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Abstract  This paper examines cooperative sharing rules in fisheries coalition
games and develops a new sharing rule that takes into account the stability of
cooperation when externalities are present. We contribute to existing knowledge
by introducing a connection between cooperative games (sharing rules) and
non-cooperative games (stability). As an illustrative example, we describe a dis-
crete-time, deterministic, coalition game model of the major agents who exploit
the cod stock in the Baltic Sea.
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Introduction

The feature that distinguishes non-cooperative from cooperative games is the ability
to make binding agreements. The non-cooperative game is often referred to as the
competitive game, where the players act out of rational self-interest and cannot
communicate prior to the game. In a cooperative game, the players have a binding
agreement and the objective is to maximize the joint payoff of the game. The coali-
tion game allows for a group that is smaller in number than the total number of
players (a coalition) to cooperate.

Non-cooperative games have the advantage that if players adopt their best re-
sponse strategies, no one has incentives to deviate from the adopted strategy. For
cooperative and coalition games, stability has to be evaluated after the solution to
the game is determined. The stability is affected by the way in which benefits within
the cooperation are shared among players. To evaluate whether a solution is stable
requires determining the distribution of benefits within the coalitions. This is per-
formed using the characteristic function game and different sharing rules, but it also
requires determining the solution to the non-cooperative game. When externalities
are present, it is not fully satisfactory to work with characteristic function games (Yi
2003). This means that the action available to a coalition is typically assumed to be
independent of the actions chosen by non-members (Greenberg 1994). The present
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paper deals with the extraction of a renewable resource by large numbers of agents,
where externalities are present. Externalities are present in a game in coalition form
if and only if there is at least a merger of coalitions that changes the payoff of a
player belonging to a coalition not involved in the merger.

The main motivation for this paper is a merger between non-cooperative (stabil-
ity) and cooperative games (sharing rules). We define this merger in a coalition
game applying a γ characteristic function. When positive externalities are present,
stand-alone stability is hard to achieve due to strong free-rider incentives. This is
clear from previous studies, where the stability of the grand coalition applying sharing
rules as nucleolus or the Shapley value is ambiguous.1 In fisheries coalition games,
this link between non-cooperative and cooperative games has received insufficient
attention since the externalities are not receiving attention in the cooperative games.

The traditional cooperative game approach is based on the fundamental assump-
tion that players have already agreed to cooperate and that the model allows for
transferable utility. A key reference in establishing a model of a cooperative fisher-
ies game is in Kaitala and Lindroos (1998). They established a cooperative game in
characteristic function2 game framework and determined different one-point coop-
erative solution concepts; however, the model does not take into account
externalities in the fisheries game and is a purely theoretical work.

Previous empirical work in fishery economics has included applications of the
coalition game approach to the Norwegian spring-spawning herring (Lindroos and
Kaitala 2000; Arnason, Magnusson, and Agnarsson 2000) and the Northern Atlantic
bluefin tuna (Duarte, Brasão, and Pintassilgo 2000). However, these empirical stud-
ies do not consider the important connection between the applied cooperative
sharing rules and the stability of cooperation when externalities are present; there-
fore, none of the determined sharing rules actually satisfy all of the players, and
stand-alone stability is not achieved. Brasão, Costa-Duarte, and Cunha-e-Sá (2000)
applied a coalition game to the Northern Atlantic bluefin tuna fishery and recog-
nized the instability of the Shapley value due to free-rider incentives. They found a
stable, non-cooperative feedback Nash equilibrium with side payments, but were un-
able to determine the connection between the joint solution and its stability.

Pintassilgo (2003) demonstrates that the grand coalition is only stand-alone
stable if no player is interested in leaving the cooperative agreement to adopt free-
rider behaviour. Thus Pintassilgo sets the prerequisite for the stand-alone stability
when externalities are present but does not study the sharing of benefits inside the
grand coalition.

Eyckmans and Finus (2004) also recognize the problems with stability of grand
coalitions when externalities are present. They propose a sharing scheme for the dis-
tribution of the gains from cooperation where any particular solution belonging to
this scheme leads to the set of stable coalitions. Their work is purely theoretical.
Weikard (2005) suggest a sharing rule that distributes the coalition payoff propor-
tional to the outside-option payoff.3

The main contribution of our paper is to highlight the difficulty of how the coa-
lition payoffs are divided among the members in a characteristic function approach.
It develops a new sharing rule that takes into account the stability of cooperation
when externalities are present and players are heterogeneous. This paper also con-
tributes to the literature by allowing all members of a coalition to be active in the

1 Stability is defined as not having incentives to free ride.
2 There exists also a non-transferable utility version of the characteristic function.
3 This paper was first published as a working paper in March 2004 (Kronbak 2004). The working papers
by Eyckmans and Finus (2004) and Weikard (2005) are thus worked out independently and simulta-
neously to (or after) the first version of this paper.
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fishery until the marginal benefits of the different technologies in the coalition are
identical. In a number of previous studies, cost functions have been linear, and only
the most efficient coalition members have been active.

The first section describes the underlying bioeconomic model and applied param-
eter values, while the following section introduces the theoretical setup of the game,
solves the game, and arrives at a solution for the inadequacies of the Shapley value and
the nucleolus. Furthermore, we discuss the stability of the sharing functions and define
a core that is stable in the face of free riding. Then follows a section that contains
details of a sensitivity analysis, and the last section concludes the paper.

Bioeconomic Model

Baltic Cod

The Baltic Sea is shared among members of the European Union (EU) (Denmark,
Finland, Germany, Sweden, Estonia, Latvia, Lithuania, and Poland) and the Russian
Federation. The Baltic Sea consists of the central Baltic Sea, the Gulf of Bothnia,
the Gulf of Finland, the Sound, and the Danish Straits. It is a fairly remote area and
it contains no international waters.

The most valuable fishery in the Baltic Sea is the cod fishery, which used to be
managed by the International Baltic Sea Fishery Commission (IBSFC).4 All parties
that exploit the cod stock are members of the IBSFC, which sets the total allowable
catches (TACs) for the fishery.5 This arrangement appears to represent a coalition,
because TAC measures are agreed upon by all contracting parties in the IBSFC. The
fact is, however, that TAC measures are often exceeded; thus, free riding exists
within the coalition. As all countries exploiting the Baltic Sea cod fishery are con-
tracting parties of the IBSFC, and the main objective of the fishery commission is
‘to cooperate closely’,6 we find it therefore natural to apply a cooperative approach
for our analysis.

We limit our model to three players and assume that groups of countries can
represent the countries around the Baltic Sea. We call our three players Country
Group 1, 2, and 3, respectively.

Population Dynamics

Population dynamics are described by a discrete time age-structured model. This is a
standard type of cohort-model, where the numbers are determined as follows:

N2,y = Ry y > y1

Na +1,y +1 = Na, ye
−m a −Sa fy a ∈ 2, 3, . . . ,7{ }

Na,y1
known a ∈ 2, 3, . . . ,8{ }

,

(1)

4 The IBSFC as an organisation ceased to function in January 2006. Thereafter all main exploiters of the
cod stock are members of the EU. Within the EU the members will, however, still act as different play-
ers. Even though the example discusses the previous setup with the IBSFC, the lessons to be learned are
sufficiently general to apply also to the EU.
5 The TACs are the main regulatory tool for the Baltic Sea cod fishery.
6 Source: Article 1 of the Gdansk Convention, IBSFC (2003).
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where Ry describes recruitment into the stock in year y, m is the natural mortality, f
is the total fishing mortality, and Sa is the fishing gear selectivity, such that if an age
class is not harvested, then the selectivity is zero; otherwise, it is one. We assume
that the initial abundance for all age classes in year y1, Na,y1

,  is known. The popula-
tion dynamics are determined by seven age classes: a = {2,3,...,8}. These age classes
are chosen in accordance with measures of the International Council for the Explo-
ration of the Sea (ICES) (ICES 2000), in which recruits are two years of age before
they become part of the stock. y1 is the initial year for the simulation model. The
biomass is determined as the total number of fish multiplied by their stock weights
at age, over all age classes:

By = SWaN a,y
a=2

8

∑ , (2)

where SWa is the stock weight at age. By is the biomass in year y. The total spawning
stock biomass (SSB) is given by the sum of mature fish over all age classes:

SSB y = MOaSWaN a,y
a=2

8

∑ , (3)

where MOa is the proportion of mature fish in age class a and SSB y is the spawning
stock biomass in year y. We assume a Beverton-Holt stock-recruitment relationship,
identical to the one used by ICES (2000), which is defined as follows:

Ry =
cSSBy −1

1 + bSSBy −1

, (4)

where c and b are biological recruitment parameters. c is the maximum number of
recruits per spawner in a low-spawning stock size, while c/b is the maximum number of
recruits when the spawning stock biomass is very large.7 The biological parameters of
the stock recruitment relationship and other parameter values are summarized in
table 1. Table 2 provides the initial biological parameters for the year classes.

Yield

The catch measured in numbers of fish for country i and for a specific cohort is
given by:

Ca, y
i =

Sa fy
i

ma + Sa fy

(Na,y − N a +1,y +1 ), (5)

7 The stock recruitment estimated by ICES assumes that recruits are not entering the population before
age two. Therefore, the spawning stock biomass (SSB) lags two years behind the Beverton-Holt recruit-
ment function applied by ICES (2000). For reasons of simplicity, we apply only a one-year lag in our
simulation model. We do not see this as a critical assumption because the SSB biomass is similar for
successive years.
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where fy
i is the fishing mortality by country i, fy is the total fishing mortality, and

Ci
a,y is the catch in numbers of fish by country i during year y, of a specific cohort a.

The catch function is defined as the numbers of fish that do not survive to the next
year and are not subject to natural mortality.

The yield (harvest) for a single country is defined by inserting the number of
fish (1) into the catch in numbers of fish (5) multiplied by the catch weights at age:

Yy
i = CWaNa,y

Sa f y
i

ma + Sa f y

(1 − e−m a − Sa fy )
a=2

8

∑ , (6)

where Yy
i is the total yield in kg for country i in year y.

The Cost Function

The cost function is assumed to follow the cost function for harvesting cod in the
North Sea for Denmark, Iceland, and Norway (Arnason et al. 2000):

Qy (t ) = α i
Yy

i2

B y

, (7)

Table 1
Biological Parameter Values

Parameter Value

Mortality parameter
m2,3,…,8 0.2

Stock-recruitment (B-H) parameters
c 0.9814216
b 0.000002340

Source: ICES (2000).

Table 2
Initial Biological Parameters for our Model

Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8+

MO 0.14 0.32 0.84 0.94 0.98 0.96 1
SW 0.244 0.548 1.230 1.595 2.963 4.624 5.417
CW 0.662 0.773 1.127 1.448 2.337 3.485 4.647
N0 136,493 71,852 37,621 15,421 4,332 2,026 1,452

MO=Proportion Mature at the Start of the Year, SW=Mean Weight in Stock (kg), CW=Mean Weight in
Catch (kg), N0=Initial Abundance (thousands).
Source: 1998 estimates (ICES 2000).
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where αi is a cost parameter and By is the total biomass in year y. The dependent
variable, costs, is defined as total costs less depreciation, interest payments, and
skipper wages. This may be regarded as an approximation of the total variable costs.
The cost function is defined such that if the total biomass is increased, the cod are
easier to locate, and costs therefore decrease. The effect of other players also ex-
ploiting the stock is included in changes in the biomass. It is also important to note
that the costs increase quadratically with yield. Therefore, in a coalition it is most
likely that all participating countries are active, otherwise the coalition is not com-
petitive against countries acting alone.

Net Present Value

The net present value is defined as a function where the control variable is the fish-
ing mortality for player i, f i ;8 the state variable is the total number of fish in the
stock, N; and i is the instantaneous profit for player i:

πy
i = pYy

i − Qy
i , (8)

where y
i is the instantaneous profit for country i in year y. The net present value of

all future profit for a single player i is defined by the functional:

J i ( f i , N ) =
π y

i

(1 + r )y− y1
y =y1

y2

∑ . (9)

The players choose their optimal fishing mortality or strategy by maximising the
functional J. The model is assumed to have a finite horizon from y1 to y2. We chose
the period from 1997 to 2046, yielding a running period of 50 years. The start and
end points of the time horizon are of no importance to the model; the important fac-
tor is the total time horizon of the model (i.e. , the length of the running period).

Economic Parameter Values

We assume that there is an open market for raw fish where the fishermen all com-
mand the same price for their landings. 9 Furthermore, the Baltic Sea is a
comparatively small supplier of cod to a global white fish market in which there are
many substitute species and thus the price that fishermen face is approximately con-
stant. The price applied in our model is 10.74 Dkr/kg,10 which was the average price
received for  landed cod on the Island of Bornholm during 1998 and 1999
(Fiskeridirektoratet 1999, 2000). Bornholm is located in a central position within the
Baltic Sea.

8 In the way that this model is defined, there is a direct link between fishing mortality and yield. There-
fore, it is appropriate for the control variable to be the yield. Fishing mortality would then be deter-
mined as a residual.
9 Since there are only three players and they are playing cooperative games, the price could be endog-
enous. If the price is allowed to be variable, coalition formation would likely be more appealing.
10 The exchange rate is approximately 1 USD = 5.7 DKr.



Sharing Rules and Stability in C-games 143

Cost parameters are calibrated for the year 1998. This is done by finding cost
parameters that yield the fishing effort and a total biomass population equivalent to
the arithmetic mean over the period 1966 to 1999, when fishermen engaged in non-
cooperative behaviour.11 This calibration reveals cost parameters at 9, 14, and 15
Dkr/kg for the Country Groups 1, 2, and 3, respectively. Thus, Country Group 1 is
assumed to be the most efficient, and Country Group 3 the least efficient. As the calibra-
tion method involves some uncertainty, the cost parameter is subject to a sensitivity
analysis discussed later in the paper. We assume that there is no technological
progress, etc. , for the simulated 50-year period and thus cost parameters and prices
remain unchanged throughout the lifetime of the model. Functional relationships
also remain unchanged, and we assume that there are no stochastic jolts to the system.

It is possible beforehand to conclude that with this type of cost function all
countries in a coalition will apply effort until their marginal costs are equivalent. Pa-
rameter values for the economic parameters are summarised in table 3.

The fishing mortality applied by the three groups of countries is assumed to be
constant over the simulation period.12 Fishermen are committed to their strategies
only at the beginning of the game; this is a sort of open-loop control. The open-loop
controls allow the players less rationality and flexibility compared to closed-loop
control, but computing open-loop solutions are much easier. There is a tendency in
previous studies to resort to the use of open-loop solution concepts (Sumaila 1999).
The game is played under complete information because all fishermen know all pay-
off functions, but imperfect information because the fishermen are moving
simultaneously. In the first year, there are two stages of the game. The first stage in-
volves deciding upon which coalition to join. In the second stage, players determine
which fishing mortality to apply. When the model is solved backwards, this
endogenizes the coalition formation.

Table 3
Economic Parameter Values for our Model

Parameter Value

First fishing age, a1 3
Selectivity S2 0
Selectivity S3,…,8 1
Cost parameter, country 1: α1 9 Dkr/kg
Cost parameter, country 2: α2 14 Dkr/kg
Cost parameter, country 3: α3 15 Dkr/kg
Discount rate, r 2%
Price, p 10.74 Dkr/kg
Max. fishing mortality, f1

max 0.35
Max. fishing mortality, fi

max, i = 2,3 0.3

Source: ICES (2000); Fiskeridirektoratet (1999, 2000).

11 There have been fluctuations in the size of the biomass over the years. To moderate these fluctuations,
the arithmetic mean over the period 1966 to 1999 is applied in the analysis.
12 The constant fishing mortality over the entire model period is a limitation of the model. The players
have no chance to adapt to changes or fluctuations in, for instance, stock. One way to cope with this
would be to allow for renegotiations in the model.
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The following section solves the game by determining the characteristic func-
tion and some of the corresponding one-point solution concepts. The stability of the
sharing rules is also discussed further.

Solving the Game

In this paper we take the coalition game approach. The normalised characteristic
function is defined and applied for determining two, one-point sharing rules: the
Shapley value and the nucleolus. The benefits from applying these sharing rules are
compared to the free-rider values.  A cooperative solution that applies a sharing rule
is only stand-alone stable if there are no free-rider incentives (Pintassilgo 2003).
This condition does not always hold for the Shapley value and the nucleolus. There-
fore, a stable sharing rule is developed by the model that endogenizes coalition
formation and thus searches for equilibrium cooperation structures. This is done by
taking the free-rider incentives into account when developing a new sharing rule. It
thus represents a merger of the non-cooperative and cooperative games.

The Characteristic Function

The characteristic function (c-function) is determined by applying the definition of
the characteristic function described by Mesterton-Gibbons (1992) that is the ben-
efits of cooperation associated with the coalition. This is the difference between the
benefits when members form a coalition and the sum of benefits of individual mem-
bers; e.g. , individual players’ threat points. We define the characteristic function as
follows:

v (i) = J i (F i , N) − J i (F i , N) = 0, i ∈ {1, 2, 3} (10a)

v (i, j ) = J i, j (F i, j , N ) − J i

i,j
∑ (F i , N), i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, i ≠ j

v (1, 2, 3) = J1,2,3 (F1,2,3 , N) − J i (F i , N )
i =1

3

∑ ,

where v (i) is the value of singletons, v (i, j)  is the value of a two-player coalition,
remarks v (i, j) = v (j,i) and v (1,2,3) are the value of the grand coalition: the maxi-
mum payoff by the joint action of all players. The strategies are denoted by a cap,
FK, indicating strategies chosen when coalition K plays a Nash game (Nash 1951)
against players outside the coalition [see equation (9)]. K refers to the seven pos-
sible coalitions,13 K = {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}, while F1,2,3 denotes
the full cooperative strategy, and J is the functional. We apply a γ-type c-function, as
we assume that players outside the coalition adopt Nash strategies against the coali-
tion (Chander and Tulkens 1997). The function is normalized by dividing the
characteristic function by the benefits of the grand coalition:

13 We ignore the empty coalition, in which we assume the benefits are zero. The seven coalitions corre-
spond to only five coalition structures since there is only one coalition structure comprised only of
singletons.
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v(i ) =
J i (F i , N ) − J i (F i , N )

v (1, 2, 3)
= 0, i ∈ {1, 2, 3}, (10b)

v (i, j ) =

J i, j (F i, j , N ) − J i

i,j
∑ (F i , N)

v (1, 2, 3)
, i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, i ≠ j

v(1, 2, 3) =
J1,2,3 (F1,2,3 , N ) − J i (F i , N)

i=1

3

∑
v (1, 2, 3)

= 1.

The normalized characteristic function, v, has the properties that the value for a
grand coalition is one and the value for a singleton is zero. The optimal fishing mor-
talities are determined for all possible coalition structures to determine the
characteristic function.

When fishermen form a coalition, we assume that they are rational and therefore
distribute effort between participants until the marginal profits of members of the
coalition are identical. This distribution yields the highest possible benefits from the
coalition. As we assume that fishermen face an identical and constant price for
landed fish, this implies it is optimal to distribute effort in the coalition such that
marginal costs from applying all technologies in the coalition are identical. This re-
quires that a perfect redistribution of effort is possible.14 The redistribution of effort
within the coalition is an extension of Lindroos and Kaitala (2000), where, due to
the cost function, it is only the most efficient player in the coalition that harvests.
Solving the systems such that marginal costs are identical yields constant harvest
shares in each year for members of the coalition (Kronbak 2004). The benefits of
different possible coalitions and optimal strategies are summarised in table 4.

Benefits from the grand coalition exceed the sum of benefits from free riding;
therefore, there are enough benefits from the grand coalition to be distributed in a

Table 4
Benefits of the Seven Possible Coalition Structures and Optimal Strategies

Coalition Strategy, f Net Benefit (Dkr) Free-rider Value (Dkr)

1 0.35 2.30694 *1010 NA
2 0.29 1.67376*1010 NA
3 0.27 1.56076*1010 NA
1,2 0.457 4.25624*1010 2.02757*1010 (f3=0.264)
1,3 0.457 4.12502*1010 2.10943*1010 (f2=0.279)
2,3 0.407 3.35437*1010 2.84559*1010 (f1=0.35)
1,2,3 0.351 7.47167*1010 6.98259*1010 (sum of the above)

Note:  Numbers have been rounded.

14 Individual transferable quotas (ITQ) are a possible solution to the fact that an enormous amount of
information is required to perfectly distribute effort.



Kronbak and Lindroos146

satisfactory way such that the grand coalition is stable (Pintassilgo 2003). By study-
ing the benefits from the seven possible coalit ions, we clearly observe the
technological advantage of Player 1, as this player receives significant higher benefits
than Players 2 and 3, both when acting as a singleton and as a free rider. If the players
are all playing a non-cooperative game, then they will each choose a strategy (fishing
mortality) that optimizes their own payoff as the best response to the fishing mortalities
of the other two players. This yields a Nash equilibrium, where the aggregate fishing
mortality is at its highest level. The optimal strategies clearly indicate that overall fish-
ing mortality is reduced with increasing numbers of members within the coalition.

The average population of the cod stock in the Eastern Baltic Sea for the period
1966 to 1999 was 500,000 tonnes. Our model suggests a long-run population of ap-
proximately 550,000 tonnes in the non-cooperative scenario and approximately
1,200,000 tonnes in the cooperative scenario. The initial population of the cod stock
in this model is set at the 1998 level, which is a very low level of only 174,000
tonnes. Therefore, each of the presented scenarios begins with a period of rebuilding
the population before the long-run equilibrium is reached after around 10 years
(Kronbak 2004). In years with a high abundance of cod, the population reached
1,023,000 tonnes at its peak.15 The cooperative equilibrium population might seem
unreasonably high compared to the population levels in the record year, but the
stock has not been exploited in a way that corresponds to cooperative behaviour.
The non-cooperative simulation has a fishing mortality equivalent of 0.91, while the
average fishing mortality between 1966 and 1999 was 0.89 (ICES 2000). The total
population in the estimations is similarly close to the average population estimated
by researchers (ICES 2000).

The characteristic function and the normalised characteristic function are then
determined. Their values are provided in table 5. From the characteristic function in
table 5, it is apparent that the two-player coalitions yield relatively small benefits
compared to those of the grand coalition. It is also clear that it is relatively impor-
tant, from an economic viewpoint, to have Player 1 join the coalition.

Shapley Value and the Nucleolus

The Shapley value for a single player is defined as the expected marginal contribu-
tion. The Shapley value for player i is defined as follows (Aumann and Dréze 1974):

φ i =
(n − s ) ! (s − 1)!

n!
v(s) − v(s − {i})[ ]

s∈K ,i ∈S
∑ , (11a)

where K is the seven possible coalitions, n is the number of players in the game, and
|s| is the number of players in coalition s. Equation (11a) shows that the Shapley
value is determined by the probability of the different coalitions multiplied by the
marginal contribution to the coalition by player i.

In our specific case, with three players, and because we apply a normalised
characteristic function, the Shapley value becomes:

φ i =
1 − v( j, k )

3
+

v(i, j )

6
+

v(i, k )

6
, i ∈ {1, 2, 3}, j ∈ {1, 2, 3}, k ∈ {1, 2, 3}, i ≠ j ≠ k. (11b)

15 We consider only the years on record, 1966–99 (ICES 2000).
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Equations (11a) and (11b) describe player i’s expected marginal contribution.
The idea of the nucleolus is to minimize the dissatisfaction of the most dissatis-

fied coalition. This is done by finding the ‘lexicographic center’ of the core, which
is the imputation that maximizes the minimum gains to any possible coalition. The
nucleolus has the advantage that it always lies in the core, if the core exits. To deter-
mine the nucleolus, we define the reasonable set, the excess function, and the core.

The reasonable set is defined as imputations that satisfy three equations. First, a
player receives no more than what the player contributes to the coalition. Second,
the imputation is individually rational; that is, all players should be better off with
cooperation. Third, the imputation is Pareto-optimal or group rational; that is, all
benefits are distributed among players. The reasonable set determines the set of fair
distributions of the benefits.

The excess is defined as the difference between the fraction of the benefits of
cooperation that s can obtain for itself and the fraction of benefits of cooperation
that the imputation allocates to s:

e(s, x) = v(s ) − x i
i ∈s
∑ ,  (12)

where x = (x1,x2,x3) is a three-dimensional vector that describes different shares (im-
putations) and xi describes the share to player i. The core is defined by the excess
being negative as an addition to the reasonable set; thus, the core in our case, with
three players, takes the following form:

v(i ) − x i ≤ 0  ∀ i ∈ {1, 2, 3} (individual rationality) (13)

x1 + x2 + x3 = 1 (group rationality)

v(1,2) – x1 – x2 ≤ 0

v(1, 3) − x1 − x3 = v(1, 3) − x1 − (1 − x1 − x2 ) = x2 − 1 + v(1, 3) ≤ 0

v(2, 3) − x2 − x3 = v(2, 3) − x2 − (1 − x1 − x2 ) = x1 − 1 + v(2, 3) ≤ 0.

The individual rationality is always satisfied because v(i) is predefined to be zero
according to equation (10b). The core thus ensures that each player receives at least

Table 5
Characteristic Function and Normalised Characteristic Function

Characteristic Normalized
Coalition Strategy, f Function (Dkr) Char. Function

1 0.35 0 0
2 0.29 0 0
3 0.27 0 0
1,2 0.457 2.7554*109 0.142751
1,3 0.457 2.5732*109 0.133312
2,3 0.407 1.1985*109 0.062092
1,2,3 0.351 1.93021*1010 1

Note: Numbers have been rounded.
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the payoff that it would have received from playing singleton (the individual ratio-
nality). The core also ensures that all the cooperative benefits are shared among the
players (the group rationality). And finally, the core ensures that the players receive
at least what they would have received by joining a two-player coalition [the last
three constraints of equation (13)]. In this specific case, the core does not narrow
down the number of imputations because the core and the reasonable set coincide.
The reason for this is that the contribution from all three players to the grand coali-
tion is relatively high; or to put it another way, the two-player coalitions have
relatively low payoffs. Thus, the gains from a grand coalition are significantly
higher than the gains from a two-player coalition. In a two-player coalition, the
players within and outside the coalition play a Nash game against each other.

The rational ε-core is determined by shrinking the boundaries of the core at the
same rate until it collapses into either a line or a single point. The rational ε-core
consists of the imputations x = (x1,x2,x3) that satisfy:

–x1 ≤ ε, – x2 ≤ ε, – x3 ≤ ε (14a)

v(1,2) – x1 – x2 ≤ ε,

x2 – 1 + v(1,3) ≤ ε,

x1 – 1 + v(2,3) ≤ ε,

x1 + x2 + x3 = 1.

Applying the values from the normalised characteristic function in table 5 yields a
lower bound of ε, which in this case is –0.3333. Setting ε to this lower bound yields
the following specific inequalities:

0.333333 ≤ x1 ≤ 0.604475 (14b)

0.333333 ≤ x2 ≤ 0.533355

0.476084 ≤ x1 + x2 ≤ 0.66667.

Clearly, the only imputation that satisfies these equations is x1 = x2 = x3 = 0.3333,
which is the least rational core. As the boundary of the core collapses to a single
point, this is identical to the nucleolus.

The Shapley value is determined by applying the characteristic function values
to equation (11b). Upon determining the Shapley values, we easily confirm that in
our case the Shapley values lie within the core. Table 6 summarises the distribution
shares determined by the two, one-point solution concepts and the shares received
by free riding relative to cooperative benefits.

None of the two-player coalitions has a very high value determined by the
normalised characteristic function; therefore in this case, the nucleolus distributes
benefits equally among the players. The boundaries of the reasonable set, that are
identical to those of the core, are determined mainly by individual rationality. The
centre of this set then reveals an equal share to the players. The Shapley value is
based on the average contribution to the coalition of players who join or leave it. As
Player 1 has the lowest cost parameter, it contributes more to the coalitions than the
other players, on average; therefore, the Shapley value for Player 1 exceeds the
Shapley value for other players. The results of the game in table 6 clearly illustrate
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the difference between the two, one-point solution concepts. Both results are in the
core and are characterised as fair sharing rules. There is, however, still a problem
because Player 1 is not satisfied with any of the two sharing rules. With the nucleo-
lus sharing rule, Player 1 receives 33.3% of the cooperative benefits, but when free
riding on the grand coalition, Player 1 can receive what corresponds to 38.1% of the
cooperative benefits. Player 1 is clearly better off by free riding. Therefore, the
grand coalition that applies this nucleolus sharing rule is not a stable cooperative so-
lution. With the Shapley value, Player 1 receives 35.9% of the cooperative benefits,
which is also below the free-rider value.

Currently, the Baltic Sea cod fishery does not have a cooperative harvest solu-
tion. This can be explained as instabil i ty by our model if  the benefits  in a
cooperative solution are distributed according to the Shapley or the nucleolus shar-
ing rules. Some players have an incentive to free ride, and as such the cooperative
agreement collapses. The problem is that the sharing rules do not take the stability
of cooperation into consideration when externalities are present. This is a problem
that has also arisen in previous empirical studies [Lindroos and Kaitala (2000);
Arnason, Magnusson, and Agnarsson (2000); Duarte, Brasão, and Pintassilgo
(2000)], but it has not been recognized.16 Brasão, Duarte, and Cunha-e-Sá (2000)
identified this problem, but did not propose a cooperative solution to it.

The Satisfactory Nucleolus

Given that the previous section demonstrated that the Shapley values and the
nucleoli are not necessarily stable against free-rider incentives, we suggest an alter-
native distribution, which has not previously been applied, of the cooperative
benefits solution concept. We define a new set: the satisfactory core. This is done by
redefining the core by applying the concept of individual satisfaction. The indi-
vidual satisfaction ensures players are at least as well off as when free riding. This
is a parallel to the individual rationality which ensures the players are as well off as
when playing as singletons. The breaking point is that players have already agreed
to cooperate, and if they should stick to this agreement, they must not be tempted to
deviate. Hence, the sharing rule should ensure all players receive at least their free-
rider value. Let us define the satisfactory core as follows:

Table 6
Sharing Solutions

Player Shapley Nucleolus Free-rider Shares

1 35.9% 33.3% 38.1%
2 32.3% 33.3% 28.2%
3 31.8% 33.3% 27.1%

Note:  Numbers have been rounded.

16 One could argue that free riding on the grand coalition is shortsighted because the consequences are
that the coalition formed by the non free riders is likely to break down in the long term. If this is the
case, then stability should be discussed in light of Trigger strategies. We prefer instead to search for a
distribution of benefits among members, which is also stable compared to the free-rider value.
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e(s, x) = v(s ) − x i
i ∈s
∑ ≤ 0 (15)

x i ≥
v( freerider)

v(M )
(Individual Satisfaction)

x1 + x2 + x3 = 1.

Here v(freerider) denotes the benefit of leaving the grand coalition, M, and v(M) de-
notes the full cooperative benefits. Individual players should, therefore, receive at
least what they would gain by free riding. Note that the existence of a stable grand coali-
tion is determined by the comparison of grand coalition net benefit and the total
free-rider value. If the grand coalition net benefit is larger, then a stable sharing rule be-
comes easier to find. The point sharing rule hinges on the coalition’s bargaining power.

The satisfactory core deviates from the ordinary core by the individual satisfac-
tion constraint. This constraint ensures that each player receives at least the amount
the player would receive by free riding on the grand coalition. In our specific case,
the free-rider values are credible threats because all two-player coalitions are stable.
This means that if one player leaves the grand coalition, the equilibrium will be such
that there is a two-player coalition and a singleton. The individual satisfaction, ap-
plying values from the normalised characteristic function, takes the following form:

x1 ≥ 0.3809 (16)

x2 ≥ 0.2823

1 – x1 – x2 ≥ 0.2714.

When comparing the sharing rules from table 6 with equation (16), it is evident that
both the Shapley value and the nucleolus violate the individual satisfaction of Player 1.

We define another sharing rule, the satisfactory nucleolus, which is similar to
the nucleolus in the sense that it is defined as the lexicographic center of the satis-
factory ε-core. The results of the satisfactory nucleolus are summarised in table 7.
This table clearly shows that the satisfactory nucleolus is stable against free riding.

A graphic illustration, in a Player 1, Player 2 diagram of the difference between
the core and the satisfactory core and the three applied sharing rules is provided in
figure 1. It should be emphasised that the proportions in the figure are not correct.

In figure 1 the core is bounded by the lines ensuring that all two-player coalitions
receive their joint profit; that is, v(1,2) as a lower bound, [1 – v(2,3)] and [1 – v(1,3)] as
upper bounds. In addition it is recognized that the no more than the total profit can

Table 7
Values for the Satisfactory Nucleolus

Player Satisfactory Nucleolus Free-rider Shares

1 40.3% 38.1%
2 30.4% 28.2%
3 29.3% 27.1%

Note:  Numbers have been rounded.
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be shared among the players (the line from 1 to 1). The satisfactory core is bounded
by the free-rider values; that is, Players 1 and 2 should receive at least their free-
rider values and can receive no more than one minus free-rider values to Player 3.
Figure 1 again underlines the fact that the nucleolus and the Shapley values do not
lie within the satisfactory core. The satisfactory nucleolus is a cooperative sharing
imputation that is stable in the face of free-rider values, as it is defined with the aim
of taking stability into account. The satisfactory nucleolus establishes a connection
between non-cooperative and cooperative games. The satisfactory nucleolus takes
into account the fact that Player 1 can make relatively large gains by free riding on
the grand coalition; therefore, this player receives a larger share of the cooperative
benefits compared to the other two players. The results of our model suggest that the
IBFSC should consider the satisfactory nucleolus as a sharing rule to be adminis-
tered for reaching a stable cooperative solution in the Baltic Sea cod fishery.

Sensitivity Analysis

We tested the robustness of the results by varying different economic and biological
parameters. In particular, we focused on economic parameters such as cost param-
eters, the discount rate, and simulation length. Cost parameters were increased,
decreased, and their mutual proportions changed. None of these changes affected the
theory result that a grand coalition is a possible stable solution. The mutual propor-
tions cost parameters and their levels do, however, affect the stability of the

Figure 1.  The Reasonable Set, Core, and Satisfactory
Core in a Player 1, Player 2 Diagram

Note:  Also shown are the sharing rules: the nucleolus, Shapley value, and satisfactory nucleolus.
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coalition structures when applying different sharing rules. If the cost parameters are
all very low, then the players and the partial coalitions will apply full effort, and the
free-rider values coincide with the singleton benefits. The core and the satisfactory
core are identical and both the Shapley and nucleolus are located in the core and are,
therefore, stable sharing rules. Also, if countries have relatively similar cost param-
eters, then they receive similar benefits by free riding; this makes it more likely that
the existing sharing rules are also located in the satisfactory core. However, if one
country is more efficient than the others, then it receives relatively large benefits
from free riding, which can diminish the satisfactory core significantly, making it
more unlikely that applying the Shapley value and the nucleolus will yield stable
grand coalitions. Increasing the discount rate to 5% or 8% does not change the fact
that it is possible to find a stable cooperative solution. Applying the Shapley value
and the nucleolus does, however, yield unstable grand coalitions. Reducing the
simulation length from 50 to 25 years still provides a stable cooperative solution,
but again we have to search among solutions other than the Shapley value and the
nucleolus to reach stability of the grand coalition.

We shifted the Beverton-Holt stock-recruitment curve up and down by increas-
ing and decreasing the maximum recruits per spawner at low spawning stock size [the
parameter c in equation (4)]. It is still possible to find a stable cooperative solution, but
the Shapley values and the nucleoli are again not among these stable solutions.

We also varied the initial conditions, including the initial abundance of cod, the
stock weight at age, the catch weight at age, and the proportion of mature stock (see
table 2 for initial conditions). The original scenario is based on data from the 1998
level, which is a year along with other more recent years, that had a low abundance
of cod. For the purpose of sensitivity analysis, the initial level was set to the 1982
level, which is the year with the highest abundance of cod on record (ICES 2000).
These simulations do, however, show the same trend as the other results. There ex-
ists a stable grand coalition, but neither the Shapley value nor the nucleolus are
stable solutions.

We can thus conclude that the grand coalition formed by our model is a rather
robust solution, because we can find a stable sharing rule in all the analysed cases.
Whether or not the Shapley values and the nucleoli are among these sharing rules is
more parameter specific.

Conclusions

Our model shows that there are sufficient benefits to make all players better off in
the grand coalition compared to a non-cooperative or partly cooperative solution.
This result is in stark contrast with previous more pessimistic empirical coalitional
game models. The critical point is how the benefits received in a grand coalition are
shared among the players in the game. Two different known one-point sharing rules,
the Shapley value and the nucleolus, do not take into account the stability of the
coalition even though they are both located in the core and are both characterised as
fair sharing rules. If the benefits in the Baltic Sea cod fishery are shared according
to these rules, it is shown to be an unstable solution that does not satisfy all players
of the grand coalition, as one player receives more benefits by free riding. We,
therefore, suggest a new sharing rule that connects the cooperative and non-coopera-
tive games. The main contribution of our paper is the development of a sharing rule
that makes the grand coalition stand-alone stable dealing with three heterogeneous
players. The satisfactory core, as we call the core compromising this sharing rule,
takes into account the stability of the grand coalition by including the free-rider val-
ues as threat points. The corresponding satisfactory nucleolus sharing rule ensures
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that all players receive a share of the cooperative benefits that is at least as large as
their free-rider value; this yields a stable sharing imputation. A cooperative solution
can be stable, but the Achilles’ heel of such a model is the distribution of the ben-
efits; one should be aware that all players are satisfied compared to their free-rider
values. We show that if the satisfactory nucleolus sharing rule is applied to the Bal-
tic Sea cod fishery, a stable solution can be achieved.

The current model is limited to three players. It can be argued that in some
countries fishermen are members of producer organizations (POs) and that these or-
ganizations act as a single group. The assumption might, however, be critical
because not all countries have a high degree of membership in POs. If the number of
players in a coalitional game increases, it most likely becomes more difficult to achieve
a grand coalition solution. Olson (1965) discusses this point as a general problem to
collective goods, while Hannesson (1997) discusses it as a problem in fishery mod-
els, where he defines the critical number of fishermen for a full cooperative
solution. The number of players in a fishery can be reduced by supporting member-
ships of POs and supporting the organisation of POs in developing countries.

One reason for not establishing a grand coalition in the Baltic Sea fisheries
might be that having all fishermen join a grand coalition may generate higher trans-
action costs involved in planning and organising the grand coalition. It also
decreases the likelihood of a stable grand coalition. Organizing a grand coalition
should be performed by existing commissions, such as the IBSFC, and a solution to
the redistribution problem might prove to be the introduction of individual transfer-
able quotas (ITQs).

Although cooperation is achieved on the country level, the fishermen in each
country could still play a competitive game. Therefore, individual incentive incom-
patibility in each country group may also be the reason why the Baltic Sea cod
fishery does not have a cooperative harvest solution. This issue would need a two-
level game structure such as in Kronbak and Lindroos (2006).

The Shapley value, the nucleolus, and the newly developed satisfactory nucleo-
lus only consider the sharing of benefits at the end of the game. It is beyond the
scope of these sharing rules to discuss how the benefits of the grand coalition should
be shared among members over time; this is, however, a very relevant point that
should be subject to future research. A related issue that should be developed further
is the open-loop control that may not match the reality of the fishery game being
played. With feedback control, some unstable sharing rules could become stable.

The model results are stable to changes in both economic and biological param-
eter values, and for many of the tested scenarios the pattern is preserved, namely
that the nucleoli and the Shapley values are not stable solutions. This conclusion can
also be drawn from previous studies [Lindroos and Kaitala (2000); Arnason,
Magnusson, and Agnarsson (2000); Duarte, Brasão, and Pintassilgo (2000)], and we,
therefore find it particularly important to recognize the connection between the shar-
ing rule and the free-rider values, which is accommodated in the development of the
satisfactory nucleolus.
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