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Abstract  Minimum size limits have become an increasingly popular manage-
ment tool in recreational fisheries. This popularity stems from the potential of
minimum size limits to accomplish the twin goals of limiting overfishing and im-
proving fishing quality through increasing the average size of fish caught. The
success of minimum size limits in achieving these objectives depends, in a com-
plicated way, on both the behavior of anglers and the biological mechanisms
that guide the growth of the fish population. This paper examines these relation-
ships and also considers the welfare implications of size regulations.
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Introduction

Popular recreational fisheries have been beset by the same problems faced by open-
access commercial fisheries, and often for the same reasons, namely that individual
anglers lack incentives to conserve because of the open-access nature of recreational
fishing. As recreational angling has grown in popularity, open-access effort levels
have been high enough to put severe pressure on fish populations. To prevent the
collapse of stocks, managers of recreational fisheries have focused their attention on
limiting angler effort. Traditional means used to limit overexploitation include creel
limits, enhancement, closed seasons, gear restrictions, area closures, catch and re-
lease regulations, and size limits.

While limiting overexploitation has been considered to be the primary goal of
fisheries management, managers have also begun to recognize the importance of
managing the quality of the angling experience. Survey research has shown that an-
gling quality has many dimensions. Catch per unit effort is among the things impor-
tant to anglers, but many also value aesthetic and social aspects of fishing, including
being outdoors and being with others who share enthusiasm for the sport.1

Since the role of a fisheries management agency is primarily limited to manag-
ing fish populations, we may justifiably focus exclusive attention on the contribu-
tion of fishing quality to angler satisfaction. Even so, it is essential to recognize that
catch per unit effort may not be the sole criterion by which fishing quality is judged.
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The focus on catch rates as a measure of quality has been a common practice in the
literature on valuation of recreational fisheries.2 However, research has shown that
other dimensions of catch are important.3 Some anglers rate the quality of a fishing
experience by the numbers of fish caught and kept, while others simply seek the ex-
perience of catching fish and either keeping enough to eat or releasing all of their
catch.4 Anglers may also have preferences over the attributes of fish caught and/or
kept. Some may prefer the average size of fish caught to be large, others may prefer
“pan-sized” fish for consumption, and still others may want the chance to catch a
trophy-sized fish.5

The task of managing modern recreational fishing is considerably more complex
than striving to maintain a sustainable population size. Some policies may contrib-
ute to some goals, but conflict with others. For example, limiting the season in order
to reduce exploitation may cause high concentrations of anglers to crowd into areas
over short periods, reducing the value of the angling experience. Other policies may
be able to contribute to several goals. Minimum size limits, in which all fish smaller
than a particular size must be released, are one option that can contribute to both
higher catch levels and better catch quality. Size limits can lead to higher population
levels (and, therefore, higher catch levels) for two reasons. First, size limits are a
simple means to reduce fishing pressure since more fish are released. Second, size
limits increase the number of reproductive fish, leading to higher spawning rates.
Minimum size limits are also attractive because more large fish survive, increasing
the average size of fish caught and increasing anglers’ chances of catching trophy-
sized fish (Hoff 1995).

Minimum size limits are an appealing management tool, and have become more
widely used across the country.6 As fisheries managers try to tailor regulations to
suit individual fisheries, it is likely that minimum size limits will be employed even
more. Still, fisheries managers are uncertain about whether to impose these limits
and, if so, to what degree. Research in the fisheries biology literature has addressed
questions about the effectiveness of minimum size limits in alternative settings.7 While
these studies are quite detailed in their consideration of the biology of fish populations,
they neglect any behavioral responses that may occur on the part of anglers to the im-
position of size limits. In fact, the success of minimum size limits in achieving regu-
lators’ objectives depends, in a complicated way, on both the biological mechanisms
that guide the growth of the fish population and the behavior of anglers.

To assess the potential success of a minimum size limit, it is important to con-
sider several key questions. Will minimum size limits reduce harvest in the short-
run? Will reductions in harvest lead to increases in the population, and how fast will
increases occur? How will changes in the population affect harvest rates and the av-
erage size of fish caught in the long-run? How might these changes affect angler
welfare? Finally, how are anglers affected by the level of the regulation?

This paper presents a simple model designed to answer these questions. Our pri-
mary focus is a predictive model of angler behavior and population dynamics, but

2 See, for example, Samples and Bishop (1985), Johnson and Adams (1989), and Huppert (1989).
3 Chipman and Helfrich (1988) first used principal components to group anglers into types in a study of
Virginia river anglers. Fedler and Ditton (1994) examined seventeen of these studies. The studies found
distinct subgroups that expressed different preferences for aspects of fishing trips.
4 Anderson (1993) includes both landings (fish kept) and catch per day in a benefit function.
5 For example, Petering, Isbell, and Miller (1995), in a survey of anglers, found that fish length and fish
numbers both affected fishing satisfaction.
6 Merwin (1998) writes that minimum size limits, “are by far the most common management tool and …
are now the subject of wide experimentation in many states.”
7 See, for example, Maceina et al. (1998) for an analysis of the sauger fishery in Alabama and Colvin
(1991) for a consideration of a crappie fishery in Missouri.
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welfare considerations are also addressed. The model combines a behavioral model
of angler participation with a simple biological model embedding a depiction of
population size distributions. While purposely oversimplified, this model, neverthe-
less, addresses the above questions and points toward additional research issues.

In the next section, we outline a general model of angler behavior in which an
angler derives utility from the number and size of fish kept. Then, we explore the
problem using the Constant Elasticity of Substitution (CES) utility function. With
this utility function, we investigate the effects of imposing a binding minimum size
limit both in the short-run, as the regulation is imposed, and in the long-run, as the
fish population responds.

General Model

We consider the choices of a representative angler in an open-access fishery once he
has chosen his level of participation in the fishery.8 In an open-access fishery, an-
glers cannot expect to benefit from conservation, so they make a series of static de-
cisions rather than formulating a dynamic plan. We assume, therefore, that anglers
take biomass as given. We assume also that anglers derive utility from the number of
fish they catch and keep, h, and the minimum size of fish they keep, s.9 The catch
function is specified as a standard Schaefer production function, so catch is equal to
qEN, where q is a catchability coefficient, E is the predetermined effort level, and N
is the biomass level.10 Total catch, then, is qEN. The number of fish kept, h, is some
fraction of total catch where the fraction is determined by the “keeper,” or minimum
size kept. This fraction is determined by the distribution of fish in the lake as fol-
lows. The probability density function that characterizes the distribution of fish in a
lake is f(s). The corresponding cumulative density function, F(s), is the fraction of
fish below a particular size. Then, 1 – F(s) is the fraction of fish above a particular
size, s; this is the fraction of total catch that will be kept as a function of the mini-
mum size, s. Finally, an equation defining the production possibilities frontier be-
tween the two outputs, harvest (number kept) and minimum size, can be written:

h = qEN[1 – F(s)]. (1)

The full specification of the angler’s utility maximization problem is then:

max ( , )
s

U h s (2)

subject to

h = qEN[1 – F(s)].

8 We choose this approach to highlight the angler’s decision to keep or release fish. A more general
model would explain the participation decision, but would obscure the keep/release decision.
9 It may be more reasonable to think of angler utility as a function of the average size of fish kept. This
average size can easily be translated into the minimum size, so the two specifications are equivalent. We
use minimum size for analytical convenience.
10 The Schaefer model is discussed in Clark (1990). It assumes that catch-per-unit-effort (h/E) is propor-
tional to the stock level (N) through a constant proportionality factor, q. As a reviewer points out, the
heterogeneity of anglers could be reflected in alternative levels of the catchability coefficient, q. The
catchability coefficient could change over time as skill levels improve or could serve to differentiate se-
rious anglers from casual ones. The introduction of a varying q might prove useful in empirical work,
but would unduly complicate this theoretical model.



Homans and Ruliffson4

Notice that the choice of s determines the number of fish kept, h, through the pro-
duction possibilities relationship. Substituting the production possibilities equation
into the utility function and taking the derivative with respect to s yields:

–Uh qENf(s) + Us = 0. (3)

Rearranging this expression yields:

U U qENf ss h = ( ). (4)

This condition states that the marginal rate of substitution between h and s must be
equal to the marginal rate of product transformation at the optimum.11 We can think
of the relative price of h as 1/[qENf(s)] so that a higher biomass level (N), a higher
effort level (E), or a higher catchability coefficient (q), makes keeping fish rela-
tively less costly than maintaining a higher minimum size.

To simplify the model, we assume that the distribution of fish is uniform (0,1).12

Therefore, F(s) = s and f(s) = 1. The equation describing the production possibilities
frontier becomes

h = qEN(1 – s) (5)

We can then characterize the optimal choices of h* and s* using an indifference
curve diagram (figure 1). The production possibilities frontier is a linear function of
s, and s takes on values between 0 and 1. As q, E, or N increase, the production pos-
sibilities frontier rotates up, pivoting around 1, the maximum value of s. Figure 1
provides one example of how h* and s* may change as biomass increases from N0

(point a) to N1 (point b), and then to N2 (point c). In this illustration, h* increases as
biomass increases. The voluntarily chosen minimum size, s*, falls as biomass grows
from N0 to N1, then rises as biomass grows further to N2.13

From the locus of optimal harvest levels with alternative biomass levels, we can
determine h*(N) (figure 2). Points a, b, and c correspond with those in figure 1. With
the introduction of a biomass growth function into this model, the equilibrium level
of biomass can be characterized. The h*(N) function is upward sloping, and the bio-
logical yield function is concave, reaching a carrying capacity at K. Point b represents
the equilibrium where the level of harvest [h*(N)] equals the growth in biomass. The re-
sulting biomass level is N̂U, where the hat denotes equilibrium and the superscript
denotes that the equilibrium is unregulated. Note that, in figure 1, the location of the
production possibilities frontier is not arbitrary. If biomass is at N0, harvest [h*(N0)]
will be less than the growth in biomass, the population will grow, and the production
possibilities frontier will rotate up until the biomass reaches N1 = N̂U. Similarly, if
biomass is at N2, harvest [h*(N2)] will be higher than biomass growth. The popula-

11 A reviewer suggests an alternative interpretation. The first order condition can be rewritten as Us/Uh =
λ(s)h, where λ(s) = f(s)/[1 – F(s)]. This λ(s) is familiar as an inverse Mill’s ratio, and it reflects the trun-
cation in the angler’s choice problem.
12 To translate into actual sizes, multiply s by the difference between the size of the largest and smallest
fish and add to the size of the smallest fish.
13 It may be helpful to think of this model as an analog to the standard labor/leisure model in which the
budget constraint pivots around the maximum amount of leisure on the horizontal axis according to the
wage rate. In this case, minimum size takes the place of leisure, where the maximum minimum size is 1,
and the production possibilities frontier pivots according to the values of q, E, and N. As the wage in-
creases in the labor/leisure model, the consumption of goods always increases, but the consumption of
leisure may rise or fall, depending on the relative strengths of the income and substitution effects. This
model has analogous results.
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Figure 1. Optimal Choices of Minimum Size and Number of Fish Kept

Figure 2. Determination of the Unregulated Equilibrium
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tion size will fall, and the production possibilities frontier will rotate down until the
biomass reaches N1 = N̂U.

Now consider the introduction of a binding minimum size limit, s. The size
limit must be larger than the voluntarily chosen minimum size in order to be effec-
tive (figure 3). When s is imposed, the angler is constrained to harvest according to
the function h(N) = qEN(1 – s). This function intersects the yield curve at a higher
biomass level than does h*(N). In the short-run, biomass will be at the unregulated
equilibrium level N̂U, and harvest will fall to h NU( ˆ ) at point d. Then, because har-
vest is lower than yield, biomass will grow until a new regulated equilibrium is
reached at point e, where the biomass level is N̂ R  and harvest is h N R( ˆ ).

We can also depict these changes on an indifference curve diagram (figure 4).
Initially, the angler is at point b with the biomass at the original unregulated equilib-
rium level, N̂U. When the regulation s is imposed, the angler is constrained to be at
point d, with a reduced harvest level. This constraint must lead to reduced utility;
anglers could have chosen the regulated minimum size and reduced harvest level in
the absence of regulation. Since they did not, the regulated combination of h NU( ˆ )
and s must yield lower utility than h* and s*. However, since harvest is reduced, bio-
mass will grow to the regulated equilibrium biomass level, N̂ R , and the production
possibilities frontier will rotate up. The angler will now be at point e. At this point, the
angler achieves a higher utility level than before the regulation was imposed, even
though harvest is lower, and the angler is still constrained by the regulation.

There are many possible outcomes depending on the initial equilibrium and the
level at which the regulation is set. Consider, for example, an optimal harvest func-
tion that intersects the biological yield curve to the left of maximum sustainable
yield (figure 5).14 The angler is at point a with biomass level N̂U. The introduction

14 The concept of maximum sustainable yield is discussed in Clark (1990). It is based on the assumption
that, at any population level below the carrying capacity, the fishery produces some amount that can be
harvested without altering the population level. The maximum sustainable yield is the maximum of all
potential sustainable harvest levels. In the logistic model, maximum sustainable yield occurs at a popu-
lation level that is half the carrying capacity.

Figure 3. Determination of the Regulated Equilibrium
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Figure 4. Effects of a Minimum Size Limit Regulation on Utility

Figure 5. Alternative Minimum Size Limit Regulations
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of a somewhat restrictive minimum size limit ( )s1  will reduce harvest initially, but
will lead to increased biomass ( ˆ )N R

1  and increased harvest [ ( ˆ )]h N R
1  in the long-run

(point b). In the long-run, both harvest and minimum size will be higher, leading to
an unequivocal increase in utility. This outcome is represented by point b in figure
6. With a more stringent regulation, s2, where the restricted harvest function inter-
sects to the right of maximum sustainable yield, biomass will grow even larger (to
N̂ R

2 ), minimum size will be higher, but harvest will fall relative to the initial harvest
level [to h N R( ˆ )2 ] (see point c in figures 5 and 6). Still, utility is higher than both the
initial utility and the utility level associated with s1 , since the higher minimum size
contributes to utility, and the reduced harvest is achieved at a lower relative cost due
to the increase in biomass. If the regulation becomes very strict, it is possible that
harvest falls so far that utility will also fall (see point d in figure 6). In the limit, as
the regulated minimum size approaches one, harvest approaches zero, utility ap-
proaches zero, and biomass approaches its carrying capacity. This is represented by
point e in both figures.

Figure 6. Effects of Alternative Minimum Size Limit Regulations on Utility
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As this analysis suggests, many long-run results are possible relative to the ini-
tial position: both harvest and utility may be either higher or lower in the long-run
equilibrium. Furthermore, even though increases in harvest lead to unequivocal in-
creases in long-run utility levels, decreases in harvest do not necessarily lead to re-
ductions in utility in the long-run. Apart from questions about welfare, it is interest-
ing to look at how changes in biomass may change the voluntarily chosen minimum
size, making the minimum size constraint either more or less binding. The implied
constraint on harvest [that is, harvesting at h N R( ˆ )  rather than at h N R* ( ˆ ) ] may also
become more or less binding. At this level of generality, however, it is difficult to
determine the outcomes that would emerge from any particular size regulation. To
look at these questions in more detail, we investigate the problem using a CES util-
ity function.

The Constant Elasticity of Substitution Utility Function

The CES utility function allows the elasticity of substitution between the number of
fish kept, h, and the minimum size of fish kept, s, to range between zero and infin-
ity. As it turns out, the nature of the solution using the CES utility function hinges
on whether the elasticity of substitution between h and s is greater or less than one.

The CES utility function is specified as:

U h s h s( , ) ( )= +α βρ ρ ρ1 (6)

The solutions for h* and s* are:

s

qEN
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
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(8)

Harvest is an increasing function of biomass, and minimum size may be either an
increasing or decreasing function of biomass. The elasticity of substitution between
h and s [σ = 1/(1 – ρ)] determines whether the h*(N) function is convex or concave
in N, and whether s*(N) is downward or upward sloping.

By taking the second derivative of the h*(N) function, we find that h* is convex
in N if ρ is greater than zero. If ρ is greater than zero, the elasticity of substitution
between h and s is greater than one. If ρ is less than zero, so that the elasticity of
substitution is less than one, then h* is concave in N. Taking the first derivative of
s*(N) shows that if ρ is greater than zero, s* is decreasing in N, but if ρ is less than
zero, s* is increasing in N. If ρ is zero (so that the elasticity of substitution between
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h and s is one), the CES utility function simplifies to a Cobb-Douglas. In the Cobb-
Douglas, h*(N) is linear and s* is invariant to changes in biomass.15

The intuition behind these results relies on consideration of the income and sub-
stitution effects of a price change. As N increases, the relative price of h falls. The
substitution effect encourages a move from minimum size (s) to the number of fish
kept (h), where the income effect causes both h and s to rise. If the two goods are
highly substitutable, the income effect is not large enough to counteract the strong
substitution effect so that the minimum size falls. The income effect reinforces the
substitution effect for the number of fish kept, so the increase in h is substantial. On
the other hand, if the two goods are not highly substitutable, the substitution effect
is weak. The income effect is strong enough to counteract the negative substitution
effect for s so that s increases. The number of fish kept, h, also increases, but the
increase is not as dramatic as with a strong substitution effect. Therefore, the h*(N)
function is concave.

Minimum Size Limits

Now we consider the effects of the imposition of a minimum size limit. To be
effective, the regulated minimum size, s , must be larger than the voluntarily
chosen minimum size, s*. In the short-run, biomass will remain at the unregu-
lated level, and harvest will fall to h NU( ˆ )  = qEN sUˆ ( ).1 −  Biomass will eventu-
ally rise to N̂ R  = [a – qE(1 – s)]/b, and harvest will rise in the long-run to
h N R( ˆ )  = qEN sRˆ ( ).1 −

In the Cobb-Douglas case, the difference between the voluntarily chosen mini-
mum size and the regulated minimum size will not change as biomass grows. An-
glers remain as constrained (in terms of minimum size) as before the regulation was
imposed, regardless of changes in the biomass, since the optimally chosen minimum

15 The Cobb-Douglas utility function can be written:

U(h, s) = hαsβ

Carrying out the optimization, we get solutions for harvest and minimum size:

s* =
+
β

α β
and

h qEN* .=
+
α

α β

The choice of s is a function only of the parameters α  and β, and is invariant to levels of biomass and
effort. Harvest is an increasing linear function of biomass, effort, and catchability. With a logistic bio-
logical growth function, Ṅ  = g(N) = aN – bN2, we can solve for the equilibrium biomass and harvest
levels, N̂U  and h*( N̂U ):
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These closed-form solutions are unattainable with the CES utility function.
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size depends only on the parameters of the utility function. Since both h*(N) and
h (N) are increasing linear functions of biomass, the difference between the two
grows as biomass grows. In a sense, anglers will feel more constrained (in terms of
numbers of fish kept, h) in the long-run than immediately after the regulation is im-
posed, even though the long-run (constrained) harvest level, h N R( ˆ ) , is higher than
the initial constrained harvest level [ ( ˆ )]h NU . This is because anglers would choose a
much higher h with the long-run biomass level than the constrained harvest level
(figure 7) (The distance between A and A1 is smaller than the distance between B
and B1).

Looking at the CES case, we see that the choice of minimum size is no longer
invariant to changes in biomass. Therefore, the minimum size choice is likely to dif-
fer in the new equilibrium. A relevant question is whether the minimum size con-
straint remains binding. Does the choice of minimum size increase to the con-
strained size? First, consider the harvest function when the elasticity of substitution
between h and s is greater than one. In this case, the regulation becomes even more
binding. If the elasticity of substitution is greater than one, the voluntarily chosen
minimum size becomes smaller with increased biomass. So, as the regulation is ef-
fective in increasing biomass, the gap between the regulated minimum size and an-
glers’ voluntarily chosen minimum size becomes wider. In addition, since the h*(N)
function is convex, the gap between the voluntarily chosen harvest level and the
constrained harvest level also becomes wider. Whether the utility level rises or falls
in the long-run is an open question, but the angler certainly will feel more con-
strained as bio-mass grows.

Recall that if the elasticity of substitution between h and s is less than one, the
s*(N) function is increasing in N, and the h*(N) function is concave. A binding regu-
lation will raise the biomass level, and, consequently, the voluntarily chosen mini-
mum size. The gap between the regulated minimum size and the voluntarily chosen -
inimum size is reduced, and anglers will feel less constrained as the regulation bec-
omes effective in increasing the size of the population.

Figure 7. Regulated and Unregulated Harvest Levels in the Short-  and Long-Runs
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Welfare Implications of Size Limits

With a set of parameter estimates, it is a straightforward exercise to calculate the
utility levels that would prevail at alternative regulated equilibria. It is only neces-
sary to substitute the regulated harvest level at the steady state, h N sR[ ( )], and the
minimum size limit, s , into the utility function to find the long-run utility level. In
the Cobb-Douglas case, it is even possible to optimize the resulting expression with
respect to minimum size to find the minimum size that would yield the highest long-
run utility level. To find the size limit that would maximize long-run utility with
more complex utility functions (such as the CES), numerical solution methods are
required.

Of course, the long-run utility level is not achieved instantaneously. Figure 8
shows how harvest rates and minimum size change with time. Anglers first experi-
ence a sudden drop of utility levels as harvest falls in response to the implementa-
tion of the regulation. Since minimum size contributes to utility, the increase in
minimum size (to s) partially compensates for the loss in utility from a decrease in
harvest. The immediate impact on utility is certainly negative.

As the biomass grows, the restricted harvest level also grows, implying an in-
crease in utility along the path to a new equilibrium. Anglers continue to fish and
derive utility as biomass grows. The welfare effect of a particular regulation, there-
fore, would be summarized in the discounted sum of utility levels that would emerge
as biomass adjusts to the new equilibrium. Different regulations will lead to differ-
ent adjustment paths and different long-run equilibria. It is, therefore, correct to
judge alternative size limits based on the sum of discounted utility levels that would
emerge from alternatives. The expression to evaluate discounted streams of utility
levels would be:

e U h N t s s dtrt−
∞

∫ { }
0

[ ( , )], . (9)

Note that, along the path to the restricted equilibrium, anglers keep fish according to
h , which is a function of growing biomass and minimum size. To find the path of
biomass, the differential equation describing the growth of biomass must be solved.
With a logistic growth function, this solution is:
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(10)

Summary and Conclusions

This paper has used a comprehensive model to address questions surrounding the
use of a minimum size regulation to improve fishing quality. Using simplified be-
havioral and biological models, both the short- and long-run implications of mini-
mum size restrictions were investigated. In the short-run, such a regulation dimin-
ishes harvest levels and angler utility. However, as the biomass responds to the re-
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Figure 8. Adjustment to a Regulation Over Time

duced harvest, the harvest level recovers. If the fishery starts at a point to the left of
maximum sustainable yield, this move unequivocally increases angler welfare. If the
starting point is to the right of maximum sustainable yield, harvest declines in the
long-run. Still, the increase in minimum size due to the regulation may compensate
for this decreased harvest, and anglers may still be better off in the long-run.

This paper also investigated the degree to which the regulation would be bind-
ing in the long-run, depending upon the form of the utility function. If the elasticity
of substitution between the number of fish kept and minimum size is greater than
one, the gap between the voluntarily chosen minimum size and harvest level, and
the regulated minimum size and harvest level, widens as the regulation becomes
successful in increasing biomass. If the elasticity of substitution is equal to one (the
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Cobb-Douglas case), the voluntarily chosen minimum size remains constant, and the
gap between the voluntarily chosen and regulated minimum size remains the same.
However, the gap between the voluntarily chosen harvest level and the regulated
harvest level widens. Finally, if the elasticity of substitution is less than one, the
minimum size constraint becomes less binding as biomass grows.

Angler behavior changes as size limits are imposed, changes in behavior affect
fish populations, angler welfare is sensitive to alternative size limits, and none of
these factors can be properly looked at in isolation. For these reasons, it is important
to consider minimum size limits in a comprehensive bioeconomic model. This paper
has done so, and the ideas here should be of interest to fisheries managers as they
continue to use minimum size limits to improve fishing quality. Still, the practical
applicability of this model, in its current form, should not be overstated. First, it is
likely that the distribution of fish sizes will shift as a result of size limits. A more
detailed model of population biology would be required to handle this possibility.
Second, anglers probably have a richer choice set than specified here, including al-
ternative levels of effort and alternative angling sites. With these extensions, this
model should provide substantial guidance to managers setting size regulations.
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