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Abstract   The Kuhn-Tucker demand model is an attractive, recent addition to
the methods available for analyzing seasonal, multiple-site recreation demand
data. We provide a new application of the approach to the demand for sea pad-
dling trips in eastern North Carolina and calculate welfare measures for
changes in site characteristics. In addition, we present a non-technical, intuitive
overview of the model and a stepwise derivation of the estimation and welfare
calculation algorithms.
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Introduction

In this paper we present a non-technical, stepwise overview of the Kuhn-Tucker
(KT) demand system model as it is used for estimating seasonal recreation demand
and calculating welfare measures. We demonstrate the workings of the model with a
new application to water trail paddling trips in eastern North Carolina. In addition to
presenting the application, our primary goal is to increase the accessibility of the KT
approach to researchers analyzing seasonal, multiple-site recreation data. As such,
the paper adopts a tutorial approach. The derivation of the estimator is presented in
stepwise detail, and the numerical algorithm necessary for computing welfare ef-
fects is derived and explained.

The recreation demand literature has provided many useful tools for estimating
preferences for recreation resources. The most widely applied is the random utility
maximization (RUM) model, which has proven to be an effective tool for under-
standing the substitutability between recreation sites and their attributes on a given
choice occasion. Because the unit of observation in the model is a single choice oc-
casion, however, simple RUM models are not well suited for modeling behavior
over a longer time horizon, such as a recreation season. In response to this, research-
ers have pursued methods capable of describing seasonal demands and the
associated corner solutions, as characterized by zero levels of consumption of some
of the available goods.

Daniel J. Phaneuf is an assistant professor in the Department of Agricultural and Resource Economics,
North Carolina State University, Box 8109, Raleigh, NC 27695, email: dan_phaneuf@ncsu.edu. Chris
Siderelis is a professor in the Department of Parks, Recreation, and Tourism Management, North Caro-
lina State University, Box 8004, Raleigh, NC 27695, email: chris_siderelis@ncsu.edu.

This research was supported in part by grants from North Carolina Sea Grant and Watersports Com-
pany. We also acknowledge the contributions of Joe Herriges and Roger von Haefen in designing the
programs used for estimation and welfare calculations in Kuhn-Tucker recreation demand models.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7075853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Phaneuf and Siderelis2

The Kuhn-Tucker model is an example of this trend.1 The KT approach models
the demand for trips to a set of recreation sites over the time horizon of a season. It
combines aspects of a traditional system of demand equations approach with the
RUM model’s emphasis on capturing the substitutability between sites and their at-
tributes while allowing for zero consumption. Unlike the RUM model, the KT
model allows for generalized corner solutions. Recreation visitors may visit only a
subset of the available sites, yet visit these sites multiple times over the season. In
this sense, the model integrates the two aspects of choice within a single framework:
the choice of which sites to visit during a season, and how many trips to make to
each site. Importantly, the characterization of this decision process is made in a
manner consistent with utility theory that allows a smooth integration of the behav-
ioral and econometric models.

This utility-consistent integration of the behavioral and econometric models has
been acknowledged as an attractive feature of the KT framework. Furthermore, re-
cent modeling advances by von Haefen, Phaneuf, and Parsons (forthcoming) have
demonstrated that the approach can be applied with an arbitrarily large number of
sites. To date, however, there have been relatively few applications in the recreation
literature,2 and existing papers tend to examine technical aspects of the model rather
than the intuition and basic steps necessary for application in other settings. This pa-
per augments the existing literature with a new application and a comparably
non-technical presentation. In the following sections, we present an intuitive over-
view of the model followed by a description of the eastern North Carolina paddling
application. A step-wise derivation of the estimation and welfare calculation algo-
rithms and presentation of results follows. We conclude with discussion and
suggestions for further research.

Overview of KT Model

In this section, we adopt a tutorial approach to explaining the workings of the KT
model. As with the RUM model, we begin by specifying a random utility function.
The consumer’s direct utility function is u(x, z; q, ε, γ), where u has the normal cur-
vature properties, x  is  t r ips to a recreation si te ,  q is  a vector representing
characteristics of that site, and z is spending on all other goods, with price normal-
ized to one. For pedagogical purposes, we consider only one recreation good,
although all derivations generalize to multiple sites. The term ε is known to the indi-
vidual, but random to the researcher; thus the problem is stochastic from the
analyst’s point of view, and our intent will be to characterize the probability of the
consumer’s outcome. Finally, the term γ represents parameters of the utility function
that are to be estimated.

The model assumes consumers maximize utility over a season subject to their

1 Other models capable of modeling seasonal recreation demand include repeated random utility models
(e.g., Morey 1999), linked models (e.g., Parsons, Jakus, and Tomasi 1999), systems of count data de-
mand models ( e.g., Englin, Boxall, and Watson 1998), and share models (e.g., Morey, Breffle, and
Green 2001). Parsons, Jakus, and Tomasi (1999), von Haefen and Phaneuf (forthcoming), and Herriges,
Kling, and Phaneuf (1999) provide discussion and comparisons of subsets of these models.
2 Wales and Woodland (1983) and Lee and Pitt (1986) were the first to suggest the estimation technique,
and Bockstael, Hanemann, and Strand (1986) were the first to discuss the model in the context of recre-
ation. Phaneuf, Kling, and Herriges (2000) provide an application of the model to Great Lakes fishing in
Wisconsin, Phaneuf and Herriges (1999) and von Haefen and Phaneuf (forthcoming) estimate the model
for visits to wetlands in Iowa, and von Haefen, Phaneuf, and Parsons (forthcoming) estimate the model
for beach visitation in the mid-Atlantic region.
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budget constraint and a non-negativity constraint (i.e., the number of trips can be
zero but not negative). Stating the formal maximization problem and first-order con-
ditions for this problem is useful because it  motivates the link between the
behavioral and empirical models. The choice problem is given by:

max
x,z

u( x, z; q, ε, γ) s.t. y = z + xp, x ≥ 0, (1)

where y is annual income and p is the price (travel cost, access fees, etc .) of visiting
the recreation site. Because of the non-negativity constraint, the first-order condi-
tions for maximization take the form of Kuhn-Tucker conditions. Assuming z > 0,
the KT first-order and complementary slackness conditions are:

ux (x, y − px; q, ε, γ)

uz (x, y − px; q, ε, γ)
≤ p (2)

x ≥ 0

x ux (x, y − px; q, ε, γ) − pu z (x, y − px; q, ε, γ)[ ] = 0,

where subscripts on the utility function denote a first partial derivative. These equa-
tions show that if positive trips are chosen, it will be the case that the marginal rate
of substitution between trips and other spending is equal to the price ratio, while this
equality breaks down if x is equal to zero. If positive trips are made, the number of
trips is determined by the demand equation x(p, y, q, γ, ε), the form of which derives
from solving the first equation in (2). Our task now is to convert these equations,
derived from utility theory, into a form that is useful for stating the probability of
observing individual behavior.

This is accomplished by assuming the utility function is of a convenient and
particular form so that the first-order conditions in equation (2) can be readily rear-
ranged to:

ε ≤ g(x, p, y, q, γ) (3)

x ≥ 0

x ε − g (x, p, y, q, γ)[ ] = 0,

where g(x, p, y, q, γ) denotes the solution to the equation ux(x, y – px; q, g, γ)
– puz(x, y – px; q, g, γ) = 0. This step makes transparent the link to the estimation of
the model. Given an assumption on the form of f(ε), the distribution of ε, we are
able to characterize the probability of observing an individual’s outcome by noting
that the probability of a corner solution (i.e., x = 0) is pr(X = 0) = pr[ε < g(0, z, q, γ)],
while the probability of observing some level of trips conditional on positive trip
taking is given by pr(X = x) = pr[ε = g(x, z, q, γ)]. Dependent upon the choice of
error distribution, the form of these probabilities can be relatively simple or quite
complex. In either case, a probability can be calculated for each individual in the
sample and maximum likelihood used to recover estimates of the utility function pa-
rameters, γ.

Recovery of estimates of γ provides a characterization of the recreation user’s
preference function up to the unobserved error term. As noted above, this implies
that the form of the demand equation is x(p, y, q, γ, ε) if positive consumption oc-
curs, and zero otherwise. In other words, the presence of the binding non-negativity
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constraint conditions the form of the demand relation based on the demand regime
— the pattern of positively consumed goods. The binding non-negativity constraint
also implies that the form of the indirect utility function, which we are accustomed
to working with in applied welfare analysis, will also depend on the demand regime.
In our simple example, we recover an indirect utility function conditional on x being
positive, and correspondingly an indirect utility function conditional on x = 0, sim-
ply by plugging the functions x = x(p, y, q, γ, ε) and x = 0 into the direct utility
function given above. The overall, unconditional indirect utility is then the maxi-
mum over these two conditional functions. Formally we can state this as:

V( p, y; q, ε, γ ) = max v1 ( p, y, q, ε, γ), v0 ( y, ε, γ ){ }, (4)

where v1 and v0 are the conditional indirect utility functions for x positive and zero,
respectively. Aside from being important for many policy-relevant calculations, stat-
ing the indirect utility function in this fashion is useful in that it allows us to make a
final link and comparison to the more familiar random utility model. The random
utility model assumes recreation visitors make a discrete choice over a portfolio of site
options with the goal of maximizing utility. The conditional indirect utility for each dis-
crete option is specified as a function of the price and quality characteristics. The
model’s description ends here, because this choice involves a single visit at a point in
time. The KT analog to this is equation (4): the consumer makes a discrete choice over a
set of available demand patterns (i.e., two in this case, but 2M in the general case of
M available sites) to maximize utility. Each conditional indirect utility is a function
of the prices of the visited sites and site characteristics. The KT model goes a step
further in that conditional on the choice of demand pattern, the associated demand
equation informs us of the number of trips over the course of the season. In this
sense, the KT model can be thought of as a generalized random utility model that
preserves the link to utility theory while allowing us to characterize the season-long,
multiple site behavior (and the associated corner solutions) of recreation visitors.

Equation (4) provides a characterization of preferences for the recreation sites
and attributes up to the unobserved error term. We turn our attention now to how it
can be used, particularly for applied welfare analysis. Typically, we are interested in
a measure of the compensating variation (CV) for a change in price and/or quality. A
well-known general definition for compensating variation implicitly defines CV in
V(p0, q0, y) =  V(p1, q1, y – CV). This form can be used to define CV from our prefer-
ence characterization by:

max v1 ( p0 , y, q 0 , ε, γ), v0 (y, ε, γ ){ } (5)

= max v1 (p1 , y − CV , q1 , ε, γ), v0 ( y − CV , ε, γ){ }.

Two aspects of equation (5) are apparent upon inspection. First, the presence of
the random term implies CV will be a random variable. We are ultimately interested
in estimating its expectation for each individual, as in the case of a random utility
model. Second, no closed-form solution will exist for the expectation of CV. In this
aspect, the model departs from the standard linear-in-income RUM, which provides
a convenient, closed-form solution for the expectation of CV.3 Lacking a closed-

3 It is similar, however, to the nonlinear-in-income random utility model, which also lacks a closed form
solution for willingness to pay. See Herriges and Kling (1999) for a description of this generalization of
the standard random utility model and techniques for calculating willingness to pay.
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form solution, numerical methods are necessary to calculate an expectation for CV.
While this can be computationally intense, the intuition of how this is done is fairly
straightforward. To begin, multiple realizations for ε are sampled from ˆ f (ε) , the es-
timated distribution for the error. Two possibilities exist for obtaining values of ε.
The first samples directly from ˆ f (ε)  unconditionally. The second, recently sug-
gested by von Haefen (forthcoming), samples values for ε conditional on the
individual’s revealed choice under baseline conditions. In other words, the error is
drawn such that the model predicts the person’s revealed behavior perfectly under
baseline conditions. This approach has the advantage of limiting the support of the
distribution of unobserved heterogeneity to the range that is observed in the sample.
In practice, conditional sampling means that welfare estimates are less sensitive to
extreme draws of the error that may predict implausible economic behavior.

Given a sampled value of the error and a starting guess for CV, the left and right
sides of equation (5) are calculated. Note this involves solving for the value of each
conditional indirect utility function, given the error draw, and selecting the maxi-
mum as the value of utility. The guess for CV is then updated, and the process is
repeated until a value for income adjustment is located that equates the utility levels
under the initial and new values for price and quality. This updating occurs in prac-
tice via the use of numerical bisection to update the income adjustment. Importantly,
the calculation allows for regime switching. That is, the person can adjust the pat-
tern of visitation as well as the number of visits in response to the new price and
quality. Having completed this for a single draw of the error, the process repeats for
additional error realizations. The mean of the income adjustments generated in this
fashion provides an estimate of E(CV) for a single individual in the sample. The
mean or median of the sample provides an estimate of the welfare effect for the
population.

Application — Eastern North Carolina Paddle Data

Our application focuses on using the Kuhn-Tucker model to estimate recreation use
and recreation benefits of water trails in eastern North Carolina by recreation pad-
dlers. We model the demand for trips to eight designated paddle zones as a function
of travel costs and individual and site-specific attributes, including public amenities,
such as miles of marked trails and number of camp sites, and a measure of water
quality.

In North Carolina, 13% of households in the state participate in some type of
padding activity (NC DEHN 1995), and recreation paddling is of increasing impor-
tance in the eastern part of the state. The study area comprises the tidal flat area.
Tourism is a major industry in this region, with estimated tourism expenditures on
the order of $2,297 million in 1998 (NC Department of Commerce 1998). This re-
gion contains many bays, estuaries, islands, and inlets, all of which comprise ideal
conditions for sea kayaking and canoeing. The state has designated 1,189 miles of
water trails in this area. Recreation managers have created marked trails and routes
in the area and have begun the process of creating and improving infrastructure (i.e.,
launch points, amenities) to support expanded paddling opportunities. The area is
under pressure, however, from competing uses, such as development and agricul-
tural operations, that threaten environmental conditions. Information on trail usage
and values is useful for informing decisions on continuing efforts to build and main-
tain the water trail system. As a preliminary step in this process, a survey of
canoeing and kayaking visitors to the area was conducted for the 2000 paddling sea-
son.
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Three methods were used to solicit survey respondents. First, a letter requesting
participation in the study was sent to 622 individuals whose names appeared on a
mailing list requesting information about coastal paddling from resource develop-
ment and state park sources. Second, commercial paddling businesses
geographically dispersed throughout the coastal area were contacted and agreed to
cooperate by contacting customers on their mailing lists. Finally, the sampling pro-
cess was supplemented by posting the project description and request for survey
users on paddle club, association, outfitter, and other email list servers in North and
South Carolina and Virginia. Six hundred-one individuals who went canoeing or
kayaking during 2000 agreed to participate in the study.

Each of these individuals received a mail survey. The paddling survey elicited
information about the number of paddling trips, trip expenses, group characteristics,
and trip purposes. The final convenience sample consisted of 491 returned question-
naires. Overall, 426 questionnaires were sufficiently complete to be usable for
economic impact and demand analyses. Clearly, this sample is not based on a ran-
dom population survey, and as such, care should be taken when extending results
beyond the sample. Nonetheless, the data set is representative of what is often avail-
able to recreation analysts and, therefore, provides a suitable application for the KT
model.

The survey solicited information on visits to nine aggregate areas, correspond-
ing to county groupings, in eastern North Carolina during 2000 for paddling
activities. For modeling purposes, we have defined eight paddling areas which serve
as our site definition for this application. These areas correspond to the division of
the eastern part of the state into paddle zones for which marked trails and maps are
available online and via requests to the state tourism office.4 On average, respon-
dents visited two of the available sites during the period of interest and took an
average of 9.84 total trips to the region. The median number of total trips to the re-
gion is 4. Corner solutions are the typical outcome, and a model allowing for
non-consumption is needed to analyze this type of data. Table 1 provides a summary
of the sample specifics and percentage of corner solutions.

Out-of-pocket travel costs for accessing each site by respondents were com-
puted from round-trip mileage estimates to paddling areas from the primary
addresses of respondents with the software product ZIPFIP (Hellerstein et al. 1996).
The direct travel cost was the round-trip mileage from a resident’s home to each of
the paddling areas multiplied by $0.14 per mile. Rather than including the opportu-
nity cost of travel time as part of the travel cost estimate, we follow an alternative
approach suggested by Shaw and Feather (1999) based on conditional demands. The
fundamental insight behind this suggestion is that short-term recreation demand de-
cisions are made conditional on the longer-term labor supply decisions of each
respondent. As such, the demand equations are specified to contain prices based
only on the out-of-pocket travel costs and total hours worked in a week. Table 1 pro-
vides travel cost summary statistics of access to each of the eight sites and weekly
hours worked.

Individual and site characteristics are expected to influence the demand for
trips. We include explanatory variables for age and kayak ownership to capture indi-
vidual effects. The variable age is simply the age of the respondent. The variable
kayak is a dummy variable equal to one if the person owns a sea kayak. Summaries
of these variables are also included in table 1. Site characteristics provide a link be-

4 These eight paddling zones are described in detail on the web at www.ncsu.edu/paddletrails. Maps of
trails, descriptions of amenities, and other useful information are available at this site, along with a map
of the state that illustrates our choice set definition.
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tween environmental and amenity aspects of the sites and people’s visitation deci-
sions. We include one measure of environmental quality and two measures of site
amenities in our model.

To characterize water quality in each paddle zone, we calculated a water quality
index for each zone based on the Environmental Protection Agency’s Index of Wa-
tershed Indicators (US EPA 1999). The Index of Watershed Indicators (IWI)
provides an index system rating water quality at the level of eight-digit hydrological
units (watersheds) throughout the country. This system indexes watersheds with a
value between one and six, with one corresponding to the highest water quality. The
average IWI values associated with the watersheds contained in each of the paddle
zones were used to construct a water quality variable for each area, labeled water in
our application. The values of water are given for each site in table 1. Inspection of
these values displays variation in water quality across the study region.

Our two site amenities include miles of marked water trails in the area (miles)
and the number of public campsites in the area (camp). These variables were mea-
sured and provided by contract as part of the survey process and are summarized in
table 1. 5 A priori  we expect trails and camp  to positively influence trips. Again,
variation in the values of these amenity variables exists across areas, suggesting it
may be possible to identify behavioral impacts associated with these characteristics.

Table 1
Summary Statistics for North Carolina Paddle Data

Site-Specific Summary Statistics

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8

Trips 0.74 1.56 0.93 2.20 2.60 1.00 0.30 0.38
(2.55) (5.00) (5.40) (6.64) (10.72) (4.20) (1.82) (2.11)

Price 39.34 50.62 40.56 41.70 49.87 45.50 30.64 36.19
(22.99) (25.05) (23.61) (23.39) (25.02) (23.93) (21.43) (22.63)

Trail miles 129 0 141 304 351 127 0 158
Water quality 1.75 2 1.6 1.5 2.87 3.5 2.16 3.35
Public camp sites 455 1615 793 1221 1537 379 235 299

Total Trip Summary Statistics

Mean Standard Deviation Median Range
9.84 15.48 4 0–160

Individual Specific Summary Statistics Sample Summary Statistics

Income $76,590 Respondents 426
(40,094)

Work hours 37.85 # respondents not visiting study area 47
(18.42)

Kayak ownership 0.78 # respondents visiting >1 sites 225
Age 46.61) # observations visiting all sites 0

(11.76)

5 The variable trails measures marked water trails that are described on the website in the preceding
footnote and in eastern North Carolina tourism paddling literature. Note that currently paddle zones 2
and 7 are lacking marked trails, although there are many other unmarked waterways available in these
and the other zones for recreational paddling.



Phaneuf and Siderelis8

Empirical Specification and Results

Derivation of Estimator and Results

Application of the KT model requires specification of the direct utility function and
distribution for the error vector. In specifying the individual’s direct utility function
we follow existing literature (e.g., Phaneuf, Kling, and Herriges 2000) and assume
an additively separable functional form. Specifically, utility is:

u = Ψi (s, ε i ) ln x i ⋅ φ(qi ) + θ[ ] + ln(z )
i=1

8

∑ , (6)

where xi is the number of trips taken to the ith site, z is spending on all other goods,
s denotes the individual specific characteristic variables, qi denotes the site-specific
quality variables, εi is a site-specific random error, and θ is a parameter to be esti-
mated. The term Ψi is constructed to be a positive aggregator function of the
individual-specific variables and the random error term:

Ψi (s, ε i ) = exp(δ 0 + δ ageage + δ kayak kayak + δ hourshours + ε i ), i = 1, . . . , 8 , (7)

where the δ’s are parameters to be estimated. The term φ(qi) is a strictly positive
aggregator function of the site i specific quality variables, given by:

φ(qi ) = exp(γwater wateri + γ trailstrail i + γ camp campi ), (8)

where the γ’s are parameters to be estimated.
The utility function is specified such that weak complementarity between the

recreation sites and their associated quality measures holds. Note that if no visits are
made to site i, φ(qi) drops out of the direct utility function, and changes in qi have
no impact on the level of utility. This implies that the welfare effects estimated from
this model contain only use value, and the demand equations will be functions of the
visited-site quality variables only.

Maximization of equation (6) subject to income and non-negativity constraints
with z > 0 implies first-order (KT) conditions:

Ψi (s, ε i )

x i + α i

≤
pi

y − pi x ii =1
8∑

, i = 1,...8, (9)

where the substitution αi = θ/φ(qi) has been made. Recall from equation (3) that esti-
mation in the KT model follows directly from the utility maximization conditions.
Equation (9), therefore, forms the basis for deriving the estimating equations. Sub-
stituting equation (7) into equation (9) and solving for the error term in each
equation allows the first-order utility maximization conditions to be rewritten as:

ε i ≤ gi , i = 1, ...8, (10)

where

gi = ln pi + ln(x i + α i ) − ln y − pk xk
k=1

8

∑
 
  

 
  − δ0 − δ ageage − δ kayakkayak − δhours hours.
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This version of the first-order conditions is the key link between the behavioral and
econometric aspects of the model. If xi is observed to be positive, the condition in
equation (10) is εi = gi, while if xi is zero, the condition is εi ≤ gi. By assuming a
distribution for the error terms, we can state the probability of observing this out-
come and derive estimating equations.

To make this operational, we assume that εi is an identically and independently
distributed type I extreme value for each of the eight sites.6 Although restrictive, this
assumption is useful in that it allows us to state a closed form for the likelihood
function that greatly simplifies estimation. The assumption of independent type I ex-
treme value errors implies that the log of the probability (equivalently the individual
contribution to the log-likelihood function) of observing an individual’s outcome is:

ln pr (x) = − Ixk >0 ×
gi

vk =1

8

∑ − exp −
g i

v

 

 
 

 

 
 

k=1

8

∑ − Ix k >0 × ln(v)
k=1

8

∑ + l n ( J), (11)

where Ix>0 is an indicator function equal to one if xi > 0, v is the extreme value scale
parameter, and |J| is the Jacobian transformation from ε to x.7

A Jacobian transformation is needed whenever the statement of probability in-
volves a change of variables. In this case, we have specified f(ε) — the distribution
function for the errors — when we are ultimately interested in the probability of ob-
serving x. Bain and Engelhardt (1992, p. 206) describe the necessary change of
variable technique. Since x is a function of the underlying error terms, the distribu-
tion function for x is given by f(x) = f[ε(x)]|J|, where

  

J =

∂ε1

∂x1

L
∂ε1

∂x8

M O M
∂ε8

∂x1

L
∂ε8

∂x8

,

is the absolute value of the determinant of the matrix of first partial derivatives be-
tween ε and x. The actual dimension and form of the Jacobian matrix will depend on
the number and pattern of positively consumed trips that is observed. The elements
of the Jacobian can be found by differentiating each of the eight equations implied
by the right-hand-side of equation (10) with respect to each element of x. The linear
form in equation (10) assures relatively simple terms for each element of the matrix.
For example, the diagonal elements are:

6 The probability density and cumulative distribution functions for the type I extreme value distribution
are given by:

f (ε i ) = exp − exp(−ε i v)[ ] exp(−ε i v ) v

F(ε i) = exp − exp(−ε i v)[ ],
where v is the extreme value scale term.
7 It is well known that the type I extreme value distribution provides the multivariate logit random util-
ity model with its convenient closed form, as it does here for the KT model. In the logit model, the scale
parameter, v, is normalized to one, since the qualitative choice nature of the model does not provide
scale in the dependent variable from which this term can be identified. In the KT model, the dependent
variable (seasonal trips) is quantitative, allowing v to be identified.
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∂ε i

∂x i

=
1

x i + α i

+
p

i

y − pk xk
k=1

8

∑
, (12)

and the off-diagonal elements are simply:

∂ε i

∂x j

=
p j

y − pk xk
k=1

8

∑
. (13)

These terms form the building blocks for calculation of |J| in equation (11). A
closed, but ugly, form solution exists for |J|, but actual implementation of the model
requires only providing the computer with the correct components of the matrix and
allowing the calculation to be made numerically.

Given construction of the probabilities in equation (11) for each respondent in
the sample, standard software package search algorithms for maximum likelihood
can recover estimates of the utility function parameters. Example code for estimat-
ing the model presented here using the computer program GAUSS (with references
to the equation numbers given in the derivation) is available upon request.

Estimation of the utility function parameters provides a characterization of the
indirect utility function up to the unobserved error term, derived as follows. Condi-
tional on values for the error terms, solving the maximization conditions in equation
(9) results in regime -specific demand equations of the form:

x i
ω = −α i +

Ψi (s, ε i )

1 + Ψk (s, εk )
k∈ω
∑

1

pi

y + αk pk
k∈ω
∑ 

  
 
  i ∈ ω (14)

x i
ω = 0 i ∉ ω,

where ω indexes the specific combination of visited sites. Note that the number of
trips for all positively consumed sites is given by the top equation in (14), and that
the form of this equation is dependent on the demand regime. In our eight-good ap-
plication, there are 28 or 256 unique combinations of demand patterns, including the
option of not visiting a site. Substituting the regime-specific demand equations in
equation (14) into the direct utility function in equation (6) provides the set of re-
gime-specific indirect utility functions that constitute the elements of the maximum
function for the overall indirect utility function described by equation (4). This
function is of interest for welfare analysis.

The results of estimation are presented in table 2. The parameter estimates char-
acterize the direct utility function and the associated demand relationships. The
signs of the individual characteristic variables for age and kayak ownership suggest
older individuals make fewer trips, and people who own their own kayak make more
paddling trips to all sites. The parameter estimates for each of these variables are
significant at a 5% or better level. In contrast, the hours-worked variable provides
no statistical contribution to the characterization of preferences.8

8 Estimating the model using the standard one-third of the wage rate for the opportunity cost of time
provided qualitatively similar estimation results in terms of the significant variables.
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The signs of the coefficients for the site quality and amenity variables are sig-
nificant and of the expected sign. We find that water quality is a significant
determinant of choice as measured by the water quality index, suggesting that visi-
tors take more trips to sites with better water quality. Likewise, the presence of more
water trail miles and public campsites cause paddlers to frequent these sites more
often, all else equal.

Welfare Analysis

As noted above, the preference characterization recovered from the parameter esti-
mates can be used for utility-consistent applied welfare analysis. We described the
general intuition of welfare measurement in the KT model, suggesting how compen-
sating variation is defined in the model. In this section, we list and explain the steps
involved in calculating an individual’s expected compensating variation for a
change in price or site attributes, and demonstrate the technique by considering
three policy scenarios relevant to the application. The measures derived are concep-
tually and theoretically equivalent to the welfare measures derived in other areas of
applied welfare analysis, with the main difference being that compensating variation
is computed numerically rather than via a closed form. In deriving the welfare cal-
culation algorithm we follow von Haefen (forthcoming) and focus on drawing
values of the error conditional on observed choice. The specific steps for a single
individual are as follows:

Step 1: Sample values of the error vector (ε1, …, ε8) conditional on the person’s ob-
served choice.

The maximization conditions in equation (10) suggest that εj = gj for the sites
observed to be visited by the individual. Therefore, εj is given by equation (10) for
the visited sites. For the sites that are not visited, equation (10) implies εj ≤ gj,  sug-
gesting a draw from the truncated extreme value distribution f(εj | εj ≤ gj) is needed
for each good, j, that is not consumed. A draw from this distribution can be recov-
ered by the function:

ε j = − ln − ln exp − exp(−g j v)[ ] × U{ }( ) × v , (15)

Table 2
Estimation Results

Parameter Estimate Asymptotic t-statistic

θ 3.49 6.78
δintercept –7.359 29.59
δage –0.0191 5.57
δkayak 0.155 1.71
δhours –0.0002 0.092
γwater quality –0.175 3.73
γtrail miles 0.001 3.188
γcamp sites 0.0008 11.36
v 0.987 27.88
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where U is a draw from the (0,1) uniform distribution.9

Step 2: Calculate ordinal utility under baseline conditions.
The observed levels of demand and sampled values for ε from Step 1 are

plugged into the utility function in equation (6) providing the utility level Vb ob-
tained at baseline conditions.

Step 3: Calculate ordinal utility under changed conditions.
Using the sampled values for ε from Step 1 and equation (14), calculate the de-

mand and utility levels for every possible demand regime as a function of the new
prices/site attributes. If demand for a site is predicted to be negative, set the value to
zero. The maximum of the regime-specific utility values is the utility under changed
conditions, denoted Vc. This step is used only as an input to Step 4.

Step 4: Use numerical bisection to calculate compensating variation.
Begin with a guess on the upper and lower bounds for compensating variation.

Denote these bounds CVL
0  and CVH

0  and set an initial guess for compensating varia-
tion, CV 0, as the average of the bounds. Using Step 3, calculate utility under
changed conditions as a function of income defined by y – CV0. If Vc > Vb, update
the lower bound by CVL

1 = CV 0  and set CVH
1 = CVH

0 . If Vc < Vb, update the upper
bound by CVU

1 = CV 0  and set CVL
1 = CVL

0 . An updated guess for compensating
variation is the average of the updated bounds. Repeat this process k times until
CVk–1 ≈ CVk. At this point, CVk provides an estimate of the individual’s compensat-
ing variation for the current draw of the error.10

Step 5: Repeat the process.
Repeat the process for multiple draws of the error. The average of the compen-

sating variation estimates over the draws of the error provides an estimate of E(CV)
for the individual. Example GAUSS code for this process, with references to the
steps listed above, is available upon request.

We provide a demonstration of these techniques by considering three welfare
scenarios for our application to paddling in eastern North Carolina:

Scenario A: The addition of 100 miles of marked trails in areas two and
seven, which currently lack marked trails.

Scenario B: Improvements in water quality such that all areas have an IWI
index value of at least two.

Scenario C: A $30 access fee for paddling in area five, the most heavily vis-
ited paddling area.

While these scenarios are hypothetical and intended as a demonstration, they do
reflect realistic policy concerns. As noted, there have been increased efforts on the

9 This follows from the fact that the cumulative distribution function F(εj | εj ≤ gj) is given by:

F(εj | εj ≤ gj) = exp[–exp(–εj/v)]/exp[–exp(–gj/v)].

This implies that a draw from the distribution f(εj | εj ≤ gj) can be obtained by solving U = exp[–exp(–εj/v)]/
exp[–exp(–gj/v)] for εj, where U is a draw from the (0,1) uniform distribution. Judd (1998, p. 289) de-
scribes this process in greater detail.
10 The numerical bisection routine is explained in more detail in Judd (1998, p. 148). Conceptually, the
process is numerically searching for the value of CV that solves an equation of the form v(p0, q0, y)
– v(p1, q1, y – CV) = 0. The bisection routine is needed, since no closed form exists for CV in this problem.
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part of tourism management agencies in the state to improve infrastructure for pad-
dling, including increasing the number of marked trails. Use of access fees to raise
revenue for this purpose is one possibility. Finally, water quality issues and their ef-
fects on coastal recreation are of perennial concern in North Carolina.

Table 3 provides estimates of the mean and standard error individual yearly wel-
fare effects of these policies. On average, survey respondents are willing to pay
$4.64 for the increase in trail miles, and $24.44 for an increase in water quality in
the paddling areas. Likewise the welfare impact of the access fee is –$41.35. In all
cases, the Krinsky and Robb (1986) standard errors indicate the statistical signifi-
cance of the welfare measures.

Table 3
Willingness-to-Pay Results

Policy Scenario Welfare Estimatea

Scenario A: Increase Trail Miles at Sites 2 and 7 $4.64/year
(1.50)

Scenario B: Improved Water Quality $24.44/year
(6.01)

Scenario C: $30 Access Fee at Site 5 –$41.35/year
(0.34)

a Standard errors calculated using 100 Krinsky and Robb [1986] repetitions.

Final Comments

Our intent in writing this paper has been to present a new application of the Kuhn-
Tucker model and to present an overview of the method in an intuitive manner that
will help promote further application of the approach. Our data on recreational
coastal paddling trips in eastern North Carolina is typical of many data sets avail-
able to recreation analysts and, therefore, provides a good demonstration of the
preference estimation strategy. In an eight-site model, we find environmental and
site attribute variables to significantly impact site choice and trip frequency. Fur-
thermore, we find positive and significant willingness-to-pay estimates for increased
trail miles and improved water quality.

The version of the Kuhn-Tucker model presented is relatively tractable due to
convenient and somewhat restrictive assumptions on the form of the utility function
and error structure. Future methodological work on the Kuhn-Tucker model should
examine the possibility of employing more flexible functional forms and error dis-
tributions to better characterize recreation preferences.
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