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Introduction

Although many of the world's marine fishery resources are al-
ready fully developed, there do remain some areas and stocks—
located particularly in the coastal zones of less developed coun-
tries and in the southern hemisphere—where further develop-
ment can be expected. In this paper we consider the case of a
completely unfished (or at most, only lightly fished) stock which
has been chosen for development on the basis of preliminary
stock surveys and economic forecasts. The question of interest
to us is, given the limited evidence as to stock abundance and
productivity, how can decisions be made regarding the appro-
priate level of investment in fishing capacity?

A commonly used rule of thumb is the '4Mfio rule/' as fol-
lows(Gu]land 1971; Shepherd 1981): let fi,, represent the biomass
ofthe unexploited stock, as estimated from a stock survey, and
let M denote the estimated natural annual mortality rate of the
stock (assumed to consist of a single species). Then Y ^ iMB,,
is taken as an estimate of maximum sustainable annual yield
(MSY). and capacity decisions are made on the basis of this
value.

A simple rule of this sort may be defended on the grounds that
any more complex and sophisticated decision method would be
inappropriate for the type of situation in which the rule is nor-
mally employed. But fish stocks, especially those of certain
schooling species, are notoriously subject to overfishing. par-
ticularly when the level of fishing capacity built up turns out to
exceed the long-term sustainable yield from the resource. Con-
trolling the catch at levels well below capacity is difficult, and
in many circumstances, impossible—at least until stocks become
so depressed that large catches can no longer be taken at all. In
view of the seriousness and frequency of such occurrences, it
would seem advisable to subject the current approach to a more
rigorous analysis.

In this direction, Beddington and Cooke (1983) have addressed
the question of whether in fact iMBi, is generally a reasonable
approximation to MSY. Using the standard deterministic cohort
model (Beverton and Holt, 1957), Beddington and Cooke have
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compared ^MBo and MSY over a wide range of model param-
eters. The general conclusion of this work is that, assuming that
a single XMB,, rule of thumb is to be used, the value \ = 5 is
probably biased on the high side.

Beddington and Cooke (1983) also use Monte Carlo simulation
methods to extend their analysis to the case of stochastic vari-
ations in recruitment. Such variations have two implications:
first, the spawning stock may fluctuate to an unacceptably low
level not predicted by a deterministic model, and second, survey
estimates of biological parameters, such as Bo. may be in error.
The simulations lead to the conclusion that, for high levels of
recruitment variation, it may be necessary to adjust allowable
catch levels downward in order to ensure protection for the
spawning stock.

In this paper we study the problem of optimal fishing capacity
in a developing fishery. We shall take the viewpoint of Bayesian
decision theory, a methodology that explicitly takes account of
uncertainty in decision making. Beginning with a "prior" prob-
ability distribution for annual recruitment, obtained from survey
data, we show how this limited information can be employed in
the formulation of capacity decisions.

Bayesian methods have been applied to fishery management
problems in a number of recent papers, notably Mendelssohn
(1980), Ludwig and Walters (1981), and Charles (1983c). The
capacity question has been considered, but in a different setting,
by Charles (1983c).

In the next section we set down our basic cohort model with
stochastic recruitment. In order to keep the analysis tractable,
we ignore al! sources of uncertainty except that associated with
the long-run average of recruitment. However, our methods are
clearly adaptable to deal with other sources of uncertainty, al-
though treating several sources simultaneously can lead to com-
putationally infeasible models. After setting up the general de-
cision framework, we consider a greatly simplified (noncohort)
version of our model, as a pedagogical exercise. In this version,
the stock-recruitment function is suppressed, and most of the
computations can be carried out analytically. The following sec-
tion reintroduces stock recruitment and requires time-consuming
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calculations. Finally, we return to the cohort model and report
on numerical results.

The General Model

Let N = [A ,̂(l), . . . , Ni{A,,,)] denote the population vector in
year /. Explicitly. N,{i) represents the number of fish of age / in
the population at the beginning of year /. The maximum possible
age is denoted by A,,,.

In modeling the relationship between fishing capacity and the
annual catch of fish, we assume first that existing capacity is
always fully utilized, in the sense that no effective controls exist
on either fishing effort or total catch. This assumption appears
realistic for the case of developing countries with limited man-
agement and enforcement superstructure.

We also assume a direct relationship between fishing capacity
and fishing effort E, The relationship between effort and fishing
mortality F then depends upon the concentration profile (Clark
1982) of the given fish stock. We shall here consider two alter-
natives: (1) a linear relationship between £ and /-(Schaefer type,
or Clark's Type II) and (2) a constant-concentration relationship
(Clark's Type IV) in which total annual catch is proportional to
E, and hence to capacity. The latter model is thought to be ap-
propriate for certain pelagic schooling species (Saville 1980).

For the Type II model we have

n -
1) -

where Af denotes the age of first capture, and F is total annual
fishing mortality. For simplicity we assume here that F is the
same for all fishable age classes. The total annual catch by weight
from the ki\\ age class is given by

CAk) = j^j-—^, [1 - e--^'-^'] NAk)w{k) (2)
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where w{k) represents the average weight of a fish of age k.
lntraseasonal changes in weight are ignored in this formulation;
interseasonal changes are modeled in von Bertalanffy form:

Hik) = w4\ - cxp[-K{k - ko)]V (3)

where the symbols u-,, K, and ô have the usual interpretation
(Beverton and Holt 1957). (We treat age k as an integer variable,
in order to simplify the calculation. By appropriate selection of
ko in equation 3, k can be taken to represent midyear age. so
that the error introduced by this simplification is minimal.)

Total annual catch, in the Type II model, is given by

2 CM

(4)

where B/(N,) denotes the fishable biomass:

2 NMw{k) (5)
= Aj

In the Schaefer form of the model, annual fishing mortality F
will be assumed to be directly proportional to fishing capacity,
that is, the number of (standardized) fishing units. (As noted
above, we assume that capacity is always fully utilized.)

In the case of the Type IV (constant concentration) model,
equations 1 are modified to

Nr^^k + \) = e-^[N,(k) - Cfm k^\ (6)

where Cf(k) denotes the catch in numbers from A',(A:). Assuming
that the total annual catch C7"^ is distributed over fishable age
classes in proportion to their numbers, we have
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and Cfik) - 0 for A- < Af.
Next, the recruitment component of our model is

N;)] (8)

where R, is a random variable with mean R and variance a«. and
where the function c}) is a stock-recruitment function which acts
multiplicatively on recruitment; B/,(N;) denotes the breeding
stock;

A,.,

where A,, = age of first breeding and N',{k) denotes escapement.
In our numerical simulations we will assume that recruitment

R, has a lognorma! distribution, so that X^ = log R, is normal
M|JL, tr^). We have

R = e^--''\ (TTe = R\e"' - 1) (10)

or inversely,

a- = log (I + (T^/F). tx - log^ - (7̂ /2 (iO«)

Note that the variance CT^ o£log recruitment is a function of the
coefficient of variation (tj/,//?) of recruitment. The lognormal dis-
tribution accords well with data from many tlsh stocks (Hen-
nemuth et al. 1980).

The difficulties of estimating stock-recruitment relationships
from data are well known (Parrish 1973; Ludwig and Walters 1981;
Shepherd 1982). In this study (with one exception described
later) we adopt the following ad hoc formulation of this rela-
tionship:
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FIGURE 1. Spawning biomass vs. recruits for North Sea herring, with curve
derived from Shepherd's (1982) model, and linear-threshold model.

for
for

B ^
B <

11)

where BH denotes a threshold biomass level. Typically, choosing
B,) = 0.2B (where B denotes long-run average unfished breeding
biomass) provides as good a fit to data as any rigorously esti-
mated parametric form (Figure 1). At any rate, since the esti-
mation of stock-recruitment relations requires data that would
not generally be available in an undeveloped fishery, some such
ad hoc formulation is a necessity here.

The values of the mean R and variance a% of recruitment,
which are estimated from a finite time series of recruitment data,
necessarily involve uncertainty. In the present study we adopt
the Bayesian approach, in which such uncertainty is captured
using prior probability distributions. Our analysis will be greatly
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simplified if we treat the mean \x of log recrui tment as the only
uncertain parameter . In principle. Bayesian methods could also
be used to handle uncertainty in other parameters , but as is well
known, a dynamic Bayesian analysis involving several uncertain
parameters simultaneously becomes computat ionally difficult.

An appropria te value for the variance (j- of log recrui tment
can either be taken from comparat ive studies (Beddington and
Cooke 1983), or else the sample variance &l can be used. Bed-
dington and C o o k e ' s study indicates that the coefficient of var-
iation remains fairly constant over different populat ions of f i sh
belonging to related groups .

Because of the nonlinearity of the stock-recrui tment relation
(equation 11) there is i n j e n e r a l no simple formula relating long-
term unfished biomass B to the average recruitment R of equa-
tion 10. However , if the probability that the natural biomass B,
falls below the threshold B^ is negligible, we obtain the (ap-
proximate) formula

B = R ^

With O-- fixed, the appropriate prior distribution TTO for the
mean ĴL is given by (de Groot 1970)

CTVA^O) (12)

where

No

and No - number of data points . Here we assume that the his-
torical recrui tment data / ? _ , are themselves error-free (see Lud-
wig and Walters 1981 for methods of handling errors in data) ,
and also that the breeding stock levels fi(N,) that gave rise to
the recrui tment data all exceeded the threshold B^. This lat-
ter assumpt ion seems reasonable for a newly developed fishery;



optimal Capacity Decisions in a Developing Fishery 33

otherwise, any recruitment data resulting from subthreshold
breeding stock can simply be rejected in performing the estima-
tion of |x.

Next, an optimization objective must be specified. We assume
in this study that existing capacity is always fully utilized. Thus
our model does not allow for annual catch quotas, fishery clo-
sures, and other such forms of management. (Gear restrictions
affecting the age of first capture are allowed in the model, by
altering Ay, but we do not discuss this possibility.) The as-
sumption of unrestricted utilization of available capacity seems
appropriate for fisheries in underdeveloped countries with lim-
ited management infrastructure. (See Charles 1983c tor studies
of optimal capacity when annual catches arc controllable.)

Our optimization objective will be the expected net return,
that is. the expected discounted present value of future catches,
net the capital cost of capacity. The price offish (per kilogram)
p, is assumed constant. We also assume a constant cost y per
unit of fishing capacity; since capacity is always fully utilized,
this single cost term can be assumed to cover both variable and
amortized fixed costs.

In the Schaefer form of the model, fishing mortality Fis taken
to be proportional to fishing capacity. The optimization objective
can therefore be expressed as

J{F) = £ |p 2 oi'Cj^A - yF (13)

where H is the time horizon, and a denotes the discount factor
(0 < a < 1). The expectation E{. . .} in equation 13 is actually
a double expectation, first with respect to the stochastic re-
cruitment process R,, conditioned on ^, and second with respect
to the prior distribution IT,,. The model thus encompasses both
fluctuations in recruitment and uncertainty as to the long-run
average of recruitment.

In equation 13 we are assuming that the capacity decision (i.e.,
F) is a single decision made at the outset of the planning period
H. This assumption will be relaxed later.
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For the alternative ''schooling" model, it is assumed that total
annual catch 07""^ is proportional to capacity. The optimization
objective now becomes

(14)
/ = I

where N is either the given time horizon H or the year in which
the fishery collapses because of depletion of the stock—a pos-
sibility that has to be accounted for in the schooling model. We
will define "collapse" to mean that the breeding biomass B/,(N,)
falls below some specified threshold level B' (in the extreme
case, B' - 0).

Determination of the level of optimal capacity F (or r'"'^) for
the above models is straightforward; numerical examples using
Monte Carlo simulation are reported below. Before presenting
these results, however, we wish to discuss a second form of
optimization objective.
I The initial stock survey consists of a sample drawn from an
underlying probability distribution for annual recruitment. If the
sample is small, the resulting estimate of average recruitment
will involve significant uncertainty. It may therefore prove ad-
visable not to treat the initial capacity decision as final. If sub-
sequent observations indicate that average recruitment is larger
than first estimated, capacity can later be increased accordingly.
However, if the initial capacity turns out to be too large, the
costs of excess capacity cannot be recovered. Moreover, since
capacity is always fully utilized, the fish stock may become de-
pleted if capacity turns out to be excessive, leading to further
economic tosses. A conservative approach may then be appro-
priate for the initial capacity decision, especially when long-run
prospects are uncertain.

Speciflcally, we shall suppose that a second decision regarding
capacity is to be made after Â , years, at which time the estimate
of p. is "updated" according to the A', new observations of re-
cruitment. Additional capacity can then be purchased, but ex-
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isting capacity cannot be reduced—that is, capacity is "non-
malleable"' (Clark et al. 1979; Charles 1983a, 1983b).

Let Ji(Fiu |1') denote the maximum expected net return for
the post-updating period, given an existing capacity Fo, and an
updated estimate |1' for the mean log recruitment. Thus

2 a'C7°'^(Fo + F.) | " ifi] (15)
/=! -1 J

where Cj^^ {Fo -I- Fi) is given by equation 4 with F replaced
by Fo + F| (for the Schaefer version). Here //, denotes the post-
updating time horizon. The expectation in equation 15 is with
respect to future recruitment, and also with respect to the up-
dated ("posterior") distribution IT' ~ N[M-'- O"^/(M) + /Vi)]-

The overall optimization problem is then characterized by

r Wl 1
max £ p 2 cL'Cr'' {Fo) - yFo + a^'i, (F,,, |1') (16)

The expectation again has a multiple scope, with an outer ex-
pectation over p. and an inner expectation over the recruitment
sequence; in particular, |x' is a random variable determined by
the recruitments /?, /?/v,. With / ? , , . . . , /?^-, given, and
Xi - log Ri, we have

+ n . + Xi + ••• +

+ hX (17)

where X^i, . . . , X% are the original (predecision) log recruit-
ments.

1
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and where

^ = 77—^̂ ~T7 and b = ' —
M. + N^ N,, + Ni

Thus, given ix, the updated estimate ji' is normally distributed
N(fl(io + b\i,, CT]) where tr, = Nio-̂ AA/,, -i- N,)-. (Note that all
recruitments are tacitly assumed to exceed the critical level Be.)

In general it does not seem possible to obtain analytic solutions
to the optimization models proposed above. Later we will de-
scribe a Monte Carlo simulation technique that can be used to
obtain approximate solutions. In the next section we show that
an analytic solution can be obtained if a number of further as-
sumptions are adopted.

Before proceeding to the simplified model, however, we wish
to point out that the optimization problem in equation 16 refers
to a given decision maker, working on the basis of the survey
data available at the time. This decision maker is forced to as-
sume that the sample mean |io also respresents the mean of the
prior distribution for the "true" (unknown) mean of log recruit-
ment. Since in general \x ¥^ |lo, the initial capacity decision Ft
will almost always appear to have been "wrong." when viewed
on the basis of subsequent information. As noted above, a
"wrong" capacity decision on the high side is likely to have more
serious consequences than one on the low side.

A Simplifled Model

Let us now assume, for the purpose of illustration, that there
are no overlapping age classes, and also that annual recruitment
is independent of past stock size. Specifically, annual recruit-
ment is a sequence of independent random variables, having
identical lognormal distributions with an uncertain mean but a
"known" variance. A model of this kind appears appropriate
for tropical penaeid shrimps (Clark and Kirkwood 1979) and
should also be appropriate for the case of migratory species pass-
ing through the fishing zone of a given coastal state. In both



optimal Capacity Decisions in a Developing Fishery 37

these examples, recruitment can be expected to be highly var-
iable and unpredictable.

In addition, we ignore natural mortality during the fishing sea-
son, that is. M ^ 0. This assumption permits a completely an-
alytic solution to our problem; if M 7̂  0. the solution involves
a (single) transcendental equation which must be solved nu-
merically.

Let recruitment R, now be specified in terms of biomass. rather
than numbers offish. The lognormal distribution for R, implies
that log/?, — A'djL, a"). However, from the point of view ofthe
decision maker. |JL is uncertain, with ĴL ~ N{yL'. (T'~) being the
subjective probability distribution. Hence the prior estimate of
log recruitment becomes log R, ~ iV(|l', <J~ -I- CT'~) where (T'~ is
the variance ofthe estimate (!'.

The post-updating retum function is given by

max \ E<p 2J a'7?f[l - e

= max

(19)

where the harvest is H, = R,[\ - e f'̂ '"-*-'̂ ''], and we have used
the fact that

\x.)]

Here \x' is the mean, and CT'- = CT"/{MI + A'l) is the variance of
the posterior distribution IT'.

Introduce the notation

/v 1 - a^
A{N) ^ py, a' = pa (20)

and
(21)
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It follows from equation 19 that the optimal additional capacity
Fl (forgiven initial capacity /•„) is

' + tĵ /2 + cr'̂ /2 + p - Fo if this is positive
otherwise

(22)

In other words, new investment is warranted only if the current
estimate of log recruitment p.' is large compared with current
capacity F,,. The optimal new capacity /•', = F* can now be
inserted in equation 19:

The overall optimization problem becomes

Jo = max M(A^,)f''"^""^"'"^^^(l - e-'-'n

^ |1')]} (23)

where CTB = (T~/NO. Since both expectations here involve normal
distributions, the double expectation can be reduced to a single
integral:

(24)

where a = W(A^o + A'l), h = \ - a,(jl = ij^{VNo +
and

—- exp [-(^ - |j.)2/2a=] (25)
Z'TTO'

is the normal density.
Upon substituting the expressions for 7, into equation 24 and

rearranging, we can express the result in terms of the cumulative
normal distribution function
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e''"^dt

We obtain

E-noEjn {J[) = A{H) exp [|lo + kicr + CT'' -I-

- - 7 7 ^ exp [-{w - J1O)/2CT2]

- ^ A{H) exp [|lo — jPo + 2(0
X (1 -l~ 2<t>{[H- - ((lo + bal)],

2 .. . - |lo - 1 - i(a- + CT'-) - 3]

X {1 - 24>[(H' - A.o)/a2]} (26)

where

In spite of its lengthy appearance, equation 26 takes only a few
milliseconds of CPU time to calculate numerically when coded
in FORTRAN. Thus the final maximization over Fi) in equation
23 can be performed efficiently and accurately by means of a
simple search routine.

As an illustration we consider the following data, pertaining
to a simplified version of the model described by Clark and Kirk-
wood (1979) for the banana prawn {Penaeus merguiensis) fishery
of Northern Australia:

/?, - 1.5 X 10' kg, R2 = 3.2 X 10̂  kg, R^ = 5.5 x 10̂  kg
(lo - 15.67, CT - 0.58, M) = 3

p = $l/kg, 7 = $2.2 X 10'

For these values, and with /Vi = 3, f/ = 20, and a = 0.91, we
obtain
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FQ = 1.05

This can be compared with (1) the value F*o if no subsequent
updating is used, and (2)J_he value F I , derived from a deter-
ministic model with R = R, the apparent average recruitment.
Thus Fdei is obtained as the solution of

max [A{Hm\ - ^"0 - yF] (28)

whereas Fto (which allows for prior uncertainty) is the solution
of

= max [A{Ii)e^^'^""-^''"-'''{\ - ^ - ^ - yF] (29)

We obtain (since R = ^'^''^''-'^j

FL = P + |1O + y (30)
2

' n o ' del ~ » > r PU

Z/V()

For our parameter values,

Fje, = 1.08. F*, = 1.13

We see that Fo < FJei < F*o, but that the differences are
relatively small; the differences in the return functions J{F) are
even smaller, by about an order of magnitude. This suggests that,
for these parameter values (and for this model), it is not worth-
while to take uncertainty into account in the capacity decision.
It is clear from equations 30 and 31 why this is so: the "noise"
terms a-/2 and iT~/2No are small (CT-/2 - 0.17) relative to the
Values of F* themselves. The prawn fishery in question is a
highly profitable fishery, which experiences unusually high an-
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3

I 2 3 4 5 6 7
Cost porometer , y (x 10"')

FIGURE 2. Dependence of optimal capacity on cost parameter: base case
parameter values (i« = 15.67, CT ̂  0.58, N^ ^ Ni ^ 3.

nual exploitation rates, often exceeding 70% {F - 1.20). Under
such circumstances, uncertainty about long-run average recruit-
ment can have relatively little influence. (This might not be the
case if high fishing mortality leads to reductions in recruitment,
but the simplified model of this section ignores that possibility.)

The dependence of F* and F*o on the cost parameter -y is
illustrated in Figure 2. As cost increases, the optimal capacity
levels dechne. The relative importance of updating increases,
although the absolute difference Fno - F* remains constant as
y is varied. (The latter is a computed result for which we have
obtained no analytic derivation.)

The absolute difference between the computed capacity levels
Fo and Fto depends critically on the value of No and is obviously
quite sensitive to No when Mt is small. Thus, for No = 3, al-
though the given recruitment levels show considerable variabil-
ity, the {Bayesian) uncertainty in |x is already fairly small, and
additional data cannot be expected to change the estimate much.
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I 2 3 4 5 6 7
Cost porometer. y ( X 10" ' )

FIGURE 3. Dependence of optimal capacity on cost parameter: parameter
values/V,, - Â , = i . a - 0.58. ji,, - 16.52 (upper pair of curves), fl,, = 14.98
(lower pair of curves).

As a comparison, consider the possibility of making a capac-
ity decision on the basis of a single data point. The results for
No = 1 are shown in Figure 3. Here the upper pair of curves
correspond to the largest of the observed recruitments, R =
1.5 X 10̂  kg, and the lower to the smallest, R = 3.2 x 10'' kg.
As expected, there is now a much wider divergence between the
updating and no-updating cases. Optimal capacity is of course
overestimated when ^i > /?, and conversely, but allowing for
subsequent updating reduces the amount of overcapacity.

What about other sources of uncertainty? For example, re-
cruitment data itself is invariably subject to error. Let Xj denote
the true value of log /?,, and let

denote the observed value. If the ê  are mutually independ-
ent, and also independent of the x^, and normally distributed
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N{Q. (JI), the appropriate prior distribution for x becomes normal
N{y, CT^/2 + <TI/2). It is easily verified that CT" should be replaced
by CT^ + (TI throughout the optimal capacity analysis.

Figures 4a and 4b illustrate the dependence of the optimal
capacity levels F,t and F*o upon the parameter a. (In these cal-
culations, variations in CT have been matched by opposite vari-
ations in flo so as to keep the expected recruitment R = exp
(|1,, + cr"/2) constant. Thus the deterministic optimal capacity
(equation 28) remains constant, but both F*., and Fo depend on
CT by way ofthe prior density.) The nonupdating optimal capacity
/-"no always increases with a, by equation 29 (see Charles 1983b),
as shown in Figure 4a. Under updating, however, the optimal
capacity fo first decreases, but then ultimately increases, with
increasing CT (see Figure 4h). At low levels, increased uncertainty
calls for a more "conservative," wait-and-see investment de-
cision, but at higher levels the need to have capacity to take
advantage of possible high levels of recruitment outweighs the
desirability of waiting for additional information.

Effects of Stock Recruitment

In this section we introduce a stock-recruitment relation into the
simple model analyzed above. None ofthe simplifications ofthe
previous section carry over to this case, so that a full Monte
Carlo simulation approach is required.

To facilitate comparison with the previous results we adopt
the Cushing form for the stock-recruitment function, namely

R = F{S)e"' = e^^S^e'"'

where z is a normal random variable with mean 0 and variance
1, making R lognormal. We have E(R) = e^^^^^^^S^ and 6 - 0
reproduces our simple case above. We assume that |JL is uncertain
but that e is known in terms ofthe "recruit per spawner" ratio
at low stock levels. In effect this is equivalent to assuming knowl-
edge of the extent to which stock-recruitment affects the pop-
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2.0

S 10 -

a
o

0,0
0.5 1.0

Standard d e v i o t l o n . c r
2.0

FIGURE 4fl. Dependence of optimal capacity on standard deviation: base case
parameters |x,, - 15.67, A'o = ^ i - 3. -y = 2.2 x lO''.

3 .0

2.0 -

05 1.0
Standard deviation, cr

2.0

FIGURE 4b. Dependence of optimal capacity on standard deviation: param-
eter values (io = 15.67. /Vo = A', - I. -y = 5 X 10^
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ulation dynamics. The mean value ofp. is then determined using
the equation

5* = exp [(̂ i + (TV2)K\ - e)]

for the equilibrium unexploited escapement level, given 5* from
survey data, together with B and CT. In other words

|x = (I - e) log 5* - CT^/2 and ĴL - M|l, CT;)

where CTJ. denotes the variance in the estimate of |x.
It is convenient to transform our fish stock variable by writing

X = log R so that the stock-recruitment function becomes:

X,+ i ^ M- -I- e log Sr + CTZ,+ j (32)

G i v e n full u t i l i z a t i o n o f fieet c a p a c i t y F, w e h a v e S = R e ' ' =
e"^'^, and log S, = x, - F. Hence

jf;+i = ĴL + e u , - F) + CTz,+ i (33)

The overall optimization problem becomes

r

maxE

1
— "vFo + OL Ji(x\/ Fo il ) (34)

' '' ' J
where

7i == max F ] p [ l -

H
\j' ^7 „ . / — J V | _ u . + e t . J C r - I —/^"O—/•1> + C2< -.17 L i'l^\

Post-Updating returns, for a given investment F | , are averaged
over the posterior distribution ^ — N{{L', CT^~) and over the pos-
sible future random recruitments. Here
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™2

No +

and

where

The initial choice of Fo maximizes the expected discounted pres-
ent value of rents, averaged over the prior |x-distribution \i -
Niixo. I-TI) and the stochastic outcomes of the first Ni years. (For
each prior |j.-va]ue and each stochastic outcome, the optimal F,
investment level is determined and used in 7].)

The no-updating version is similar, except that 7, is not cal-
culated and we set A/, - H, reflecting the fact that there is no
post-updating period.

In the numerical simulations that we performed, expectations
with respect to environmental outcomes z were calculated by
averaging over 30 possible scenarios. Expectations with respect
to p. were determined by discretizing the normal distribution
A (̂|x, CT^) into 1-standard-deviation steps between -6CTJ^ and
+ 6a^. and approximating the expectation integral by a sum.
Optimal values of Fo and Fi were found by a simple search pro-
cedure.

Using the parameter values of the previous section, we tested
this simulation model for 6 = 0. The results obtained previously
were reproduced by the new model at least to within the F,, step
size of 0.05 used in the analysis. Specifically we obtained F J =
1.05 and F*^ = 1.15.

In order to study the effects of stock recruitment, we used the
above model with a recruit-spawner ratio of 6.0 at low stock
levels (6 = 0.222). This choice is entirely ad hoc. The optimal
Fo values with and without updating now become

Fo = 0.60 Ft. - 0.70
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respectively. These capacity levels are considerably lower than
those obtained previously, reflecting the influence of the stock-
recruitment assumption in reducing average recruitment for the
exploited stock. Uncertainty pertaining to the stock-recruitment
relationship may be an important consideration in certain fish-
eries (Ludwig and Walters 1981), but we do not address the ques-
tion explicitly here. (In the case of most tropical penaeid prawn
stocks, no discernible stock-recruitment relationship appears to
exist.)

Although the Fo-values have been reduced, the absolute dif-
ference between F J and F*., has not changed, suggesting that the
simpler model was sufficient to depict the quantitative effect of
updating on capacity decisions.

Of course, this is not a conclusive result, since only one pos-
sible stock-recruitment curve has been used, and parameter un-
certainty has been restricted tojust one of the parameters. While
the full Monte Carlo simulation model would generally be pre-
ferred, severe computational requirements hamper its useful-
ness. To obtain tolerable accuracy, the innermost calculations
in equation 34 must be performed approximately 150 million
times. Depending on how fast the search procedure locates
Fo, a full solution required between 20 and 45 minutes of CPU
time on the University of British Columbia IBM Amdahl com-
puter! While savings could likely be achieved by adopting a dy-
namic programming approach, the enormous difference in costs
between the analysis with and without stock recruitment must
certainly be taken into account in deciding upon an appropriate
population dynamics model for use in capacity decisions.

A Cohort Model

Next we consider the full cohort model, using the threshold
stock-recruitment relation of equation II. The possibility of up-
dating and subsequently increasing capacity, however, will not
be considered here.

The optimization objective, equation 13, can be written more
explicitly as
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J{F) = f_ n(^; Ao. a-/A^o) ^ | P 2 <^'C,{F) | ^1 ^̂ ^ - yF

(37)

where the expectation in the integrand is taken with respect to
the recruitment process R,, conditioned on \i. This expectation
can be approximately calculated by Monte Carlo simulation of
the fishery based on equations 1 through 9, employing a log-
normai random number generator. The integration in equation
37 is then performed numerically.

The numerical results reported below were obtained using 20
simulations for each value of |.i.. and a 10-mesh-point numerical
integration [with the normal distribution n(iC,\ p,, a) truncated at
p, ± 5{T and correspondingly renormalized]. Increasing the num-
ber of simulations had a negligible effect on the outcome, except
for large values of a (the graphs became slightly smoother). A
typical calculation (for a given value of F) required 0.65 seconds
of CPU time, when coded in FORTRAN IV and run on an Am-
dahl 470 machine.

Figure 5 shows computed results, for the Schaefer catch
model, using the following parameter values:

R = 10^ w^ = 1.0, flo = -1.0, K = 0.5,_M = 0.2,
Af, = Af = 3, A^ = 20, Bs - 0.2B,
;, ^ 1, a = 0.99, / / = 20, No = 5

The curves in Figure 5 represent the gross discounted return
EipXa'C) rather than the net return of equation 37. The curves
have a characteristic profile, increasing with F up to a maximum,
and then declining to a positive asymptotic level as F ^ -l-a=.
This is similar to the shape of the usual yield-per-recruit curves
constructed from the Beverton-Holt cohort model (e.g., Bev-
erton and Holt 1957. p. 321), but in the present model the decline
in total (discounted) yield is associated both with overfishing of
young fish and with fishery collapse resulting from recruitment
failure. For the parameter values used in obtaining Figure 5, in
fact the decline in yield is almost entirely associated with re-
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FIGURE 5. Expected catch vs. fishing capacity /•", for a = 0 and cr = 1.5.
Parameter values: see text.

cruitment decline; the threshold breeding biomass (0.205,,) is
reached at F = 0.5.

The curves shown in Figure 5 indicate the effect of increasing
the level of fluctuation and uncertainty. The sharp peak in the
deterministic curve (CT = 0) is a direct consequence of the corner
in our assumed stock-recruitment curve (equation 11). When un-
certainty is introduced (tr > 0), the peak is smoothed out and
shifted to the left. (The simulation techniques used in the cal-
culations imply that the curve for CT - 1.5 is only an approxi-
mation to the actual curve. This also explains the kinkiness of
the curve shown in the figure.)

The economically optima! capacity level F*, which depends
on the cost-price ratio (see equation 13), can also easily be de-
termined approximately from the graphs. As before, F* de-
creases as a increases, reflecting the anticipated effect of un-
certainty in calling for a smaller, more "cautious" level of fishing
capacity. In the case of Figure 5, with a = 1.5, a reduction of
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FIGURE 6. Expected catch vs. capacity C (Type IV model), for a - 0 and
a - 1.5.

30-50% in the optimal capacity level from the value computed
from a deterministic model appears appropriate for a wide range
of cost-price ratios. In certain situations (relatively high cost-
price ratio), the expected improvement in economic performance
from such a reduction would be substantial. (If the possibility
of updating were to be included, /-'* would presumably be further
reduced, although the results ofthe previous section suggest that
the improvement might be minor in most cases.)

Figure 6 shows the outcome of the same model (and the same
parameter combination as Figure 5. except A^- = i). but for the
case of a Type IV, constant-concentration fishery. Here the con-
trol variable is C^^^ = annual catch capacity. The deterministic
curve (CT = 0) consists of a straight-line segment, joined at a sharp
peak with an asymptotically declining curve. The effect of in-
creasing uncertainty is similar to the previous case, although
there is a more pronounced effect on the total expected catch
than previously. This presumably results from the possibility of
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complete collapse of the Type IV fishery. Again, uncertainty
calls for a more conservative investment decision than would be
obtained from a deterministic model, except possibly when the
cost-price ratio is very low.

Conclusions

The importance of uncertainty in fishery systems is widely rec-
ognized. In this paper we have addressed the problem of esti-
mating optimal fishing capacity under conditions of limited in-
formation as to the long-run productivity of the resource.

The effects of an error in the initial capacity decision are likely
to be asymmetric. Too small a capacity will result in suboptima!
initial catches, although capacity can usually be increased later
if so indicated. Too large a capacity will result in financial losses
of overinvestment, and also in potential long-term losses re-
sulting from depletion of the stock. Reducing excess capacity
often proves difficult, if not impossible, in practice. Because of
this asymmetry, a conservative initial capacity decision appears
intuitively appropriate.

In order to address this problem analytically we have used the
methods of decision theory and adaptive control theory. Several
alternative models have been discussed, based on alternative
hypotheses concerning age structure, the catch-effort relation-
ship, the stock-recruitment relationship, and the way in which
uncertainty and information are handled.

If uncertainty is treated in a passive sense (i.e.. if the possi-
bility of future updating of information is ignored), then the effect
of including uncertainty in the analysis may be an increase in
the estimate of initial capacity, contrary to the intuitive response.
Under an adaptive approach, however, the intuitive result be-
comes valid, at least if the degree of uncertainty is not too high.

The numerical computations that were performed also led to
the tentative conclusion that in most cases a simple deterministic
model would not perform too badly relative to more sophisti-
cated decision-theoretic models. This finding, if it holds up to
further analysis, could be of considerable help to fishery man-
agers, who may tend to hesitate to recommend initial capacity
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restrictions, on the grounds that uncertainty is too great to pro-
vide any accurate estimate of optimal capacity.

While it may often be true that the available estimates of re-
source productivity are subject to wide errors, our work suggests
that a capacity decision based on "best estimates" may be close
to the best possible decision under the circumstances. If this is
not acceptable, then an analysis along the lines indicated in this
paper becomes necessary. Experience has certainly demon-
strated that the failure to make any attempt to control fishing
capacity can have very serious long-term impacts on both the
biology and the economics of the fishery.

In conclusion, we wish to emphasize the strong institutional
tendencies towards overcapacity in fi.sherics. Decisions to limit
capacity may fail to be made on the grounds that data on resource
productivity is too fragmentary. Our analysis suggests that quite
good decisions can be made with limited data, especially if a
conservative wait-and-see attitude is adopted.
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