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Abstract This paper examines issues in the management
of replenishable resources under uncertainty. The stochastic
resource dynamics are given by the discrete-time counterpart
of the classic logistic growth model. The use of discrete-time
stochastic dynamics allows for a more general characterization
of growth uncertainty than is possible with continuous-time
modeis.

Given a general specification of the resource management
problem, necessary and sufficient conditions for the optimal
management policy are derived. Many important properties of
the management policy are derived and comparisons are made
with the deterministic counterpart policy. An example serves
to illustrate many of the results of the analysis.

Introduction

Recently, papers by Bourguignon (1974), Merton (1975). Bismut
(1975). Brock and Mirman (1972), and Mirman and Zilcha (1975)
have addressed issues in dynamic capital theory under uncer-
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tainty. At the same time. Reed (1974), Lewis (1975). Ludwig
(1977), and Smith (1977) have examined related questions that
arise in the management of replenishable natural resources. In
the natural resource literature. Reed and Ludwig focus attention
on "bang-bang" control policies in continuous time. Lewis pre-
sents the control problem in terms of a finite state Markov pro-
cess and uses numeric techniques to provide illustrative solu-
tions. Finally, Smith examines a class of continuous-time
stochastic resource problems that do not have bang-bang solu-
tions.

The goal of all the papers noted above has been to generalize
the policy results obtained from deterministic models. Perhaps
the most important reason why such generalizations are required
lies in the very stringent requirements of deterministic manage-
ment policies. In particular, ail present as well as future resource
states must be known with certainty. Without this information,
the social planner would never be able to implement the optimal
policy that guarantees to keep the resource on the (generally)
unique stable arm path to the long-run equilibrium steady state.
Within a deterministic setting, any perturbation caused by ran-
dom growth or imperfect observation will in general result in
disaster, in that continued application of the deterministic policy
will virtually guarantee that the appropriate equilibrium state is
not achieved.

In this paper the problem of characterizing the optimal re-
sourqe management policy when the growth process is random
is examined within a discrete model. The use of a discrete model
is important in that it allows for more general characterization
of uncertainty than continuous models and also involves simpler
analytic techniques. The search for optimal policies in contin-
uous-time models involves the introduction of difficult mathe-
matics. Also, for the most part, the random growth models must
be defined in terms of normal and Poisson continuous processes.

The paper begins with the derivation of the difference equation
associated with logistic growth. The assumption that the param-
eters of the model are random variables serves to characterize
the resource as a stochastic process defined by a stochastic dif-
ference equation. In the absence of harvesting, the resource
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model is studied in order to determine stochastic steady-state
properties.

In the next section management is introduced under the as-
sumption of perfect state observability. Necessary and sufficient
conditions for a policy to be optimal are derived. In addition,
general properties of the optimal policy are discussed. The sec-
tion ends with an example that is solved in closed form and that
illustrates the discussion in the section. It is also possible to
compare the optimal policy to the optimal policies from coun-
terpart deterministic models.

The paper concludes with a discussion of useful topics for
future inquiry.

Resource Dynamics

Discrete Deterministic Growth

Since replenishable resources grow continuously and eventually
at a rate less than exponential, many authors have argued that
in the absence of harvesting, the logistic curve provides a rea-
sonable representation of the time path of biomass of many such
resources. The logistic curve is defined by

X, €, / > 0 (I)
+ (X -

where N, is biomass at time s and X and e are respectively, birth
and death parameters. Equation (1) is the solution of the non-
linear differential equation:

dNJdt = \Nr - eNr, M = o = A'o (2)

As can be seen in Figure 1, the time path of A/, is smooth and
asymptotic to Â^ = X/e.

In order to derive the discrete counterpart implied by Equation
(1), we begin by considering some discrete interval [t + h, t].
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FIGURE I. The classic logistic curve.

Taking the first difference of Equation (1), it is possible to derive
the difference equation satisfied by A', as:

- N, = {\N, - (3)

where N,=o = N^, t ^ 0, and a(\h) = {e''^ - \)/kh. If we divide
Equation (3) by h it is quickly verified that, as h -^ 0, Equation
(3) limits to Equation (2). Equation (3) can be usefully rewritten
in the form

(4)

where \ = \a(k), e ^ ta(\). M^o = M). and h is taken as 1.
The graph of Equation (4) is presented in Figure 2 for particular
values of X and e. Note that if \ > 0 this is sufficient to guarantee
positive net growth for small stock sizes in the absence of har-
vesting. The time path of/V, from Equation (4) can be graphically
represented as a sequence of points, all of which would lie on
the smooth logistic curve shown in Eigure 1.

It should be noted that the difference equation

= KN, - (5)
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FIGURE 2. Discrete equivalent of the logistic model.

where / ^ 0 and N,^() - /Voi which "looks" as if it corresponds
to Equation (2) and hence (I), is not in general consistent with
(I). In fact, Equation (5) admits a variety of solutions. Indepen-
dent of €, if X ^ 2 then the resource will "bounce" around the
steady-state equilibrium of N-^ = X/e according to the solution

(X + 2)(X - 2)'^-
4e-

(6)

Similarly, it is straightforward to show that if 1 < \ < 2, then
N, will approach X/e with damped oscillations. Finally, for 0 <
X < 1, the approach toX/e is nonoscillatory. In all of these cases,
the graph of Â , does not coincide with the logistic curve.

Finally, it is worth observing that Equation (4) does not rep-
resent a rederivation of the classic Beverton-Holt model. This
is apparent by comparing the derivation here with the derivation
and parameter restrictions given by Clark (1976. p. 218).

ln the rest of this paper we will restrict our analysis to the
case where the resource dynamics are generated by Equation
(4). Although Equation (5) has some interesting properties, it is
difficult to extend the deterministic analytic results past those
presented above. As might be imagined, it is even more difficult
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to use Equation (5) to obtain insights into replenishable resource
growth and management under uncertainty.

Discrete Stochastic Growth

Formally, the extension of the discrete dynamic analysis to un-
certainty is accomplished by considering X and e in Equations
(I) and (4) as random variables with (potentially) different re-
alizations at successive points in time. Thus {A ,̂, t E. I^} be-
comes a stochastic process defined by the now stochastic dif-
ference equation:

where X, = k,ai\,), e, ^ e,«(X,), and ProbiNj^o = A'o) = 1. In
Equation (7), {X,, e,} represent random variables that have re-
alizations at the beginning of each period t. For the purposes of
this paper, we will focus attention upon situations where all pos-
sible realizations of {X,, e,} are constrained to be strictly positive
and bounded at any point in time and further where the process
generating realizations of {\f, t/} is stationary. This latter as-
sumption implies a regularity in natural activity since it implies
that the underlying forces generating natural activity are time-
invariant.

Properties of the Discrete Stochastic Growth Model

An examination of the properties of the model described by
Equation (7) is most easily undertaken in terms of the inverse
stock process {M~'- f ^ / ^ } - The assumptions for {X,. e,} in-
troduced above guarantee that Â , ^ 0 for all finite t and therefore
that A', ' is well defined. It may well be argued that the as-
sumptions guaranteeing that N,>0 are overly restrictive in that
they guarantee that the resource will never become extinct in
finite time because of natural phenomena. This point is granted;
however, it is noted that the model permits situations where the
resource can be very small for an arbitrarily long period of time.
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In addition, in the management models that we consider later in
this paper, resource extinction is a possible outcome.

Cross-multiplying in Equation (7) and subsequently dividing
through by the product N, + \-N, yields

If we define Zi = N, ', Equation (8) leads to the linear stochastic
difference equation:

z,^i = a,z, + P, (9)

where a, = e'"", {3, - (eA,)(l - ^~'") > 0, and Prob(.':o =
N()~') = 1. It will be noted that 0 <§ a, ^ 1 for all t as a result
of previous assumptions.

Steady-State Properties of the Process { p , . t E I ^ } . E q u a t i o n
(9) could provide the description of a discrete deterministic pro-
cess if (for example) we replaced {\,. e,} by time-invariant non-
random constants {X, e}. In such a situation {a,, p,} would also
be positive constants {a, p} and the deterministic process would
asymptotically approach the steady-state value z^ = p/(l - a)
= e/X. Alternatively, A', would approach N-^ = X/e. The deter-
ministic steady state is seen to be independent of the initial re-
source size Âo and time.

There is a stochastic counterpart to the deterministic steady
state. A stochastic steady state is said to arise if the sequence
of the random variable z, defined by Equation (9) converges to
a random variable z^. the distribution of which is independent
of the initial stock size and time. The remainder of this section
will be devoted to demonstrating that under quite general cir-
cumstances the stochastic process defined by Equation (9) will
converge towards a stochastic steady state.

We begin by developing an expression for the limiting random
variable z.^. In particular.
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r - l[ t~-\ I - 1 r - l - j

zo n « ' + 2 p- n «y
where we follow the convention that

n =1

whenever 5i > 8:. The first term in brackets on the right hand
side of Equation (10) vanishes with probability 1 in the limit since
by assumption, 0 <̂  a/ -̂  1. With this result we conclude that
the limiting random variable is independent of the initial con-
dition ZQ. Thus Equation (10) can be rewritten

J- lim 2 p, n «/ (II)
L J

The expression on the right-hand side of Equation (11) can be
analyzed within a measure theoretic setting. To this end we de-
fine n as a one-dimensional space with typical element w. There
is no important loss in generality (for our purposes) in consid-
ering n as a closed interval in R. We assume that fi is time-
invariant and therefore that il, = O.,+ \ - H. We next define U
as a system of subsets of H forming a a-algebra in Q. In partic-
ular, we will take t/as the system of all right-half open intervals
in n or the Borel sets of il. Finally, we define P as a measure
on C/with the normalization requirement that/*(n) = 1. Hence,
we have the probability space (H, U, P). We extend this to define
the infinite product probability space:

( o . , t / . , />.) = (®r.o n , ®r=o u, ®r.o n (i2)

The existence of such a space is well documented (see, for ex-
ample, Bauer 11972], p. 168). For our purposes, we define the
real random variables {X,, e,} as bounded measurable mappings
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from fl, to R. Since ft, = ft for all /, it follows that the random
variables which we consider are stationary. In particular, the
random variables {X,, e,} are defined by

[X, X]

[6, €]

This implies that {a,, p,} are stationary random variables with 0
^ a, -^ 1 and p, 5> 0 for all /.

The proof of the existence of a limiting random variable .-=.
requires only that one note that under the conditions defined
above, the right-hand side of Equation (II) represents the con-
vergent sum of a sequence of bounded functions, all of which
are defined on (O. , Uy., P^.). The existence of ^^, along with the
strict positivity implied by the assumptions introduced above,
guarantees the existence of A'̂ c.

Some Examples. The model described by Equation (9) is quite
rich with respect to possible characteristics of the stochastic
steady state. In what follows we examine two examples where
closed-form solutions are possible.

The first example demonstrates a situation in which the lim-
iting distribution is degenerate in that the limiting "random var-
iable" is a nonrandom constant. To examine this case we begin
by rewriting Equation (9) to stress the functional dependence
upon {X,, €,}. In particular.

(14)

We next define w, as an element at time / of the stationary set
defined by O - [vr, Tv] C /? ^. The random variables are defined
as hnear functions from ft —* R. In particular,

X, = Xvr, X constant and greater than zero (15^/)

€, = eve, e constant and greater than zero (15/?)
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These definitions imply that a good outcome (large M,) yields a
large birth parameter k, and a large death parameter e,. Hence
if conditions are especially good for growth, they are also good
for the growth of predators and therefore the death parameter
ofthe resource is large. Introducing Equation (15) into (14) yields

z,+ i = e"^"% + k(\ - e-^''-) k = e/\ (16)

Dividing through by k and substituting for the new random var-
iable defined by y, = Ztik - 1 yields

y,^^ = ^- '" 'v, Prob[yo = kN^-' - 1] = 1 (17)

With probability 1, the limiting random variable associated with
the process defined by Equation (17) is degenerate and its dis-
tribution function has all of its mass at y^ = 0. From this we
conclude that in the limit the natural resource is nonrandom with
a steady-state value equal to X/e.

The second example is interesting in that it demonstrates a
variety of characterizations ofthe steady-state distribution func-
tion ofthe limiting random variable. In particular, one result that
emerges is that the distribution function can be constant over a
range of values of the limiting stock random variable. The im-
plication of this result is that there are intervals nested in the
range of the limiting random variable that will never be observed.
To examine this and other cases we begin with Equation (14)
and the assumption that \ , is nonrandom and time-invariant at
the value \ . Uncertainty enters the model with the assumption
that e, has the following stationary point binomial distribution:

e, ^ € Prob = p 0 < € < €

- e Prob = ] - p

Using these assumptions and introducing the change of variables

, (1 - e-^)i€ - €) + €
h
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leads to the following model:

hr+i = hh, + 6, (18)

where

e, = 1 Prob - p
= 0 Prob = \ - p

and

b = e-^ ^ (0, 1)

From the results ofthe general proof introduced above, there is
no loss in generality in assuming //n = 0. Proceeding, we can
write the expression for the limiting random variable h^ as

/i» = 2 b% (19)

The limiting random variable is bounded from above by 1/(1 ~
h) and from below by 0. In addition, it can be shown that for all
b E (0. 1) the possible realizations of/?x form a nondenumerable
set within these bounds. To see this it is sufficient to note that
different realizations of h^ correspond to permutations of the
infinite set {eo, 6| • • •}. Since e, can take one of two possible
values, the number of possible permutations is 2^ where K is
the first infinite integer. Clearly, the set of realizations is not
denumerable.

The set of possible realizations of h-^ may not be connected.
In particular, if/) < 0.5 there will be intervals contained in the
range [0, 1/(1 - b)] that will never be occupied. If, however, h
> 0.5 the range of the limiting random variable will be [0, 1/(1
- b)] and every interval will have positive probability.

The proof of the assertions for b < 0.5 proceeds in the fol-
lowing way. Consider any number b/{\ - b) + b < i with 5 >
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0. ln order for this to be a possible realization of h^ it is necessary
that Co - 0 {otherwise h^ > 1). If we assume that e, = 1 for all
t ^ I, the infinite sum has the value b/i\ - h), which is less
than the number introduced above. Hence, when h < 0.5 the set
of possible realizations of h^ is not connected. Indeed, for any
such h < 0.5 there will be an infinite number of gaps in the range
of h^. This result demonstrates a property which is similar to
that obtained in the study of Cantor sets.

To prove the assertions for the case where h ^ 0.5, we show
that there is always a permutation of {eo, €|, . . .} which will
generate any v in the range [0, 1/(1 - h)]. Without loss of gen-
erality we take €o = 0 and examine only the range [0. bl{,\ -
b)]. Let y take on a value in [0, hl{\ - b)] and consider the
sequence { î, .̂ 2, . . .} where the elements are related by

Xn^y = X,, + /»""'€.+ , (20)

We show that the sequence of .v's will converge to y if the set
{e,, €2, . . .} solves the following problem at each point in time:

max €, subject to jc/ < y / = 1, 2, . . .
subject to e, = 0 or 1

After the first stage, y - xi ^ b/i\ - b) ~ b =^ b-/(\ - b).
After the «th stage, y,, - J:« < h"/{\ - b). Thus, lim «—>«;, .v
- X,, = 0. Of course, the sequence of .v's may converge in a
finite number of steps. In addition, there may be several se-
quences that converge to v if b > 0.5, and the algorithm defined
above will yield only one.

As a last point to this example, we illustrate a closed form
solution to the problem of describing the limiting density function
for /ioc when h - 0.5. We begin by noting that the right-hand
side of Equation (19) can be thought of as an infinite sum of
independent point binomial random variables A\ where

x^ = b" Prob = p J = 0, I, . . .
= 0 Prob = \ - p (21)
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The characteristic function for x, is [pe'^'' + (1 - p)], where /
= V - 1. Since thex, values are independent, the characteristic
function for h^ is given by

(22)

Although Equation (22) is formidable to analyze, when b = p
= 0.5 it reduces to:

e'̂ '̂  - 1
4>UT) - - ^ (23)

/2T

Equation (23) represents the characteristic function of a random
variable uniformly distributed over the interval [0. 2]. Thus h^
is uniformly distributed with density

f{h^) = 0.5 /i. 6 [0, 2]
= 0 otherwise (24)

It follows that the density of N^ will be inverse uniform in the
range

L(l - ^-')(€ - €) + e '

For large values of \ the range approaches [\/€ , X/c]. In the
case where uncertainty is not large [i.e., (I - €) is small], the
probability mass will be tightly packed around \/e.

Optimal Resource Management Policies Under Uncertainty

Statement of the Problem

In this section we state the resource management problem posed
to the central manager under uncertainty. In the section that
follows we derive a set of conditions that characterize the op-
timal extraction policy. After demonstrating many properties of
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the solution we conclude with an example that can be solved in
closed form for the optimal management policy. The properties
of this policy are studied in some detail.

The management problem is expressed in the following way.
In the absence of harvesting, the resource is assumed to grow
according to the stochastic difference equation given by (7). The
introduction of extraction implies that if the amount C, is har-
vested at time / then, residually, the amount X, = N, - Ct be-
comes the stock that grows according to Equation (7). The se-
quence of harvests {C,, / E /^} is chosen to maximize the
expected present discounted value of benefits from harvesting
where extraction benefits are measured by the utility associated
with the extraction at any point in time.

Before turning to the mathematical statement of the problem,
two points should be noted. First, it is assumed that the social
manager can perfectly observe all resource states and that the
distribution of the random variables {k,. e,} is stationary and
known to the planner. Second, although the foregoing analysis
ignored this point, it is possible to include extraction costs into
the model in a limited sense. In particular, if extraction costs
represent a constant proportion of the extracted resource and
are effectively payable in units of the resource then all of the
results generated in the sections that follow will continue to hold.
In such a situation, benefits are defined over net extraction.

Formally, the programming problem faced by the social man-
ager can be written

max E\^h'U{C,)\ (25)

subject to

(1 + \,){N, -

subject to
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N,, C, ^ 0

In (25), E is the expectations operator defined over infinite vec-
tors {Co, . . .} and 5 is the constant discount factor satisfying 0
< 8 < 1. The twice continuously differentiable utility function
in (25) is assumed to satisfy the following conditions:

lim U'ix) = X

lim U'ix) - 0
(26)

U"{x) < 0 for all x

lim Uix) - - oc

The last condition, while not necessary for the optimaiity ar-
guments that follow (indeed, it provides some complications)
introduces a useful conservation motive into the decision making
process. Finally, we continue to assume that k, and e, are strictly
positive and bounded for each t by IX. \ ] and [c, e]. Given the
nonnegativity constraint, this implies that the resource growth
process given in Equation (25) is strictly conca^ve in net stock
(Â , - C,) and N^+i is strictly bounded by [0, X/c].

General Characteristics of the Solution to Equation (25)

The Optimal Policy Function. The solution to Equation (25) in-
volves the determination of an optimal policy function C, =
/(N,, t) that is feasible and that relates the optimal extraction
at time / to the size of the stock at time / and calendar time.
However, given the way in which the problem is posed in Equa-
tion (25). the optimal policy function will be independent of ex-
plicit calendar time and can be written C, ^ fiN,).

The proof of this assertion lies in first noting that the utility
function is explicitly independent of time and the planning ho-
rizon is infinite. These points, combined with the facts that the
processes generating {X,, e,} are stationary and the discount fac-
tor is constant, imply that the variable / simply indexes the se-
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quence of states and that a transformation of this index would
not affect the decision making process.

Existence of a Feasible Policy. The set of feasible policies is not
denumerable. For example, any policy of the form C, = kN,
where k is a positive constant satisfying 0 < ^ < 1 is feasible in
that the growth process will yield C,, N,>Q for all fmite t. See,
for example, Mirman and Zilcha (1975).

Finiteness of the Solution. Define V(No) as the optimized value
of the objective function in Equation (25). This will be termed
the optimal value futu tion. It is possible to demonstrate that as
long as Ni,) is positive and finite. V(A'o) will be finite.

To prove the finiteness assertion, it is sufficient to demonstrate
that there is a feasible solution to Equation (25) such that V(7V())
is finite, ln particular, choose the feasible policy C, = kN, where
^issufficiently small such that (1 + X)(l - A) > 1. The preceding
proofs, which demonstrate that N, approaches a limiting random
variable defined over a strictly positive interval, continue to
hold. This guarantees that C, will be strictly bounded from below
by a positive constant, ln addition, the boundedness of C, from
above is guaranteed by the fact that N, is bounded by K/e. Hence
UiC) can take values only in a finite range and the infinite sum
E 2r=o ^'UiC,) must converge. Since this sum converges for a
feasible policy it must also converge for the optimal policy and
V(A'o) is fmite.

This result is very strong. It guarantees that even though
lim.v^o Uix) = -X and though it may be optimal to asymptot-
ically extinguish the resource, it will always be the case that
lim,^^ E[b'U{C,)] = 0 when C, is chosen according to the op-
timal policy function.

Vf A'oJ fs an Increasing Concave and Differentiable Function of
No. The fact that V{No) is an increasing function of M) follows
immediately from the assumption of everywhere positive mar-
ginal utilities. The following argument serves to demonstrate that
V(7Vo) is differentiable. The discussion that follows is directly
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patterned after the proof of a similar result in Mirman and Zilcha
(1975).

Let {Cl] represent an optimal consumption sequence starting
from initial stock size No. Let AÂ n be some small positive
amount of stock and {C,} be a feasible consumption policy de-
fined by Co = Co + ANo and C, = C, for r = 1,2 The
expression for the difference in the optimal value function is

(27)

where the inequality follows from the fact that {C,} may not be
optimal. By the definition of {C,}, Equation (27) can be rewritten

+ AÂ n) - V{No) ^ UiCo + ANo) - U{Co)
+ oi^No) (28)

The last equality follows from the differentiability of U. Dividing
though Equation (28) by AA'o and taking the limit as AA'o -^ 0
yields

V'(A'o)^ U'iCu) = U'UiNo)] (29)

where /( ) is the optimal policy function. Since an identical ar-
gument can be used to show that for a small stock redtwtion
(AA/o), V'(Nn) ^ U'UiN^,)], we conclude that ViN^) is differ-
entiable. with the derivative given by

V'lATo) = U'UiN,,)] (30)

Finally, the concavity of V(7Vo) can be established in the fol-
lowing way. Let {C/} denote an optimal policy starting from
stock size Ny' and {C,'] denote the optimal policy from NvT- If
0 < a < 1 then {aCt'} + {(! - a)C,^} is a feasible policy starting
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from aTV,,' + (1 - ct)Na^, However, since the feasible policy so
described may not be optimai, it follows that

- a)Cr) (31)
/ - O

Using the fact that U is concave, the right-hand side of Equation
(31) can be rewritten to yield

.' + (1 - a)No']
^ a £ 2 5't/(C') + {1 - a)

- aV(N,,') + (1 - a)V(No^) (32)

This establishes the concavity of V(7Vo).

The Optimal Policy Function C, = f{N,) is Continuous and In-
creasing with 0 = /(O). The fact that 0 = /(O) follows imme-
diately from the non-negativity constraints. The fact that /( )
must be increasing in N, follows from the result proved above—
that V'(N) exists and is positive and hence that there is always
a feasible increasing policy function that dominates as constant
or decreasing policy function. Continuity of/( ) is established
in the following way.

Define XiNi) = N, - f{N,). By the feasibility constraints and
the finiteness of V it follows that X{ ) must be an increasing
function of A ,̂. Next, defme the upper and lower limits of A'and
C at No by

= lim f(N) ^ lim
N T Nil -V i Nil

= lim X(N) < lim
N t No N i N

The inequalities follow from the fact that both X and / are in-
creasing in A',)- By definition,
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Co" + Xo = No
Co" + X^ = No

Subtracting these two equations we obtain

(Co" - Co") + (̂ o" - X^) = 0

Since X and / are increasing functions it follows that the only
way for equality to hold is if Co = Co and Xo~ ^ Xo . Thus,
continuity of the optimal policy function is established.

Identification of the Optimal Policy

Having described many ofthe characteristics ofthe optimal pol-
icy, we now turn to the development of the necessary and suf-
ficient conditions for a policy to be optimal.

Using a Dynamic Programming argument, the optimal value
function can be written

V(No) = max UiCo) + 5 £ V , , _ , . . r—- (33)
Co L \ ' + e(^o - Co) / J

Since V{ ) is differentiable and concave, the term in square
brackets is a concave differentiable function of Co in the range
0 < Co ^ No- Indeed, since we know that V{ ) is finite and
Iim.v^o Uix) = -3c, we can conclude that the Co which maxi-
mizes the term in square brackets must lie in the open interval
(0, No). Finally, since the term in square brackets is a concave
differentiable function, the choice of Co will be unique.

Differentiating in Equation (33) we obtain

Now. if we recognize that Equation (34) must be true for any
time period, we can drop the time subscript from Co. Further,
we can replace every occurrence of C in Equation (34) with f{N),
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the optimal policy function. Finally, rewriting V"( ) according
to Equation (27), we arrive at the following statement of the
necessary condition:

(35)

Equation (35) is a functional equation which, in principle, can
be used to solve for the optimal policy function flN). It can be
interpreted as requiring that the optimal policy should leave no
opportunity for gain from an intertemporal redistribution of re-
sources arising from an intertemporal reallocation of consump-
tion.

Satisfaction of Equation (35) by a feasible policy function is
also a sufficient condition for the feasible policy function to be
the optimal policy function. In order to demonstrate sufficiency
we show that the value of discounted benefits from the optimal
policy sequence {C,} exceeds the value of discounted benefits
from any other feasible policy sequence {C,} given No. Since the
optimal value function is known to be finite (see section above,
"Finiteness ofthe Solution"), we assume that {C,} yields a finite
value for discounted benefits. Alternative feasible policies where
the value of benefits may diverge to negative infinity are of no
interest.

In terms of the above discussion, the establishment of suffi-
ciency requires that

5'[t/(C,) - (/(C;)]>0 (36)

Since Ui ) is concave it satisfies the following inequality for any
r:

U{C,) ^ U'{C,)(C, - C,) (37)
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Thus in order to demonstrate the validity of Equation (36) it is
sufficient to demonstrate that

E 2 b'U'{Cr){C, - C,) > 0 (38)
= 0

In order to evaluate Equation (38) we require information on the
difference C, - Cr. Inverting the constraint in Equation (25) we
obtain

/V, - C, - '"' • > 0 09b)
\ + kr - e,N,+ i

Combining Equations (39a) and 09b) we obtain

A * / V - . t

r - r = / v - / v - 1 -I- \ , - e,A',+ i

Nt.^ (40)

Notice that -N,.^i/(\ + k, - e,A ,̂+ i) is a concave function of
N,+ i in the range of possible values of N,+ i. In addition, the
sufficiency condition would still be satisfied if the inequality in
(38) was replaced by an expression which, for each t, was less
than C, - C,. In particular, using concavity. Equation (40) can
be rewritten as an inequality;

Substituting the right-hand side of Equation (41) into (38), the
sufficiency condition reduces to
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i h'U'iC) \N,- N,- ^^7' r^^^-*!,'/>'l ^ 0

(42)

Since No = No> Equation (42) can be rewritten

£. y g , - , ( M -_N,)(\ + X , - , )
.-Ti (1 + X, - . - ir-iN,)-

- ^ - > ^ 1 0 (43)

Next, we use the growth constraint to substitute for N, in the
term in square brackets in Equation {43) to obtain

y g,- , (A ,̂ "_M)(1 + X;-,)
,T', (1 + X , - , - e,_,A^,)2

Let us denote the term in large brackets in Equation (44) by J,.
Depending on the realizations of the random variables, J, can be
positive, negative, or zero, as can A', - N,. However, we can
rewrite the sufficiency condition as

^ 2 ' [ ( l + X , . . - e , _ , W ^ J [sgn(y,) . / J ^ 0

(45)

where sgn(J;) = - 1 whenever 7, < 0, 1 whenever J, > 0. and
0 whenever/, = 0. The term in small brackets in Equation (45)
is now nonnegative for all t. The sufficiency requirement is made
no less stringent if we replace the term in large brackets in Equa-
tion (45) by a term that is always smaller. The following two
replacements are made conditional on the sign of 7,:
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H; = M_, - C-, - (A',-, - c,_
fr - N,)i\ + X , - , ) ^ .^ ^
~T = 77-3 (46a)

whenever J, > 0, and

/ /r - -(/V,-, - C,

7775 (46/?)

whenever J, < 0. Using the replacements defined in Equation
(46) and the definition of sgn(y,), the sufficiency condition can
be expressed as

^ y g, , UgniJMH; ~ HP + H; - H;

• sgnC/,) • 7, > 0 iAla)

Since it is always true that EUix)g{x, y)] = E{fix)E[g{x, y) \ ,v]},
and further, since H^ and //," are functions only o( N,-i (be-
cause C,_i is a function of M-1 )T Equation (47a) can be rewritten

g , , g + H; - H,

/=i L 2 J

(476)

Since the second expectation in Equation (47/?) is zero from the
necessary condition, sufficiency is established. It should be
stressed that the sgn( ) operator in no way affects the expec-
tations.

An Example

As an example of the foregoing analysis, we consider the case
where benefits are evaluated according to the isoelastic utility
function:

- -AlC, A > 0 (48)
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Substituting Equation (45) and its derivative into Equation (35)
and solving the resulting functional equation yields the optimal
policy function:

C, = KN,) = {\ - k)N, k = £[6/(I + \)]"^ (49)

Some interesting properties ofthe optimal extraction policy are
worth noting. In the first place, it will be noted that the extraction
decision is independent of the random death variable e,. Sec-
ondly, the optimal amount of extraction decreases as the vari-
ance in the growth parameter k, increases. Finally, if we take a
deterministic model as one with parameters given by the means
of {\,, €,} then, for any stock size, deterministic extraction will
be greater than extraction under uncertainty. This suggests that
the certainty equivalent of this stochastic model does not cor-
respond to the mean ofthe stochastic model.

To establish the second property it is sufficient to prove that
£̂ [1/(1 + X,)] is an increasing function ofthe second central mo-
ment (U2) of \,. Dropping the time subscript and expanding yields

£•[1/(1 + k)] = E[exp(-\)]
. . . (50)

As required, the right-hand side is an increasing function of U2.
To establish the third property it is sufficient to note that the

functional equation holds in the special case of certainty. Thus,
defining k,,, as the mean of X, the optimal deterministic man-
agement policy is

C, = i \ - kJNr k,,, = [8/(1 + X,,,)]"^ (51)

By Jensen's Inequality, k > k,,, and the result is established.

Directions for Future Research

Rather than summarizing the results and conclusions that have
been reached in the course of this paper, we will conclude by
discussing directions for future research.
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In the first place, it is important to try to extend the analysis
to consider the case where desired and actual extraction may
differ. I have made a first pass at this problem and considered
the case where a given amount of extraction may appear as a
greater amount in terms of its effects on the growth process.
This situation would arise if, for example, the actual harvest in
fisheries contained proportionately too many females or if the
actual harvesting activities damaged unextracted members ofthe
species or feeding and breeding grounds in a probabilistic fash-
ion. The harder problem of introducing an explicit production
technology with random marginal products and the like remains
to be solved.

Second, it would be useful if the model could be used to gain
some insight into all of the above cases when decisions are de-
centralized and one is searching for an extraction policy that
maximizes the expected present discounted value of profits.

Third, it would be interesting to use the models introduced
above and those that have been suggested to evaluate past policy
towards extraction. The linear properties ofthe inverse growth
process suggest that existing econometric techniques (for ex-
ample, random coefficient models) could be adapted to obtain
estimates of the distribution of the parameters that govern the
growth processes offish species, forests, and other replenishable
resources. These estimates could provide a valuable contribution
to public policy decisions.

Finally, many results remain to be derived from the present
models. For example, what are the certainty equivalence rela-
tionships contained in these models? How are risk and the dis-
count rate traded off in an optimal policy? The answers to these
questions will provide potentially useful input for policy deci-
sions.
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