysis.

Even if the marginal damage for dolphin bycatch is very small (or zero), it may
be important to model the fishery as a multispecies fishery. The reason is that if the
stocks are not independent, then the biological interaction between tuna and dolphin
has an effect on the tuna stock. The direction of the effect (positive or negative) will
depend upon the relative sizes of the stocks and the nature and degree of biological
and technological interactions.

The kind of analysis presented in this paper can help clarify the analysis of re-
source tradeoffs. It should be recognized that the analysis represents only one kind
of input into the policymaking process. There may be deep philosophical or emerg-
ing legal reasons for terminating the incidental take of dolphins. There may be prag-
matic political reasons as well. We argue that careful bioeconomic modeling should
be at least a part of the decision process.

In constructing the model, we have ignored potential distributional effects.
There are certain to be winners and losers from any policy that requires a change in
the status quo. For example, a 1992 U.S. policy to ban Venezuelan tuna is believed

Figure 6.  Variation in the Optimal Level of Effort for Each Biological
Scenario with Increases in the Slope of the Demand Function

Units:  Effort (thousands of standard days)
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11 Boyce (1996) develops a single-season model of bycatch in contrast to the dynamic approach devel-
oped here. He finds that separate quota markets must exist for both the target and bycatch stocks. More-
over, in cases in which the bycatch stock has existence value, the tradeable quota must be supplemented
with a charge in order to account for nonmarket damages. Note that tradeable quotas cannot be imple-
mented for a policy that calls for zero dolphin bycatch.

to have resulted in increased unemployment and criminal activity in Cumana,
Venezuela’s largest fishing port. It may be useful to adopt a policy instrument that
has the potential for achieving a politically determined target of reductions in dol-
phin mortality in a cost-effective manner, and that can be implemented in such a
way as to ameliorate distributional problems. Tradeable quotas for dolphin take
might be such an instrument.11
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