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Abstract  This paper provides an incremental extension of a stochastic renew-
able resource model (Pindyck 1984) to include population dynamics research;
i.e. , the rate of accrual of information regarding the stochastic evolution of the
stock, as a dynamic choice variable. While Pindyck models variance in stock
growth as an exogenous parameter, our formulation endogenizes this variance
and characterizes the impact of scientific information accrual on both the har-
vest decision and the present value of rents resulting from harvest activity. We
illustrate the theoretical existence of an internal optimum in research effort us-
ing a numerical example.
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“Good fisheries management depends on acquiring high-quality information
on an ongoing basis. These data provide the backbone of the science used in
regulation”   (NRC 2004).

Introduction

Any assessment of the efficiency of renewable resource use should include manage-
ment costs, which can be significant relative to benefits flowing from the resource.
For example, Arnason, Hannesson, and Schrank (2000) report management costs
ranging from 3–25% of gross revenues from fishing in various European countries.
Needless to say, the magnitude of such costs relative to rents is much higher. When
fisheries management costs are significant, conventional bioeconomic models which
ignore them may lead to seriously biased fishery policy recommendations (Arnason
2003).

The total cost associated with fisheries management typically includes three
broad components: (i) research (e.g. , data collection and analysis), (ii) management
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(e.g. , formulation and implementation of management plans), and (iii) enforcement
(of management rules).1 According to a recent study of 11 OECD countries, these
three components, on average, accounted for 34%, 26.4%, and 39.6%, respectively,
of a total of US$2.45 billion in 1999 (OECD 2003).

In 1999, the total cost of U.S. fisheries management was $613.5 million, 17% of
the value of total fish landings (OECD 2003). As shown in table 1, the cost associ-
ated with information collection and analysis accounted for 24% ($147 million) of
the total. Clearly, the production of scientific information constitutes an important
subset of management costs. A recent NRC (2004) report points out that the bulk of
the cost of information gathering is borne by the central regulatory authority in U.S.
fisheries through Congressional appropriations.

Governing agencies in fisheries and other natural resource systems are increas-
ingly subject to criticisms regarding the efficacy of their actions and the accuracy of
the information on which they are based. Arnason, Hannesson, and Schrank’s (2000)
analysis questions the cost effectiveness of management expenditures in general.
Cost recovery programs cause the burden of government-led research programs to
be borne by industry participants, therefore heightening the level of scrutiny. Since
1991, the Australian Fisheries Management Authority has faced the explicit objec-
tive of “efficient and cost-effective management,” “accountability to the industry,”
and “achievement of government cost recovery targets” (Gooday and Galeano
2003), and the management agency carries out studies to ascertain whether these ob-
jectives are being met (Rohan 1999). Currently, cost recovery programs in Australia,
Iceland, and New Zealand recoup a significant proportion of costs from industry. In
1999, the proportion of costs recovered was 23% in Australia, 37% in Iceland, and
50% in New Zealand (OECD 2003).

Alternatives to explicit and costly information gathering on the part of regula-

1 For detailed discussions, see OCED (2003) and Schrank, Arnason, and Hannesson (2003).

Table 1
U.S. Fisheries Management Cost in FY 2000

Funding
Category ($ million) Percent

Research Services 202.5 33.01
Information collection and analysis 146.9 23.94
Fishing industry information 31.2 5.09
Information analyses and dissemination 24.4 3.98

Management Services 240.5 39.20
Conservation and management of the fishery 142.5 23.23
State and industry assistance program 12.4 2.02
Disaster assistance 64.7 10.55
Other 20.9 3.40

Enforcement Services 170.5 27.79

Total Cost 613.5 100.00

Source: OECD (2003).
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tors include the use of harvest (logbook) data (NRC 2004) as well as market signals,
such as the price of transferable quotas (Batstone and Sharp 2003). In industries
with low levels of rents, explicit scientific research may not be cost effective, and it
may behoove regulators to opt for a conservative approach based on low-resolution
estimates of stock abundance (Rose 2002).

This paper extends classical stochastic bioeconomic models (Andersen 1982;
Andersen and Sutinen 1984; and Pindyck 1984) to include population research as a
dynamic choice variable. There are typically two types of uncertainty associated
with a resource stock (x): the uncertainty resulting from the inability to accurately
measure stock size x(t) at a specific point in time, and the uncertainty regarding the
intertemporal stock growth from t to t + ∆t. Fishery research involves various activi-
ties ( e.g. , stock sampling and quantification per se ,  as well as data analysis,
modeling, and biological research) to reduce these uncertainties. The current study
focuses on the latter type of uncertainty (growth uncertainty) and considers the ben-
efits associated with the production of scientific information related to stock
dynamics. For example, research on the effects of changing environmental factors
(e.g. , climate) on fish growth may reduce uncertainty regarding the growth process,
and data collection and the development of statistical models increases the empirical
understanding of stock-recruitment relationships.

The extended model presented here defines the optimal time path of research
and identifies the relationship between the harvesting decision and improvements in
information resulting from research. The model can be used to estimate the value of
information regarding natural growth processes, which, in turn, may be used as a
justification for cost recovery. While the most natural application of the following
analysis is to fisheries, the concepts developed here are relevant to a variety of re-
newable resources,  such as harvested forestlands,  where growth may vary
stochastically with climatic conditions and groundwater tables where regeneration
rates are uncertain.

We limit our characterization of the benefits of population dynamics research to
those emerging from extractive resource use, or “harvest.” It would be relatively
straightforward to extend the analysis to a resource in which the stock has passive or
non-extractive use, though it is not clear in those instances what policy variables
would be affected by the improved information. Biological research also gives rise
to other values not included in the present analysis.

The next section reviews the literature on bioeconomic analysis under uncer-
tainty. The third section presents a model of a stock with known abundance but
unknown growth (and hence unknown future abundance). Optimality conditions
with respect to harvest and costly information gathering are derived, as well as a
rate of return expression for such research. The fourth section illustrates the results
with numerical simulations, and the final section concludes.

Literature Review

Bioeconomic models (Clark 1980, 1990) combine depictions of biological processes
with representations of the behavior of economic agents. Because the behavior of a
population of harvesters often deviates from social objectives (e.g. , aggregate dy-
namic efficiency), much of the literature focuses on strategies to mitigate the
tendency toward rent dissipation (Gordon 1954). Stock dynamics constitute a dy-
namic biological constraint on the extractive process. The level of biomass is a
stock, viewed by economists as a capital asset, which generates flows in the form of
growth and harvest (i.e. , rents or consumer and producer surplus).

Renewable resource economics has largely assumed deterministic stocks and
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growth processes and focused on dynamically efficient or second-best harvesting
policies. However, most natural systems exhibit stochasticity and/or imperfect infor-
mation regarding either stocks or flows. Economic variables, such as output prices
(Andersen 1982; McGough, Plantinga, and Provencher 2004), wages paid to labor
and other factors, and the actual level of withdrawals are also stochastic in nature or
imperfectly observed by decision makers. A growing body of literature explicitly
models these sources of stochasticity and uncertainty, exploring their impact on sys-
tem behavior and the effectiveness of different management approaches. Andersen
and Sutinen (1984) provide a review of stochastic bioeconomic models. They con-
clude the effects of incorporating uncertainty into bioeconomic analysis are often
ambiguous, but in some instances differ little from analogous deterministic results.

While the simplest models for stock and recruitment ignore year-to-year fluc-
tuations in recruitment, fisheries data suggest that such fluctuations may be quite
large. Ludwig and Walters (1982) examine optimal harvesting subject to imprecise
parameter estimates for stock-recruitment relationships. They show the presence of
such uncertainty can lead to striking changes in the estimated optimal escapement.
When only a narrow range of spawning stocks has been observed, there is consider-
able uncertainty about how recruitment per spawner will vary with spawning stock.
The optimal policy involves deliberate probing or experimentation with the spawn-
ing stock so as to improve the predictive ability of the model. The optimal number
of spawners can be at least twice the number predicted by deterministic theory.

Pindyck (1984) examines the implications of uncertainty regarding the growth
rate of stock for the optimal level of stock and harvest. The study shows that sto-
chastic fluctuations add a risk premium to the rate of return required to keep a unit
of stock in situ, and consequently a lower standing stock is maintained as variance
increases. Optimal harvest can increase, decrease, or be left unchanged as the vari-
ance of the fluctuations increases, depending on the functional forms of biological
growth and market demand.

As an alternative to a dynamic path of harvest and/or escapement, Sandal and
Steinshamn (1997) extend Pindyck’s analysis by developing a “feedback rule” for
the management of stochastically evolving stocks; i.e. , a harvest policy that is de-
pendent upon current stock levels. This “reactive” strategy mitigates the negative
impacts of uncertainty compared to an open-loop solution in which a harvest path is
determined in advance.

Saphores (2003) explores the effect of uncertainty on harvest decisions. In their
model, uncertainty does not (as one might expect) lead to a monotonic change in the
optimal harvest rate. Rather, increases in uncertainty at low levels lead to conserva-
tive behavior, but at high levels of uncertainty the possibility of extinction leads to
more aggressive harvest.

Model

Following Pindyck (1984), we model the dynamics of an exploited biomass, x, as

dx = [ f (x) − h]dt + σ(y)xdz, (1)

where f(·)  is the growth function, h is the rate of harvest, σ(·) is a deterministic func-
tion describing variance in stock growth, y is the accumulated knowledge regarding
the growth function, and z is a Wiener process. Equation (1) implies the current fish
stock is known with certainty, but the instantaneous change in the stock is, in part,
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random. That is, we consider only growth uncertainty; population dynamics research
in our model constitutes an incremental improvement in the information regarding
the stock level in subsequent periods.2

Knowledge reduces the uncertainty regarding evolution of the stock:

dσ(y)

dy
≤ 0, (2)

and the accrual of knowledge is linear in research effort, s, at time t:3

dy = sdt. (3)

The social planner manages the stock as a capital asset so as to maximize the
present value of social surplus; i.e. , the area under the demand curve for extracted
stock minus the cost of extractive and other inputs (Miranda and Fackler 2002). For
dynamic optimality, one must consider not only static costs incurred by harvesters,
but also indirect ones (the stock externality and dynamic opportunity costs related to
intertemporal allocation of resource; see equations (15) and (19) below). The social
surplus function is:

Π(x, h, s) = [D−1(η)
0

h

∫ − c(x)]dη − w(s), (4)

where D(p) (= h) is the demand for output as a function of its price, p; c(·) is the
marginal cost of harvest, which varies inversely with stock size; and w is the total
expenditure on research (∂w/∂s > 0 and ∂2w/∂s2 ≥ 0).

The social planner’s value function is:

V (x, y) = maxh, s Et Π(x, h, s)e−δ (τ− t )dτ
t

∞

∫ , (5)

where δ is the social discount rate. The manager’s problem is to maximize V in
equation (5), subject to stock dynamics (equation [1]) and the knowledge accrual
process [equations [3]). The problem has two control variables, h and s, and two
state variables, x and y.

The Bellman equation for this constrained optimization is:

δV (x, y) = maxh, s Π(x, h, s) +
1

dt
E[dV (x, y)]









. (6)

2 We understand that stock assessment generally covers many different forms of uncertainties. Indeed,
the current fish stock is often uncertain.
3 This specification is for simplicity. In some cases, knowledge accumulation may be nonlinear. For ex-
ample, it may follow an S-shaped (logistic) path.
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We use Ito’s Lemma to expand dV and obtain:

dV =
∂V

∂t
dt +

∂V

∂x
dx +

∂V

∂y
dy +

1

2

∂2V

∂x2
(dx)2 +

∂2V

∂y2
(dy)2









 +

∂2V

∂x∂y
dxdy. (7)

Substituting equation (1) for dx and equation (3) for dy into equation (7), and noting
that V is not an explicit function of t (∂V/∂t = 0),4 we have:

dV = f (x) − h[ ] ∂V

∂x
+ s

∂V

∂y
+

1

2
σ2 (y)x2

∂2V

∂x2









dt + σ(y)x
∂V

∂x
dz. (8)

Next, substituting equation (8) into (6) and noting that E(dz) = 0, the optimization
problem (equation [6]) becomes:

δV = maxh, s D−1(η)dη
0

h

∫ − c(x)h − w(s)





(9)

+  [ f (x) − h]
∂V

∂x
+ s

∂V

∂y
+

1

2
σ2 (y)x2

∂2V

∂x2





.

Maximizing the right-hand side (RHS) of equation (9) with respect to harvest, h,
and the research input, s, gives rise to the first-order conditions:

D−1(h) − c(x) −
∂V

∂x
= 0, (10)

dw(s)

ds
−

∂V

∂y
= 0. (11)

Since  D –1(h) = p , equation (10) is the standard optimality condition for h (Pindyck
1984, eq.12, p. 293): Under optimal management, the shadow value of stock x (i.e. ,
the social value of the marginal unit of in situ stock) is equal to the marginal net
benefit (i.e. , surplus) from extraction.

Equation (11) is the optimality condition for population research (s). The mar-
ginal cost of research is equal to its marginal benefit; i.e., the increase in value
function, V, with respect to an increase in cumulative knowledge (y), resulting from
instantaneous research effort, s.

The optimality conditions for state variables, x and y, illuminate the relationship
between harvesting and research. Letting h* and s* be the solutions to equations (10)
and (11), we can rewrite equation (9) as:

δV = D−1(η)dη
0

h*

∫ − c(x)h* − w(s* ) + [ f (x) − h* ]
∂V

∂x
+ s

∂V

∂y
+

1

2
σ2 (y)x2

∂2V

∂x2
. (12)

4 This is an autonomous infinite-horizon problem (Judd 1998).
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Differentiating equation (12) with respect to x yields:

δ
∂V

∂x
= D−1(h* ) − c(x) −

∂V

∂x











∂h*

∂x
−

dc(x)

dx
h* +

df (x)

dx

∂V

∂x
(13)

+  σ2 (y)x
∂2V

∂x2
+ [ f (x) − h* ]

∂2V

∂x2
+ s

∂2V

∂x∂y
+

1

2
σ2 (y)x2

∂3V

∂x3
,

noting that:

1

dt
Ed

∂V

∂x







= [ f (x) − h* ]
∂2V

∂x2
+ s

∂2V

∂x∂y
+

1

2
σ2 (y)x2

∂3V

∂x3
. (14)

Substituting equations (10) and (14) into (13) yields the optimality condition for
stock x:

1

dt
Ed[ p − c(x)] +

df (x)

dx

∂V

∂x
−

dc(x)

dx
h* = δ

∂V

∂x
− σ2 (y)x

∂2V

∂x2
. (15)

The first term on the left-hand side (LHS) of equation (15) is the rate of appreciation
of the in situ value of the stock; i.e. , the rate of growth in the marginal net rents as-
sociated with harvest. This is analogous to the rate of change in the co-state variable
in an optimal control problem solved with a current-value Hamiltonian (Clark 1990,
p. 107); Pindyck (1984) refers to this first term as “the absolute rate of capital gain.”
The second LHS term represents the gain in value from stock growth, and the last
LHS term captures the stock externality—the reduction in harvest costs associated
with a marginal unit of stock. The two terms on the RHS represent, respectively, the
opportunity cost (i.e. , foregone interest earnings) of resource left in situ and the risk
premium; i.e. , the amount the resource manager would pay for perfect information
about stock growth.

Next, we derive the rate of return condition by rewriting equation (15) as:

1

dt
Ed[ p − c(x)]

p − c(x)
+

df (x)

dx
−

dc(x)

dx
h*

p − c(x)
= δ + σ2 (y)xA(x, y), (16)

where A(x, y) = –(∂2V/∂x2)/(∂V/∂x) is the index of absolute risk aversion. Expression
(16) is essentially the same as that in Pindyck (1984, eq.18, p. 294). In the presence
of stock growth uncertainty, the social discount rate, δ, is effectively augmented by
the risk premium (the last term on the RHS). In our case, this risk premium depends
upon accrued knowledge, y. An increase in y leads to a decrease in stock growth
variance, σ2, according to equation (2), thus lowering the risk premium. According
to Clark and Munro (1975), the rate of return condition specifies that the optimal
stock, x*, is the one at which the “own rate of return” of the stock5 (LHS of equation
[16]) equals the social rate of discount, augmented by the risk premium.

5 The return associated with holding a unit of stock (Pindyck 1984).
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Differentiating equation (12) with respect to y, we obtain:

δ
∂V

∂y
= D−1(h* ) − c(x) −

∂V

∂x











∂h*

∂y
+ σ(y)

dσ(y)

dy
x2

∂2V

∂x2
(17)

+  [ f (x) − h* ]
∂2V

∂x∂y
+ s

∂2V

∂y2
+

1

2
σ2 (y)x2

∂3V

∂x2∂y
.

Noting that:

1

dt
Ed(

∂V

∂y
) = [ f (x) − h* ]

∂2V

∂x∂y
+ s

∂2V

∂y2
+

1

2
σ2 (y)x2

∂3V

∂x2∂y
(18)

and substituting equations (10) and (18) into (17) gives the optimal condition for y:

1

dt
Ed

∂V

∂y







= δ
∂V

∂y
− σ

dσ
dy

x2
∂2V

∂x2
. (19)

The LHS of equation (19) represents the capital gain resulting from research. On the
RHS, the first term is the opportunity cost of research, and the second term captures,
in terms of reduction of the risk premium, what the resource manager would pay to
eliminate stock growth uncertainty.

Again, we can obtain the rate of return condition for y by rewriting equation
(19):

1

dt
Ed

∂V

∂y







∂V

∂y

= δ + σ
dσ
dy

x2 A(x, y)

∂V

∂x
∂V

∂y

. (20)

From equation (2), we know the last term on the RHS is negative. Thus, research
lowers the risk premium and, in turn, the total  discount rate. Equation (20) suggests
that the optimal level of cumulative research input, y*, is the one at which the “own
rate of interest” of the total research input (LHS of equation [20]) is equal to the so-
cial rate of discount adjusted by the risk premium that is reduced by research.

A Numerical Example

The incorporation of scientific knowledge (y) makes analytic solution of the sto-
chastic bioeconomic model infeasible. In theory, optimal solutions for h*, s*, x*, and
y* might be obtained by solving equations (10), (11), (16), and (20) jointly. How-
ever, this is a nontrivial exercise, even with existing numerical solvers. Some useful
insight is gained through partial numerical analysis of the stock (x), treating the
level of knowledge (y) as exogenous.
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We illustrate the impact of accrued knowledge (y) on optimal harvest (h) and
stock level (x) using numerical simulation. Following Pindyck (1984, p. 295), we
choose functional specifications as follows:

D( p) = bp−α (21)

c(x) = cx −γ (22)

f (x) = qx(1 − x K ), (23)

with b = 1, α = 0.5, c = 5, γ = 2, q = 0.5, K = 1, and δ = 0.05.6 These functional
forms correspond to an isoelastic demand function, an isoelastic marginal cost func-
tion, and a logistic growth function, respectively.

To assess the effect of reducing variance (σ) resulting from research (y), we use
three values (0.05, 0.10, and 0.15, respectively) for σ in our analysis. Numerical re-
sults are generated using a MATLAB stochastic control routine. 7 The results are
depicted in figures 1 through 3.

Figure 1 illustrates the impact of increased knowledge y (and hence decreased
uncertainty σ[y]) on the indirect objective function; i.e. , the maximized value func-
tion in equation (5).8 While the absolute difference between the value functions for

6 These parameters are from Miranda and Fackler (2002, p. 416).
7 DEMSC02 (Renewable Resource Management Model) in the CompEcon Toolbox developed by
Miranda and Fackler (2002, pp. 415–17).
8 For the isoelastic demand function and α = 0.5, the area under demand function is D −1

0

h∫ (η)dη  = –1/h + A
(for relevant discussion, see Pindyck 1984; note 14, p. 302) with A = ∞ at η = 0. For empirical estima-
tion, we specify η starts from 0.05 and thus A = 20. For A = 20, the arbitrary constant in the value func-
tion equals A/δ = 400 (see Pindyck 1984; equations (21) and (22), p. 296).

Figure 1.  Value Function
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different levels of uncertainty remains constant over different stock levels, it is clear
that information is less valuable as a percentage of value as the stock size (and
hence the value function) increases. It is also evident there are diminishing returns
to information; i.e. , the value gain from decreasing σ from 0.15 to 0.10 is greater
than the gain associated with moving from 0.10 to 0.05.

As shown in figure 2, the steady-state harvest level (h) increases as the stock
growth uncertainty (σ) decreases. Figure 3 shows that it is efficient to maintain a
larger standing stock, x*, as uncertainty regarding the growth function is reduced.
Improved information makes stock a less risky form of capital, and therefore the so-
cial planner wishes to hold more of this asset in her portfolio. While the response of
harvest to changing variance can increase or decrease depending upon the functional
form of the growth function and economic parameters (Pindyck 1984), the effect on
steady-state stock size—barring the possibility of extinction—is insensitive to such
factors (Saphores 2003).

Combining the results in figures 1 and 3, we see the benefit associated with a
costly reduction in the uncertainty has two components: a movement (to the left)
along a value function due to rising stock size and an upward shift of the value function.
In our numerical example, the benefits associated with reducing σ from 0.15 to 0.10
and 0.05 are 8.75 (4.76%) and 13.40 (7.30%), respectively, as shown in table 2.9

9 The percentage changes in the value function reported here are somewhat dependent upon the param-
eters and functional forms chosen, and should be regarded as illustrative only.

Figure 2.  Optimal Harvest



Stochastic Bioeconomics with Research 259

Conclusions

This paper provides an incremental extension of a stochastic renewable resource
model (Pindyck 1984) to include information gathering regarding the stochastic evo-
lution of the stock as a dynamic choice variable. While Pindyck models variance as
an exogenous parameter, our formulation endogenizes the level of variance and
characterizes the impact of information gathering on both the harvest decision and
the present value of rents resulting from harvest activity. The study contributes to
the development of a theoretical framework for analyzing the efficiency of scientific
information production in renewable resource industries.

As expected, we show that the research input s; i.e. , the incremental accrual of
knowledge regarding stock evolution at time t should be chosen such that the mar-
ginal cost of research is equal to its marginal benefit. Marginal benefit in this case is
defined as the increase in the social planner’s value function, V, with respect to an
incremental increase in cumulative knowledge (y), arising as a result of s.

Pindyck (1984) shows that under stock growth uncertainty, the social discount

Table 2
Benefit of Population Dynamics Research

Expected Stock Value Net Benefit
Uncertainty E(x) V ∆V (%)

σ = 0.15 0.54 183.68 —
σ = 0.10 0.56 192.43 8.75 (4.76)
σ = 0.05 0.57 197.08 13.40 (7.30)

Figure 3.  Long-Run Stock Density
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rate, δ, in the rate of return condition is effectively augmented by a risk premium.
This premium is the maximum the resource manager would be willing to pay to
eliminate the uncertainty. In our case, the risk premium is affected by cumulative re-
search input, y, as an increase in y leads to a decrease in stock growth variance, σ2.
We show that population research influences the rate of return condition by lowering
the premium.

Finally, we show that the optimal level of cumulative research input, y*, is the
one at which the “own rate of interest” of the total research input is equal to the so-
cial rate of discount adjusted by the risk premium which is reduced by research.

Our analysis illustrates the theoretical existence of an internal optimum in re-
search effort, though we do not explicitly solve for the time path of such effort. The
numerical procedure may be used to develop estimates of the benefit associated with
information gathering to reduce scientific uncertainty. If the cost of research is
known, a benefit-cost assessment may be conducted. Indeed, our results imply that
research programs might, in fact, not be cost-effective; i.e. , if the increase in the
value function arising from such a program is small relative to the fixed costs of
implementation.
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