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Abstract   Sound energy and environmental policies require reliable forecasts
of production and pollution, as well as supply response to policy actions. In this
study, we describe a model for forecasting long-term production and pollution
in the offshore oil and gas industry in the Gulf of Mexico under different sce-
narios. A model based on disaggregated field-level data is used to forecast
production and pollution through to the year 2050. The time path for resource
depletion is determined as the net effect of technological progress and depletion
under alternative scenarios for new discoveries. We also quantify potential effi-
ciencies that could result from changing the design of regulations from the
current command-and-control regime, to an approach that allows more flexible
means of achieving the same environmental goals.
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Introduction

Predicting when oil will be depleted is relatively straightforward once one has good
estimates of future rates of production and the amount of oil that remains to be pro-
duced. Proven reserves, however, do not represent total oil resources, but are an
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estimate of the minimum amount that would be produced if no further discoveries
were made, no advances in technology occurred, and if there were no changes in
prices or other economic conditions. In fact, these parameters are in a constant state
of flux. Therefore, economic and political factors play an important role in forecast-
ing future production, and an enormous amount of data is required to capture
various complexities in the analysis (Lynch 2002).

Evidence suggests that increases in productivity have offset depletion effects in
the Gulf of Mexico offshore oil and gas industry over a 49-year period from 1947–
96 (Managi et al. 2004a).1 Initially, depletion effects outweighed productivity-en-
hancing effects of new technology, but in the later periods, technological advance
offset depletion. This result is consistent with common reports of Gulf of Mexico
production. The Gulf of Mexico was referred to as the “Dead Sea” in the early
1980s, but with recent reports of new technologies, a rapid pace of productivity en-
hancement led the Gulf of Mexico to become one of the most promising petroleum
production areas in the world (Bohi 1998). This should not, however, be taken as an
indication that productivity will necessarily continue to follow this U-shaped curve
of increasing productivity. It remains to be seen whether this pace of increasing pro-
ductivity can be maintained in the future, or whether recent productivity gains will
soon be lost to depletion as reserves in deep waters are depleted.

Reducing the environmental impact of offshore operations is one of the most
pressing challenges facing the oil and gas industry in the U.S. today. In recent de-
cades, environmental concerns led to the imposition of numerous new regulations on
oil and gas operations. Indeed, some have argued that environmental concerns may
be more important than physical scarcity of oil (Adelman 1975). Although these
regulations have provided the basis for many environmental improvements by indus-
try, compliance has become costly and increasingly complex. In 1996, the petroleum
industry, including refining, spent as much on environmental protection as it spent
searching for new domestic supplies: $8.2 billion (American Petroleum Institute
2001). Jin and Grigalunas (1993a,b) examined the impact of environmental regula-
tion on firms in the oil and gas industry using the optimal control model assuming
constant technology. Their results indicate that rising environmental compliance
costs lead to reductions in investment and production, implying that fewer resources
will be developed and associated economic benefits will decline.

The objective of this paper is to forecast oil and gas production based on differ-
ent economic and policy scenarios. Historical data are used to simulate the evolution
of the industry to date. Following the U.S. Energy Information Administration
(EIA), we use disaggregated data to forecast regional production (U.S. Department
of Energy 2001). We estimate oil and gas production and the resultant pollution for-
mation at the field level using sub-model results and then aggregate over the fields
to the regional level. Our estimated model is used to construct a simulation model of
the industry over time. We then simulate the future of the offshore oil and gas indus-
try under alternative assumptions regarding future oil and gas prices, technological
change, and alternative environmental policies. We address various policy questions,
such as identifying potential cost savings that could result from innovative pollution
control measures and the associated benefits that can be derived from flexible regu-
latory approaches, such as market-based approaches for pollution control.

1 The Gulf of Mexico is one of the first areas in the world to begin large-scale offshore oil and gas pro-
duction. Since then, offshore operations in the Gulf of Mexico have played an important role in produc-
tion and stabilization of energy supply in United States. Federal offshore oil and gas production ac-
counted for 26.3% and 24.3% of total U.S. production, respectively (U.S. Department of Interior 2001),
and the offshore fraction of production has been increasing over time. Oil and gas production in Gulf of
Mexico accounted for 88% and 99%, respectively, of total U.S. offshore oil and gas production through
1997 (U.S. Minerals Management Service 2000).
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Literature Review

In the forecasting literature, most projections take a top-down (or aggregated) ap-
proach (Hubbert 1967; Cleveland and Kaufmann 1991; Pesaran and Samiei 1995;
Moroney and Berg 1999).2 They use overall estimates of resource potential and esti-
mate future production. Other aggregated model includes rational expectations
econometric models (Epple 1985; Walls 1994). Although they have an advantage of
incorporating uncertainty and capturing the dynamics of the exploration processes,
the models must be highly simplified in order to obtain analytical solutions to the
optimization problems. There are clear advantages to using micro-level data, since
aggregation of data across distinctive geologic provinces may obscure the effects of
economic and policy variables on the pattern of exploratory activities (Pindyck
1978a). Typically, field-level forecasts of discovery and production account for
depletion. (Smith and Paddock 1984; Eckbo, Jacoby, and Smith 1978; Drew,
Schuenemeyer, and Bawiec 1982; Nehring 2001). However, none of these models
include an explicit treatment of technological change. As a result, forecasts of future
oil and gas supply from a region usually show a declining trend, which reflects only
the effect of resource depletion (Porter 1990; Energy Modeling Forum 1991; Walls
1994). Impacts of technological change have been analyzed using a disaggregated
model (U.S. Department of Energy 2001) and an aggregated finding-cost model
(Cuddington and Moss 2001). However, neither of these models accounts for in-
creasing stringency of environmental regulations, nor do they consider pollution
levels. Thus, the tradeoff between production and pollution from environmental
regulation has not been investigated in the offshore oil and gas industry.

Methodology and Estimation Results

We model the oil and gas production and pollution systems considering the techno-
logical change using field-level data in the Gulf of Mexico (see Appendix for data
description). The model uses regression techniques in both the aggregated industry-
level and disaggregated field-level. The general logic of the model is illustrated in
figure 1. This section discusses the methodology and estimation results for each of
the following steps: determine technological change (Step 1), determine the number
and size distribution of fields (Step 2), determine inputs (Step 3), determine outputs
of oil, gas, and pollution levels (Step 4).

The detailed flow of our methodology is illustrated in figure 2. First, we specify
the policy scenario. This includes information such as R&D expenditure (to induce
technological change), oil and gas prices (to encourage new field discoveries), strin-
gency of environmental regulation, and the associated regulatory regime
(command-and-control versus flexible regulations). These policy options are indi-
cated in bold letter in figure 2.

Step 1: Technological Change

In this section, we provide the determinants of the level of production technology
from information on R&D expenditures and the level of environmental technology

2 Walls (1992) presented a comprehensive survey of studies on modeling and forecasting of petroleum
supply. Her survey covers various geologic/engineering and econometric models that describe the rela-
tionship between exploratory drilling and discovery.



Managi, Opaluch, Jin, and Grigalunas310

from environmental regulations. Recently, energy models have been expanded to
represent endogenous technological change through R&D or learning by doing. For
example, Goulder and Schneider (1999) investigated the impact of including in-
duced technological change in the form of R&D efforts (see Jaffe, Newell, and
Stavins (2002) for theoretical review). R&D in a particular year will affect techno-
logical change several years down the road when the induced innovation process has
been completed (Griliches 1984).3 The process of technological change, however, is
quite complex and still poorly understood. Contemporaneous impact analysis of
R&D is needed to determine the immediate cost of R&D. But time lags are needed
to consider the longer-term gains associated with innovation and consequent im-
provements in productivity. We expect the R&D to have a positive, long-term
impact on technological change. The functional specification relating improvements
in technologies and R&D is given by following equation:

Figure 1.  Overview of the Forecasting Model

3 We treat investment in R&D as exogenous since our model simulates only the Gulf of Mexico, whereas
the profitability of R&D reflects all sources worldwide.
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Yt = α + β i X t− i
i

N

∑ + ε t , (1)

where Yt denotes technological change indexes (i.e. , change in tech) at time t, which
is explained below,4 and Xt denotes R&D expenditure at time t. The term βi is the
coefficient of Xt-i, which indicates how technological change is affected by R&D ex-
penditures i years lagged. The term α is a constant term and εt is a stochastic term,
which together comprise the “unexplained” components of technological change.

Figure 2.  Flow Chart of the Methodology

4 Our technological change data is available upon request.
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The expected dynamic lagged effects of independent variables can be examined by im-
posing theoretical restrictions on the coefficients of the lagged values of these variables.

Managi et al.  (2004a) used Data Envelopment Analysis (DEA) to estimate the
technological change indexes using a unique and extensive micro-level data set.
Technological change measures shifts in the production frontier. DEA is a set of
nonparametric mathematical programming techniques for estimating the relative ef-
ficiency of production units and for identifying best practice frontiers (e.g. , Färe,
Grosskopf, and Lovell 1994). DEA does not impose any particular functional form
on production technology, and it is not conditioned on the assumption of optimizing
behavior on the part of each individual observation. Avoiding these maintained hy-
potheses may be an advantage, particularly for micro-level analyses that extend over
a long time series, where assumptions of technological efficiency of every produc-
tion unit in all time periods might be suspect. Further, in a non-renewable resource
industry, input use might appear contemporaneously suboptimal due to sunk and ir-
reversible costs, even when it is optimal from a dynamic point of view. The data for
DEA estimation includes field-level annual data for the following variables: oil out-
put, gas output, the number of exploration and development wells drilled, the total
drilling distance of exploration and development wells, the number of platforms,
water depth, oil reserve, gas reserve, untreated water produced, and discovery year.

We employ the Almon polynomial distributed lag model, which is an estimation
procedure for distributed lags that allows the coefficients of the lagged independent
variables to follow a variety of patterns as the length of the lags increases (Almon
1965). The use of Almon polynomials remedies the problem of collinearity. The use
of Almon lags requires the determination of the maximum lag length, where we
choose the lag length in order to minimize the Akaike Information Criteria (AIC)
(Harvey 1990). The results of replicating the Almon lag model are reported below:5

∆techt = 100.378 + 2.059 ln(R & Dt −2 ) + 1.716 ln(R & Dt−3 )

 (2.72) (2.72)

+ 1.373 ln(R & Dt −4 ) + 1.029 ln(R & Dt −5 ) + 0.686 ln(R & Dt −6 )

(2.72) (2.72)                      (2.72)

+ 0.343ln(R & Dt−7 ) − 0.452 ln(∆techt −1 )

 (2.72)   (− 2.11)

Adj. R 2 = 0.4520     AIC = 37.1085     Durbin h = 0.2897.

The results show statistically significant results.6 The creation of dynamic ef-
fects of R&D investments on production technological change has a two- to
seven-year lag relationship.

5 We employed the linear form. End point restriction is used in the specification, and the coefficient of
seven years’ lag (t – 7) is set to zero. t statistics are in parentheses. The coefficients are significant at
5%. Since we use the linear form with one-side end point restriction, all of the t statistics in lagged
R&D are same (Almon 1965). The variable tech  is multiplied by 100.
6 We note the problem of the Almon lag method. It assumes that lagged effects follow a polynomial, and
therefore, the results might overestimate the significance of lagged effects. Thus, the reliability of this
model heavily depends on the assumption of polynomial form. DEA is a data-driven technique, and an-
nual index change tends to fluctuate (Färe and Grosskopf 1997). However, the fluctuation is not so large
that the trend of cumulative index, which is the multiplication of past annual change, is smooth over
time. We add the lagged technological change variable to control this fluctuation.
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Similar to the estimation of production technological change, environmental
technological change is estimated using DEA estimation (Managi et al.  2004b).
These authors use environmental output data composed of 33 different types of wa-
ter pollutants in the four EPA categories, oil spill volume data from the Coast Guard,
and environmental input data from environmental regulation compliance cost. The
four categories of EPA are Conventional Pollutants, Non-conventional Organic Pol-
lutants, Non-conventional Metal Pollutants, and Radionuclides. Conventional
Pollutants include oil and grease and TSS. Environmental technological change
measures the shifts in the environmental abatement frontier. Since higher stringency
of environmental regulations adds significantly to industry costs, industry might in-
crease R&D to develop better environmental technologies to reduce compliance
cost. Therefore, environmental regulation will stimulate the innovation and diffusion
of technologies that facilitate compliance (see Jaffe, Newell, and Stavins (2002) for
a literature review of theoretical and empirical analysis). Managi et al. (2004b) used
lagged measures of the stringency of environmental regulations to identify the dy-
namic impacts on environmental technological change. They found the long-term
positive impact of environmental regulation on environmental technological change.
The stringency of environmental regulations is defined in the Appendix. This model
is used to forecast environmental technological change in this paper.

Step 2: New Field Discovery

We generate new discoveries of oil and gas fields, including size and water depth of
each new field discovery, where oil and gas price is the factor explaining the number
of new field discoveries. A random field size based on historical field size distribu-
tion at each water depth is used, and the distribution can change over time to
consider depletion.7 Then, we determine which prospects are economic by setting
the minimum profitable field based on the real price of oil and gas in 2000 dollars
per barrels of oil equivalent (BOE), technology level, and water depth using sto-
chastic frontier analysis. Thus, if field size is smaller than minimum profitable field
size, we eliminate it from the simulation process.

The number of newly discovered fields is specified as a function of oil and gas
prices.8 We expect a positive sign on the price of oil and gas, since higher prices of-
fer an incentive for firms to place greater effort on exploration (see Erickson and
Spann (1971) for a detailed discussion between price and discovery). We specify our
discovery number function as:

disc. numbert = f ( pricet ). (2)

A linear model is used for parameter estimation, where n is the number of observations:9

disc. numbert = 7.8922 + 0.5918 pricet

(1.83)

R2 = 0. 4268     n = 49     DW = 2.1925      ρ = –0.05366,

7 It is difficult to control resource size in a conventional econometric framework and it is not suitable for
forecasting. Thus, we utilize the method developed in Eckbo, Jacoby, and Smith (1978) and assume discov-
ery is generated as a random variable. The detailed documentation for this process is available on request.
8 Technology, depletion, and water depth are statistically insignificant in this specification.
9 t statistics are in parentheses. The time period analyzed is 1946–95.
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where ρ is the estimate of the first-order serial correlation. The coefficient on price
is of the correct sign and is statistically significant at the 10% level.

Eckbo, Jacoby, and Smith (1978) modeled the minimum economic field size
based on the information of oil and factor prices. The minimum field size that is
profitable for a firm in our model is determined by the state of technology, oil and
gas prices, and water depth, since the level of technology and water depth determine
the factor prices. 10 Other things being equal, minimum field size will decrease if
technology and/or price increase and if water depth is shallower.

We used the stochastic frontier production model to determine the minimum
field size (Aigner, Lovell, and Schmidt 1977; Meeusen and van den Broeck 1977).
In this study, the stochastic frontier function for minimal field size is specified as:

y = f (x) exp(v + u), (3)

where v and u form the composite error term in a standard stochastic frontier model,
with u being a truncated random variable capturing the divergence of field size from
the minimum profitable field (i.e., the observed field size is greater than the frontier
minimal), and v is a normal variable that comprises measurement error. A logarith-
mic transformation is applied to linearize equation (3):

ln y i = ln x iβ + v i + u i , (4)

where i is the field index, and xi is a vector of the explanatory variables (price, tech-
nology, and water depth); vi is the random error term, independently and identically
distributed as N(0,σv

2); ui is a non-negative random variable truncated at zero and
independently and identically distributed as N(µ,σu

2).
The minimum economic field size is our output variable. We examined a num-

ber of explanatory variables (i.e. , elements of vector x). The results of the parameter
estimates are summarized below.11 All of the coefficients have the correct sign and
are statistically significant at a high level (p < 0.0001).

ln y i = 11.993 − 8.978 ln techt + 0.395 ln water depthi − 0.345 ln pricet

(−9.068) (8.085) (−2.540)

σ2 = σv
2 + σu

2 = 1.934 γ = σu
2/σv

2 = 0.703 µ = –0.193
(14.146) (0.059) (–0.313)

log likelihood = –1,453.2538       n = 832,

where γ is an indication of the relative contribution of v to error term, and µ is the
mode of the normal distribution.12 A higher value of γ shows that a one-sided error
component (i.e. , u) dominates the symmetric error components (i.e. , v) (Kumbhakar
and Lovell 2000).13

10 New discoveries larger than this threshold value are assumed to be developed immediately. Thus,
analysis of asset management and delayed development is not considered in this model.
11 t statistics are in parentheses.
12 If µ = 0, the density function is half-normal.
13 The sensitivity of water depth is larger than that of price. However, both are much smaller compared to
technology indexes. The one-sided error term captures the possibilities that actual minimum economic field
size might be larger than frontier estimates. We need to note, however, our estimates might be underestimates
compared to the industry estimates that appeared in Oil and Gas Journal. Alternative methods of minimum
economic size include Eckbo, Jacoby, and Smith (1978), though it requires the cost data.
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Step 3: Factor Inputs

For fields that are economically producible, factor inputs, such as the number of
platforms and the number of wells in the field, are generated using information on
field size and water depth. When newer, larger fields are discovered and developed,
there is a derived demand for new offshore structures that serve as inputs to produc-
tion. 14 We use the cumulative number of platforms and wells for the same reason as
in the production function described below. We specify our platform and well num-
ber functions as:

platform it
t=1947

t

∑ = f ( field sizeit , water depth it) (5)

wellit
t=1947

t

∑ = f ( field sizeit). (6)

We expect the field size (note: this is the actual size and not the minimum eco-
nomic size) to have a positive effect on the number of wells and platforms and water
depth to have a negative effect on the number of platforms, since a smaller number
of larger platforms is typically installed in deeper waters. In each field, field size in-
creases over time because of reserve addition and revision and decreases because of
resource extraction. In contrast, water depth remains constant over years for each
field. Thus, both the number of platforms and wells increases when field size in-
creases and decreases when field size decreases. Considering the predictability of
past platforms and wells, we use a two-way random effects model to estimate this
relationship.15 The following shows the results of linear model parameter estima-
tion. 16 The estimated coefficients are significant and have the expected sign.

platform it
t=1947

t

∑ = 2.7296 + 0.0378 field sizeit − 0.001055 water depthit .

(57.13) (−4.48)

R2 = 0.9582 n = 15,725 DW = 1.7999 ρ = 0. 09695

wellit
t=1947

t

∑ = 12.2658 + 0.3451 field sizeit .

(67.54)

R2 = 0.9427 n = 15,725 DW = 1.8599 ρ = 0. 09506.

14 Pindyck (1978b) studies nonrenewable resource production using an optimal control model. He as-
sumes that production cost is only the function of proved reserve base. If we also consider the platform,
as well as additional production cost variables, we are able to derive a production as a function of these
variables.
15 See Baltagi (2001) for econometric methods for panel data.
16 t statistics are in parentheses. All of the coefficients are significant at 1%. The time period analyzed is
1946–95. The unit of field size in this table is MMbbl.
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Step 4: Production and Pollution

Finally, we generate production and pollution paths over time. Production of oil and
gas is determined by technology, the stringency of environmental regulations, the
number of platforms, and the number of wells. Pollution levels are determined from
environmental regulations, technology, and production. We then aggregate these
field-level estimates to the regional level. In our field-level analysis, we use cumula-
tive values for factor inputs (e.g. , wells and platforms) and outputs (oil, gas, and
pollution), since it is more appropriate to express the production relationship on cu-
mulative terms for a nonrenewable industry. For example, for any field, the
production at t is determined by cumulative inputs (e.g. , the total number of wells
drilled) and extraction up to t–1. In addition, the industry must comply with relevant
environmental regulations, so we use environmental stringency as an explanatory
variable. We specify our field-level production function as:

productionit
t=1947

t

∑ = f (techt , env . stringencyt , platform it
t=1947

t −1

∑ , wellit
t =1947

t−1

∑ ), (7)

where production is the quantity of oil and gas produced in million barrels of oil
equivalent (106 BOE); tech  is the technological change index; env. stringency is the
stringency of environmental regulations governing offshore oil and gas operations,
measured as environmental compliance cost in dollars per unit of oil and gas pro-
duction in the region. 17 The variable platform  represents the total number of
platforms, well is the total number of exploratory and development wells, i is the
field index, and t is time ( i.e. , year). Note that our simplistic model does not take
into account the many important institutional changes (e.g. , fiscal regime, acreage
auctions, leasing conditions) that affect production in the US Gulf of Mexico (see
Boué (2002) for detail).

We use a two-way random effects model to estimate this relationship. The ex-
pected sign for tech  is positive, since improvements in technology are expected to
increase production (Lynch 2002). The expected sign of env. stringency is negative,
since more stringent regulations are expected to reduce production, with technology
held fixed (Jin and Grigalunas 1993a,b). The expected signs for the cumulative
number of platforms and wells are positive. As explained in Step 3, both of the plat-
form and well values decrease once the field size starts to decrease. Therefore, these
two variables eventually put an end to annual production. The estimation results of
the production model are:18

productionit
t=1947

t

∑ = −35.6939 + 21.9450 techt − 0.3222 env. stringencyt

(22.07) (−15.32)

17 Note that the technological change index and the stringency of environmental regulations are time-
series data instead of cross-sectional time-series data. This is because we do not forecast these variables
in a cross-sectional time-series base (i.e. , field level). Therefore, we assume both of the indexes remain
the same over the fields in each year (i.e. , the industry in each field can utilize the same technology and
face the same regulation stringency level in the same year).
18 t statistics are in parentheses. All of the coefficients are significant at 1%. The time period analyzed is
1946–95. ρ is the coefficient of serial correlation.
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+ 1.8567 platform it
t =1947

t−1

∑ + 0.6052 wellit
t =1947

t−1

∑
(40.75) (101.01)

R2 = 0.9745 n = 15,725 DW = 1.7957 ρ = 0.09624.

All the coefficients have the correct sign and are significant at a high level (p <
0.0001). The coefficient on tech  is highly significant with a positive sign; therefore,
if technological change increases with other variables held fixed, production in-
creases. Our results indicate that technological change plays a significant role in
production in the offshore oil and gas industry in the Gulf of Mexico. This is not
surprising since technological progress, such as 3D seismology and horizontal drill-
ing, have drastically improved the efficiency of production. In forecasting
production, we assume production ends if estimated cumulative production starts to
decrease compared to last year’s cumulative production. This assumption is required
since we are not able to obtain the decision-making process of shut-in of wells and/
or removal of platforms.

Pollution is the by-product of oil and gas production and hence is also expressed
in cumulative terms.19 Our environmental output data set is composed of 33 different
types of water pollutants in the four EPA categories and oil spill volume data from
the Coast Guard. However, since there are no techniques that integrate 34 different
pollution outputs, we use produced water as a proxy for environmental pollution.
Our dependent variable, however, needs to explain the discharged pollution level af-
ter treatment; therefore, untreated produced water needs to be adjusted by the
treatment level. We use environmental Total Factor Productivity (TFP), as calculated
in Managi (2002) and Managi et al. (2004b), as a measurement of treatment level. In
general, a productivity index is defined as the ratio of an index of output growth di-
vided by an index of input growth over two periods. TFP is the comprehensive
productivity index that attempts to include all outputs and all inputs used in the pro-
duction process. Changes in the TFP index can tell us how the amount of total
output produced from a unit of total input has changed over time. In addition to this
standard measure of TFP, Managi (2002) and Managi et al. (2004b) estimated TFP,
including environmental compliance cost (as a proxy for the regulation compliance
efforts), in the input side and environmental pollutions in the output side. Thus, this
TFP with environmental data implies more market output and less environmental
pollution can be produced given standard market and environmental input. Taking
the ratio of TFP with and without environmental factors, defined as environmental
TFP [(TFP with environment) / (TFP without environment)], it is possible to mea-
sure the productivity (or efficiency) of pollution abatements. Therefore, an increase
in the environmental TFP implies that less environmental pollution can be released
for the given environmental input. Dividing the untreated produced water before
treatment by environmental TFP, we create a proxy for discharged pollution level af-
ter the treatment. The initial value of environmental TFP is one, and the
improvement in environmental abatement technology is shown as a value of envi-

19 The drilling fluids, drill cuttings, deck drainage, well treatment fluids, proposal sand, and sanitary and
domestic wastes are also important factors in the regulations in addition to the environmental regula-
tions applied to production. Considering the data availability, however, we assume the regulations only
applied to production. See U.S. EPA (1976, 1985, 1993a,b, 1999) and Managi (2002) for a detailed his-
tory of the regulations.
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ronmental TFP to be more than one. In summary, we specify our environmental pol-
lution function using the two-way random model as:

  
pollutionit

t=1947

t

∑ = f (env.techt , env.stringencyt , productionit
t=1947

t

∑ ), (8)

where pollution is a proxy for environmental pollution, env.tech is the environmen-
tal technological change index as detailed in Managi et al. (2004b), environmental
stringency as measured by the estimated cost of complying with environmental
regulations (see Appendix for detailed description), and production is the quantity of
oil and gas produced, as measured by million BOE.

Standard TFP can be decomposed into measures associated with technological
change and efficiency change using DEA (e.g. , Färe, Grosskopf, and Lovell 1994).
Managi et al. (2004b) applied this decomposition to the environmental TFP, and the
environmental technological change index is estimated using DEA. Since techno-
logical change measures shifts in the production frontier, the interpretation of
environmental technological change is that it measures shifts in the pollution abate-
ment frontier ( i.e. , the measurement of the best environmental technology level).
The larger the number implies the better use of environmental technologies.

The expected sign for env.tech is negative, since improvements in technology
are expected to reduce pollution (Jaffe, Newell, and Stavins 2002). The expected
sign for env.stringency is negative, since more stringent regulations are expected to
reduce the pollution. The expected sign for production is positive, since pollution is
the by-product of production. The result of linear estimations is summarized as fol-
lows:20

pollution it
t=1947

t

∑ = −0.9990 − 1.0106 env.techt

(−3.14)

− 0.0203 env. stringency t + 0.2397 productionit
t =1947

t

∑
(−3.44) (130.10)

R2 = 0.9611 n = 15,725 DW = 1.8299 ρ = 0.09611.

We use a linear relationship to look at a first-order linear approximation to some
true non-linear relationship. All of the coefficients are statistically significant (p <
0.0001) and have the correct sign. Our results indicate that environmental techno-
logical change plays an important role in reducing pollution in the offshore industry.
Compared to the impact of tech  on production, however, the effect of pollution re-
duction on technological change is smaller (around 16% of production technological
change impact). We speculate that this may be because there is little flexibility in
command-and-control regulations.

20 t statistics are in parentheses. All of the coefficients are significant at 1%. The time period analyzed is
1946–95.
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The estimated cumulative numbers of platforms and wells generated to date are
used to update cumulative oil and gas production and pollution.21 The percentage of
variation explained by the production model is R 2 = 0.9900 and by the pollution
model is R2 = 0.9944. Therefore, our model fits the data very well.

Forecasting: Policy Scenario Analysis

Various scenarios for technological change, environmental policy, and depletion
were constructed. We estimate the impact of changes in policy variables on techno-
logical change, estimated as a function of R&D, environmental stringency and
discovery number, and oil and gas prices. We then trace the effects through discov-
ery, input usage, resource production, and pollution emitted. The following sections
describe the construction of scenarios, prediction capability of the model, and each
forecasting result.

The Scenarios

The relevant variables for projecting future production and pollution are: (1) techno-
logical change, (2) number of new discoveries, (3) stringency of environmental
regulation, and (4) the form for environmental regulations (e.g. , market-based ver-
sus command-and-control).

Sensitivity analyses are used to determine how the results change under higher
and lower policy scenarios, with a total of 11 scenarios including baseline scenario
(see table 1). The baseline scenario uses average historic rates for technological
change, environmental stringency indexes, and the number of new field discover-
ies.22 Environmental technological change follows the environmental stringency
scenario using results of the Almon lag distributional model estimation. We use the
reference case oil and gas price scenario proposed by the EIA for the period 2002 to
2020, which uses the average rate of change to project prices through 2050 (U.S.
Department of Energy 2001).

Next we use various sensitivity analyses to analyze the impact of alternative as-
sumptions regarding technological change, depletion, and environmental
regulations, as summarized in table 1. We construct two alternative scenarios for
R&D expenditures, one where R&D increases linearly over time, where the annual
rate of increase is +1% of baseline R&D expenditure, and another where R&D de-
creases, where the annual rate of decrease is –1% of baseline R&D (see figure 3a for
R&D and figure 3b for technological change scenarios).

The depletion effect is modeled by varying the oil and gas prices, which induce
the discoveries of the fields. Once the number of discoveries is determined, their
field sizes are generated as random variables based on the historical distribution of
the field size at each water depth. If the generated field size is larger than estimated
minimum economic field size, the data is used for further simulation process. We
control the oil and gas price scenarios following EIA forecasting. We consider an
optimistic case, where industry continues to find new fields at historic rates through

21 It is assumed that: (1) new technologies are applied to all existing fields, instead of only newly dis-
covered fields and (2) new environmental regulation is only implemented in new fields; i.e. , all existing
fields follow old regulations.
22 The time periods to be considered as historical rate of technological change are 1946–95, 1969–98 for
environmental stringency, and 1963–2001 for discovery number.
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2050. Note that this scenario actually leads to an increasing number of discoveries
through 2050, due to improvements in technology. We also consider less optimistic
cases, where the rate of discovery declines linearly over time, and new discovery
completely ceases at some time prior to 2050. Our three less optimistic scenarios
specify new discovery ceasing in 2015, 2030, and 2045 (figure 3c). In all cases, we
assume the baseline level of technological change for all of the discovery scenarios.
Two scenarios are also constructed for the stringency of environmental regulations.
The lower scenario has the stringency of environmental regulations increasing more
slowly than historic rates, and the higher scenario has stringency of environmental
regulation increasing more rapidly than historic rates (figure 3d). The high scenario
is based on the assumption that the stringency of environmental regulations grows at
the rate of the decade with the fastest growing environmental stringency in our data
set (1981–90). The low scenario is based on the assumption that the stringency of
environmental regulations increases at a lower rate than the baseline case. In this

Table 1
Summary of Policy Scenarios

Policy Scenario Description

Technological Change

Baseline: Historic rates Constant over time
High technological change R&D increase linearly1

Low technological change R&D decrease linearly

Discovery Number of New Fields

Baseline Follow the EIA reference case oil and gas price scenario
Most optimistic scenario:

Historic rate of discoveries Follow the EIA high oil and gas price scenario
Less optimistic scenarios:

No discovery after 2015 Number of discoveries decreases until 2015
No discovery after 2030 Number of discoveries decreases until 2030
No discovery after 2045 Number of discoveries decreases until 2045

Stringency of Environmental Regulation

Base case Average historic rate
High stringency Rate equals that for highest historic decade2

Low stringency Low case equals the baseline case minus the absolute
Value of the difference between the high and base case

Flexible Environmental Policy

Base case Command-and-control
Flexible regulations:

Apply to all fields Adopt the value from Popp (2003) for all fields
Apply to new fields only Adopt the value from Popp (2003) for new fields

Notes:
1 Technological change index follows the relationship estimated in the above section. We estimate that
the R&D value keeps the same technological change value as the baseline case. We then construct the
high and low R&D cases and estimate each technological change scenario.
2 The decade 1981–90 shows the highest increase of stringency in the history.
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Figure 3a.  R&D Expenditure Scenario

Figure 3b.  Technological Change Scenario



Managi, Opaluch, Jin, and Grigalunas322

Figure 3c.  Discovery Number Scenario

Figure 3d.  Environmental Regulation Scenario
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case, we take the rate of the baseline case minus the absolute value of the difference
between the high and base case.

The next sets of scenarios are used to identify the impact of changing the design
of environmental regulations. Historically, regulation in offshore oil and gas opera-
tions has used the command-and-control approach. But there has been growing
recognition in government and industry of the need for more cost-effective ap-
proaches to environmental protection. The recommendations include the
development of a more flexible policy and regulatory framework, which includes
more efficient recovery technologies to reduce environmental impacts. The Ameri-
can Petroleum Institute (API) has emphasized these concerns with a call for
“common sense” regulatory development (API 1996). Unlike approaches that man-
date specific technologies, “common sense” approaches would give oil and gas
producers more flexibility in determining how they can best meet standards, yield-
ing the same environmental benefits at lower costs. The associated benefits ( i.e. ,
increase in production by keeping the same pollution level) that can be derived from
flexible approaches, such as market-based approaches for pollution controls are esti-
mated.23 We consider a case where flexible environmental regulations apply to all
existing fields and a case where flexible regulations apply only to new fields. None
of the estimates comparing the effectiveness of flexible regulations in the oil and/or
gas industry, however, is available in the literature. Therefore, we use the results of
Popp (2003), where estimates of the effect of newly granted patents (as a proxy for
technological innovation) are used to determine the increase in removal efficiency
of new scrubbers generated by a new SO2 pollution control patent. Popp used data
between 1979 and 1997 to compare command and control before the Clean Air Act
(CAA) of 1990 and permit trading after the CAA. Popp (2003) found that permit
trading is 2.217 times more efficient than the command and control method. We use
this value, 2.217, to estimate the less negative impact of regulation to oil and gas
production estimates.

Results

Scenario (1) in table 2 (also in figures 4a and 4b) shows the baseline forecast of an-
nual production and pollution, respectively. The annual rate of production and
pollution are calculated as the first difference of estimated successive cumulative
production and pollution yields. Three-year moving averages of annual estimates are
presented.24 The highest annual production of approximately 1.8 billion barrels was
attained in 2020. This is followed by a gradual decrease in production for the re-
mainder of the forecast period. The baseline forecast of production of oil and gas
shows an annual increase of 1.5% until 2020, followed by a decline of approxi-

23 In the literature, there is an ongoing discussion as to which different environmental policy instruments
provide firms with incentives to invest in environmental R&D. Many works have been carried out under
the assumption of perfect competition (Magat 1978; Milliman and Prince 1989; Jung, Krutilla, and Boyd
1996; and Parry 1998). These authors support the viewpoint that market-based regulations are likely to
be more effective in stimulating innovation than those that mandate fixed technological or performance
standards. Less consistent with the above findings are the works of Magat (1978) and Malueg (1989),
who showed that relative incentives might vary depending on the firm’s specific technologies and ele-
ments of instrument design. Montero (2002) shows that the command-and-control method may offer
greater R&D incentives for technological innovation than do market-based instruments when strategic
interactions in the permits and output markets are not perfectly competitive markets.
24 Hereafter, three-year moving averages of annual estimates are used to draw annual production and
pollution.
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mately 1.5% per year after 2020. This decline occurs because the depletion of old
wells outweighs new discoveries. It is anticipated that in 2050, annual production
will decrease to 0.9 billion barrels, 65% of 2000 production. This level of produc-
tion is comparable to that reported during the oil shock years of 1972 to 1974.

For comparison, Nehring (2001) used detailed data on deepwater operations in
the Gulf of Mexico to forecast gas production from known and future discoveries
through 2010. His work shows that production of oil and gas will continue to in-
crease, reaching its peak in 2008, and will start to fall in 2009. Further, he points out
that data, which indicates production is expected to start falling earlier than in our
forecast, is mainly because the former ignores the importance of technological
change in oil and gas production. Our forecast is close to that of the EIA for the
Gulf of Mexico (U.S. Department of Energy 2001). They forecasted that oil produc-
tion will increase until 2017, and then begin to decrease; while the forecast for gas
production would continue to increase throughout the forecast period, 2020. The
summation of oil and gas production in BOE is expected to reach its maximum in
year 2018. They do not forecast beyond 2020.

Our model forecasts that pollution will reach its peak in 2014. At this time, the
level of pollution will be the same as that experienced in the late 1980s. This peak in
pollution is expected to set in somewhat earlier than the peak in oil and gas produc-

Table 2
Policy Scenarios Results (Units of Billion Barrels)

Policy Production Forecasting
Scenario (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Year
2005 1.242 1.249 1.209 1.410 1.410 1.410 1.242 1.207 1.278 1.781 1.265
2010 1.598 1.669 1.509 1.602 1.602 1.602 1.591 1.521 1.676 1.826 1.650
2015 1.344 1.558 1.186 1.451 1.451 1.451 1.331 1.216 1.472 2.318 1.429
2020 1.820 1.965 1.592 1.891 1.891 1.753 1.677 1.684 1.954 2.382 1.909
2025 1.559 1.700 1.222 1.738 1.738 1.368 1.200 1.397 1.719 2.158 1.665
2030 1.139 1.599 0.810 1.590 1.590 0.988 0.674 0.959 1.317 1.928 1.257
2035 1.006 2.247 0.672 1.637 1.637 0.898 0.279 0.804 1.207 1.765 1.373
2040 1.357 2.196 0.442 1.935 1.372 0.820 0.000 1.137 1.577 1.820 1.503
2045 0.862 2.408 0.216 1.908 0.841 0.635 0.000 0.629 1.133 1.642 1.043
2049 0.915 2.645 0.214 1.809 0.565 0.260 0.000 0.665 1.239 1.687 1.131

Policy Pollution Forecasting
Scenario (1) (2) (3) (4) (5) (6) (7) (8) (9)

Year
2005 0.342 0.344 0.331 0.388 0.388 0.388 0.388 0.333 0.350
2010 0.330 0.342 0.311 0.331 0.331 0.331 0.331 0.316 0.345
2015 0.347 0.379 0.315 0.374 0.374 0.374 0.279 0.327 0.368
2020 0.357 0.407 0.313 0.371 0.371 0.371 0.284 0.331 0.384
2025 0.309 0.376 0.257 0.345 0.345 0.279 0.262 0.277 0.341
2030 0.344 0.464 0.268 0.418 0.418 0.260 0.218 0.303 0.386
2035 0.207 0.400 0.110 0.337 0.337 0.179 0.014 0.127 0.290
2040 0.264 0.496 0.153 0.376 0.376 0.224 0.000 0.214 0.317
2045 0.176 0.526 0.067 0.389 0.149 0.054 0.000 0.126 0.287
2049 0.154 0.574 0.035 0.321 0.119 0.023 0.000 0.102 0.214

Note: Policy Scenario (1) Baseline, (2) High technological change, (3) Low technological change, (4)
High new discovery, (5) 2045, (6) 2030, (7) 2015, (8) High environmental stringency, (9) Low environ-
mental stringency, (10) Flexible regulation for all fields, and (11) Flexible regulation for new fields.
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Figure 4a.  Forecast of Annual Production (Technological Change Scenario)

Figure 4b.  Forecast of Annual Pollution (Technologial Change Scenario)
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tion because of improvements in environmental technology induced by more strin-
gent environmental regulation.

Scenarios (2) & (3) in table 2 (and figures 4a and 4b) show projections of an-
nual production and pollution, respectively, based on technological change scenarios
detailed in table 1. In the high technological change scenario, production is expected
to continue to increase and reach its maximum of 2.65 billion barrels in 2050. This
level of production is twice that recorded in 2000. Under this scenario, technologi-
cal change fully mitigates the depletion effects. In contrast, the low technological
change scenario shows declining oil and gas production, with final production of
only 0.2 billion barrels in 2050. This is barely 16% of 2000 production and 77%
lower than the baseline case for 2050. Pollution is forecast to increase more (274%
from baseline year 2050) in the high technology scenario than in the low technology
scenario (77% decrease from baseline year 2050). This is expected in that high pol-
lution is associated with high levels of production. Thus, increasing the levels of
technological change has a beneficial effect on oil and gas production, but a detri-
mental effect on pollution. Due to this pollution increase in the high technological
change scenario, adequate environmental regulations are necessary to maintain an
appropriate balance between production and pollution discharge.

Scenarios (4), (5), (6), and (7) in table 2 show projections based on different
scenarios for field discoveries, as detailed in table 1. In the case of high rates of new
discovery, production continues to increase 2.5% per year, on average, until 2040
and remains relatively constant thereafter. In the case of no new discovery after
2015, production and pollution decrease, eventually ceasing in 2037. In the case of
no new discoveries after 2030, production and pollution continue to decrease and
produce only around 28% and 15% of baseline, respectively. In the case of no new
discovery after 2045, production decreases to 60% of the baseline. Pollution also de-
creases to 77% of the baseline scenario. The results show the long-term significance
of new discoveries, which is determined by technological change and depletion ef-
fects.

Scenarios (8) & (9) in table 2 show forecasts of annual production and pollution
based on the environmental regulation scenarios detailed in table 1. The differences
of high and low environmental regulation scenarios are smaller than those of tech-
nological change scenarios. For the high environmental regulation case, production
and pollution are less than that of the baseline environmental regulation. In 2050,
both production and pollution are expected to fall by 30% below the baseline. Under
a low environmental regulation case scenario, production and pollution are above
the baseline. In 2050, production is expected to rise 35% above the baseline, while
pollution will be 40% above the baseline. Environmental regulations have a signifi-
cant impact on the pollution level and production.

Scenarios (10) & (11) in table 2 show forecasts based on flexible regulation sce-
narios in table 1. Given the negative impact of environmental regulation to
production, use and analyses of flexible regulation is investigated. If flexible regula-
tions are applied to all existing fields, production is forecast to increase around
45%, on average, compared to the baseline scenario of command-and-control. If
flexible regulation is applied to only new fields, production increases by 10% com-
pared to the baseline. These two scenarios give the upper and lower bounds,
respectively, of the benefits of using flexible environmental regulations, based on
available results for benefits from improving flexibility of regulations.

The annual level of pollution per unit production tended to fall over the entire
forecast period, even though pollution does not start to decrease until 2030. In the
baseline scenario, this ratio declines by 32% over the forecast period and around 6%
annually. Environmental regulation can reduce pollution in two ways: first through
its impact on production, and second by inducing environmental technological
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change. For all policy scenarios investigated, there is no significant affect on the
pollution-to-production ratio, except in the flexible regulatory scenario. All other
things being equal, a flexible regulatory environment is expected to reduce the exist-
ing level of pollution by 30%.

Conclusion

In this study, we describe a model for analyzing long-term production and pollution
in the offshore oil and gas industry in the Gulf of Mexico. Reliable baseline fore-
casts of production and pollution and the response to different policy actions are
critical to assessing long-term energy and environmental policies. An improved un-
derstanding of the potential role of technology and environmental policy provides
policy-relevant information for designing and implementing sound environmental
policies. Forecasts of production and pollution through 2050 are generated from the
model using disaggregated field-level data. In our baseline scenario, oil and gas pro-
duction increases by approximately 1.5% per year until 2020, when a declining
trend sets in. Pollution levels remain relatively constant until 2014 and start to de-
crease gradually thereafter. Our sensitivity analysis of the results demonstrates the
importance of measuring technological progress accurately if reliable forecasts of
production and pollution level are to be made.

We have used different scenarios to explore the significance of various factors
in determining forecasts. Alternative scenarios are used to explore how results vary
with alternative assumptions regarding: (1) R&D expenditures, (2) depletion of re-
serves, (3) environmental regulations, and (4) flexible regulations in the Gulf of
Mexico. As shown in table 3, technological change had the greatest effect by in-
creasing production by 189%, while stringency of environmental regulations had the
smallest impact. The number of new discoveries has significant impact on maintain-
ing long-term production. The scenario of no new discovery after 2015 shows that
production decreases and is expected to cease in 2037. If flexible regulations are ap-
plied, production is forecast to increase around 10 to 45%, on average, compared to
the baseline scenario of command-and-control.

The model developed in this study provides an approach for measuring and ana-
lyzing the impact of production and pollution from technological change and
measures the impact of different policy scenarios. This is important in the sense that
environmental regulations promulgated by the Environmental Protection Agency en-
tail a compromise and tradeoff for different stakeholders: the regulatory agency, the
oil and gas industry, and public interest groups. Quantitative measure of the poten-
tial impacts of technological change and environmental regulations can contribute to
those public debates and lead to more informed policy decisions. In using environ-
mental standards, it is important that the regulator gives industry enough time to
develop solutions that protect the environment, while still meeting important user
requirements. Time may also be needed to examine whether a solution may pose
other hazards. One way of dealing with the problem of compliance time is with
phased implementation—to give firms innovation waivers that initially exempt them
from regulations. Another strategy is the setting of long-term standards that requires
development of new technology.

It would be an interesting topic of future work to determine the impact of envi-
ronmental regulations applied to drilling (see U.S. EPA [1999] for recent proposed
guidelines regarding drilling fluids). Since the regulations to drilling fluids incur
cost to the industry and thus reduce the number of wells drilled, our forecasting of
production and pollution (as a by-product of production) would be an overestimate.
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One of the major limitations of this study is the lack of extraction and drilling cost
data; therefore, our model is not based on formal theory. If cost data were available,
theoretically consistent econometric modeling by Deacon (1993) could be used.25

For example, the Joint Association Survey on Drilling Costs (JAS) published by the
American Petroleum Institute might be used (see Managi et al. [2004c] for cost esti-
mations). The JAS data, however, are grouped into nine depth intervals in each of
the offshore areas in the Gulf of Mexico (e.g., offshore Louisiana and offshore
Texas). Thus, some regional aggregation is required as a price for using theoretical
consistent modeling. Other important aspects to consider are institutional changes
(e.g. , fiscal regime, acreage auctions, and leasing conditions) in the U.S. Gulf of
Mexico (Boué 2002). These factors affect production and pollution levels signifi-
cantly over the long-term, and econometric modeling needs to be considered for
future research.

Table 3
Summary of Policy Scenarios Results

Size of the Impacts
Policy Scenario (Comparison with Baseline Year 2050)

Technological Change

High technological change +189% (production), +274% (pollution)
Low technological change –77% (production), –77% (pollution)

Discovery Number of New Fields1

Most optimistic scenario:
Historic rate of discoveries +98% (production), +101% (pollution)

Less optimistic scenarios
No discovery after 2015 Production ceases in 2037

Stringency of Environmental Regulation

High stringency –30% (production), –30% (pollution)
Low stringency +40% (production), +40~50% (pollution)

Flexible Environmental Policy

Flexible regulations:
Apply to all fields +45% (production)
Apply to new fields only +10% (production)

Note:
1 Here we show the two extreme cases. The other two results of no new discoveries after 2030 and 2045
fall in between these two extreme cases.

25 The model requires estimates of three functions: reserve additions, drilling cost, and production cost
(Deacon 1993). Other theoretically justified model includes Pesaran (1990) that estimates an economet-
ric model of offshore oil production in the UK.
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26 The data is available from www.eia.doe.gov/emeu/finance/frsdata.html. The unit of R&D is $10,000.
27 Detailed description of these data files can be found at www.gomr.mms.gov. See Managi (2002) and
Managi et al . (2004a) for more detailed data construction for this study.
28 Harrington, Morgenstern, and Nelson (2000) looked at ex ante  cost estimates of environmental regula-
tions to the ex post cost estimates and compared the accuracy of estimates of the direct costs of more
than two dozen regulations. They conclude, at least for EPA and OSHA rules, unit pollution reduction
costs estimates are often accurate.

Appendix: Data

Research and Development (R&D) expenditures for oil and gas recovery is obtained
from the Energy Information Administration’s Financial Reporting System (FRS)
database over 1977 to 1999.26 This R&D includes funding from the federal govern-
ment and private companies. The FRS database does not distinguish between
onshore and offshore R&D. The impact of new technologies is most obvious in off-
shore, but they have allowed many new onshore developments as well. Therefore,
we use summation of onshore and offshore R&D. There are also international
spillover effects that have not been considered in this study. The R&D expenditure
of the oil companies funding has shown  a declining trend, on average, since 1990.
Creusen and Minne (2000) show that oil companies are reluctant to commit them-
selves to risky projects to improve their market position and introduce radically new
products. On the other hand, industry at least in the U.S. was rapidly reorganizing
the way it conducted research to exploit ever greater economies from joint efforts,
partnerships, consortia, and a general migration of the R&D function from the pro-
ducers to the service industry and universities.

Data used in this analysis were obtained from the U.S. Department of the Inte-
rior, Minerals Management Service (MMS), and the Gulf of Mexico OCS Regional
Office. We have developed a unique micro-level database ( i.e. , field) using three
MMS data files: (1) production data, including well-level monthly oil and gas outputs
from 1947 to 1998 (a total of 5,064,843 observations for 28,946 production wells); (2)
borehole data describing drilling activity of each well from 1947 to 1998 (a total of
37,075 observations); (3) field reserve data including oil and gas reserve sizes and
discovery year of each field from 1947 to 1997 (a total of 957 observations).27

Relevant variables were extracted from these data files and merged by year and
field. Thus, the project database includes field-level annual data for the following
variables: oil output, gas output, number of exploration and development wells
drilled, total drilling distance of exploration and development wells, number of plat-
forms, water depth, oil reserve, gas reserve, untreated produced water, and discovery
year.

To measure a tendency towards stringent environmental regulation, we use envi-
ronmental compliance cost for preventing water pollution and oil spills. Our
environmental compliance cost is based on ex-ante estimates since we do not have
the ex post cost studies.28 We compiled a data file for water pollution and oil spill
prevention costs from 15 Federal Register (FR) documents (e.g., FR 1986, 1988,
and 1990), five EPA documents (e.g., U.S. EPA 1976, 1985, and 1993), five engi-
neering documents, and one Coast Guard document which contain the ex-ante
capital cost, operation, and maintenance cost estimates for each set of regulations.
These environmental regulations require phased implementation over a period of
years and regulations are occasionally revised, which implies a variation in strin-
gency over time. Each of the capital, operation, and maintenance costs are estimated
based on the project type, whether the field is an oil and gas joint project, an oil-
only project, or a gas-only project after 1986. There is no distinguishing project type
before 1986. See Managi (2002) for detailed estimation methods and references.


