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Distance vs. Ray Functions: An Application
to the Inshore Fishery of Greece
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Abstract   The objective of this paper is to compare the empirical results from
two alternative representations of a stochastic multi-output technology using
trip-level data of the inshore fleet in Greece. The comparisons involve technical
efficiency scores, structure of the underlying technology, and technical effi-
ciency determinants. The stochastic multi-output distance function and the
stochastic ray production function indicate the same technology structure,
which is non-separable in inputs and outputs, non-homothetic in inputs, and ex-
hibits increasing returns to scale. The relative rankings of efficiency scores are
very similar. The distributions of efficiency scores, however, are different, and
the ray production frontier yields systematically lower technical inefficiency
levels than the multi-output distance function.
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Introduction

Until recently, econometric studies of technical efficiency (TE) for multi-output
technologies have either: (a) aggregated outputs into a single index (e.g., Pascoe,
Andersen, and de Wilde 2001; Sharma and Leung 1999) or (b) modeled the technol-
ogy through a dual function (e.g., Resti 2000; Bauer 1990). Both approaches have
certain limitations. Aggregation of outputs assumes implicitly input-output separa-
bility that is not always compatible with the real-world data. Estimation of a dual
(profit, cost, or revenue) frontier requires detailed information on output and/or in-
put prices, as well as a behavioral postulate that is not necessarily valid.

Lovell et al. (1994) developed a multi-output generalization of the primal ap-
proach to measuring TE which involves direct estimation of a multi-output distance
function. Lothgren (1997) and (2000a) proposed an alternative approach which re-
lies on a Ray production function. The empirical applications of those recently de-
veloped tools are very few. Coelli and Perelman (2000) obtained TE estimates for
European railways using a deterministic multi-output distance function. Morrison,
Johnston, and Frengley (2000) applied a stochastic multi-output distance function to
New Zealand sheep and beef farming sectors, while Lothgren (2000a) studied TE in
Swedish hospitals through a stochastic ray production frontier.

The objective of this paper is to compare the empirical results from stochastic
distance and stochastic ray production frontiers on a panel of observations/trips of
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inshore fishing vessels in Greece. Comparison of efficiency scores (absolute levels,
distributions, and relative rankings) from different methods has been the topic of a
number of works during the ’90s (e.g., Sharma, Leung, and Zaleski 1997;
Hjalmarsson, Kumbhakar, and Heshmati 1995; Neff, Garcia, and Nelson 1993). Ear-
lier works compared efficiency estimates from approaches involving different esti-
mation procedures (parametric vs. non parametric) and different assumptions about
the frontier (deterministic vs. stochastic).1 The present work is concerned with two
parametric approaches under stochastic output variations. The only difference be-
tween the distance function and the ray production function approach lies in the way
each econometrically handles the presence of multiple outputs. It would be certainly
useful to find out whether this difference has an impact on the resulting technical
efficiency estimates. Comparisons here include, in addition, the implied technology
structures (input-output separability, homotheticity) and the implied technical effi-
ciency determinants.

Multi-output generalizations of the primal approach are promising for empirical
research on TE in fisheries. As pointed out by several authors (e.g., Sharma and
Leung 1999; Kirkley and Strand 1988; Wilen 1981; Carlson 1973) the economic be-
havior of fishermen is not well understood (there is no generally accepted micro-
theory decisionmaking by the fishing firm). Fishermen may harvest in accordance
with different strategies, or they may be optimizing over several objectives. Things
are further complicated by harvests of incidental species (bycatch). It is not very
surprising, therefore, that most works that relied on revenue or profit maximization
led to empirical results such as negative own-price supply elasticities, which are in
striking contrast with the behavioral postulates (e.g., Squires and Kirkley 1991;
Dupont 1991; Kirkley and Strand 1988).

It is well recognized that the sustainable management of stocks and the efficient
use of production inputs are both prerequisites for the maximization of the social
benefits from the fishing industry. However, despite the methodological develop-
ments and the widespread use of alternative frontier approaches in assessing techni-
cal efficiency in many industries, the application of these methods to commercial
fisheries is rather limited. This must be largely attributed to the fact that manage-
ment authorities are typically more concerned with the biological aspects of fisher-
ies resources rather than with the economic performance of fishermen. For example,
while the fisheries management objectives in the EU involve resource conservation,
maintenance of employment in the sector and the associated coastal communities,
and improvement of economic performance, the last generally receives lower prior-
ity relative to the first two objectives (Holden 1994; Pascoe, Andersen, and de Wilde
2001). There are no previous studies on efficiency for the fisheries sector in Greece.
Also, it appears that there are no published works on efficiency for the fishing fleets
of other Mediterranean countries.

The paper is organized as follows: The second section contains the theoreti-
cal framework (stochastic distance and stochastic ray production functions),
while the third section describes the data and the empirical models. The fourth
section presents the empirical results. Conclusions and certain policy implica-
tions are offered in the final section. Full sets of parameter estimates are pre-
sented in the Appendix.

1 Multi-output parametric frontiers have not been considered in the relevant literature. Several authors
have compared parametric single-output models with non-parametric (DEA) multi-output ones. The
DEA method, however, is not appropriate for TE analysis in fisheries because it assumes a deterministic
frontier. This misspecification results in a negative bias in TE scores which, as shown by Lothgren
(2000b), carries over to the average efficiency estimates obtained by bootstrap.
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Theoretical Framework

The Stochastic Distance Function Approach

Let y be a Mx1 vector of outputs, x a Kx1 vector of inputs, and P(x) the output set
describing the output combinations that are feasible for each x ∈ RK

+ . The output-ori-
ented distance function, defined as:

D x y y P xo ( , ) min : ( )= ∈{ }
µ

µ µ (1)

gives the minimum amount by which an output vector can be deflated and still re-
main producible with a given input vector. D0(x,y) is non-decreasing, positively lin-
early homogeneous and convex in y, and decreasing in x. It takes a value less than or
equal to one for any output vector belonging to P(x). In particular, it takes a value of
one when y is located on the outer boundary of P(x) (that is, when there is no techni-
cal inefficiency in production).2

The stochastic multi-output distance function model maybe written as:

1 = ⋅ −D y x u vo i i i i( , ) exp( ) (2)

where i stands for a firm, vi are i.i.d N(0, σv
2) distributed random errors, and ui ≥ 0

are the corresponding one-sided errors representing technical inefficiency
(Kumbhakar and Lovell 2000; Morrison, Johnston, and Frengley 2000).

Relation (2) must be converted into an estimable regression model. This can be ac-
complished by exploiting the linear homogeneity property of D0 according to which:
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with m ∈  M.

The Stochastic Ray Production Function Approach

Key to the multi-output generalization of a single-output production function is the
representation of the output vector in the polar-coordinate form:

y y= ω θ( ), (4)

where ||y|| stands for the Euclidean norm of the output vector [defined as ||y|| =
( ) /ymm

M 2
1

1 2
=∑ ], and ω(θ) is a Mx1 vector:

2 A distance function may be specified with an input orientation as well. This study employs an output
distance function because the main objective is to make comparisons with a ray production function that
is output oriented. Relationships between output- and input-oriented distance functions are discussed in
Kumbhakar and Lovell (2000) and Coelli, Prasada Rao, and Battese (1998). An output-oriented distance
function has been employed by Grosskopf, Margaritis, and Valdmanis (1995) to estimate output substi-
tutability in hospital services.
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that transforms the polar-coordinate angle vector θ ∈  [0, π/2]M–1 to the output mix
vector ω(θ) = y/||y|| (Mardia, Kent, and Bibby 1979). The polar-coordinate angles, in
turn, may be obtained recursively from the inverse transformation  ω–1(θ) as:
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The ray production function, denoted as f(xi, θi), offers the maximum norm of
the attainable outputs, given the inputs x and the polar-coordinate angles θ. The out-
put-oriented distance function and the ray production function are related as:

D y x
y

f xo i i
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i i

( , )
( , )

=
θ

(7)

from which follows:

y f x D y xi i i o i i≤ ⇔ ≤( , ) ( , ) .θ 1 (8)

The partial derivatives of the ray production function with respect to the polar-
coordinate angles describe the response of the output norm when the output mix is
changed along the production frontier, given the level of inputs. For a three-output
technology, θ1 represents the angle from the y1 axis towards the plane spanned by
the y2 and y3 axes, while θ2 represents the angle between y2 and y3 in the y2 – y3

plane. Thus, the derivative (∂f/∂θ1) represents changes in the output norm for
changes in the output mix with fixed proportions between y2 and y3. In the same
way, the derivative (∂f/∂θ2) represents changes in the output norm due to changes in
the output mix, with the level of y1 held constant.

The stochastic ray production function may be written as:

y f x v u y f x v ui i i i i i i i i i= ⋅ − ⇔ = + −( , ) exp( ) ln ln ( , ) ( ).θ θ (9)

The Data and Empirical Models

The inshore fleet consists of small, family-operated vessels making short trips close to
the coasts of the mainland and of the islands of Greece. It contributes 43% of the vol-
ume and 51% of the harvest values and accounts for 70% of the total employment in the
country’s commercial fisheries (National Statistical Service of Greece 1998). The fleet
vessels operate mainly as trammel netters, and to a lesser extent, small ring netters,
long-liners, and gill netters. The present study relies on information from 690 trips of 44
vessels during May 2000 to April 2001. All sample vessels have home ports along the
coasts of Northeastern Greece. The information was collected through in-person inter-
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views with skippers.3 In several cases, either the vessel did not go fishing at the time of
the interview or the skipper was not available to respond. Hence, the resulting data set is
unbalanced. This, however, poses no problem in TE analysis with a stochastic frontier
(Battese and Coelli 1988, 1992). Unbalanced data sets have been used in all earlier em-
pirical studies on TE in fisheries that relied on panel data.

The inshore fishery of Greece is a classic example of a multi-species one. As a
matter of fact, harvests of more than 120 individual species were recorded during
the survey period. For practical reasons (feasibility of estimation) and following the
standard classification of harvests by the National Statistical Services of Greece, the
individual species are aggregated into fish, crustaceans, and cephalopods.

Output possibilities frontiers in fisheries are generally depicted as functions of
fishing effort and stock abundance (Cunninghum and Whitmarsh 1980; Hannesson
1983). In theory, fishing effort encapsulates all physical inputs used for harvesting
(Conrad and Clark 1987). In empirical works, it is typically specified as a function
of certain easily measurable production inputs. These, in this study, are fishing time,
crew size, gear, and vessel size. The amount of gear deployed (length and altitude of
the nets) and its characteristics (mesh size) are important determinants of potential
yields and they vary from trip to trip, depending on the species targeted. As in Squires
(1987) and Dupont (1991), gear is approximated by the market value of the nets de-
ployed in each individual trip. Potential influence of the gear type on output is captured
by including a dummy variable (trammel vs. other net) in the frontier. Vessel size re-
flects fishing capacity and constraints the areas and seasons of vessel operation. As in
Pascoe and Robinson (1998) and Squires and Kirkley (1999), it is approximated by the
deck area (the product of length and breadth). Stock abundance varies with time and
poses a technological constraint which affects the relationship between fishing effort and
harvests. As in Squires and Kirkley (1991, 1999), Segerson and Squires (1993), and
Pascoe and Robinson (1998), the effects of changes in resource stocks over the year
are captured by including three seasonal (quarterly) dummies as explanatory vari-
ables. The fourth quarterly dummy is dropped to avoid perfect collinearity. The use
of seasonal dummies implies that stock dimension changes between seasons, but not
during a season. An initial experimentation with monthly dummies yielded a number
of dummy-related parameters which were not significant at conventional levels. The
seasonal dummies in this case provide a more parsimonious representation of stock
effects. Given that the two models involve exactly the same specification of the
stocks effects, the comparison of the empirical results will not be affected.4

To allow for technical inefficiency effects, the one-sided error, ui, is speci-
fied as a function of vessel and skipper characteristics. In particular,

u z wi i i= +Φ( ) , (10)

where zi is a RX1 vector of factors affecting TE levels, and wi are i.i.d random vari-
ables defined by the truncation of the normal distribution with mean zero and vari-
ance σw

2 , so that at the point of truncation wi ≥ – Φ(zi). The latter is consistent with
ui being a non-negative truncation of the N(ui, σw

2 ) distribution, with µi = Φ(zi).

3 A potential problem with in-person interviews is misreporting of catches and revenues. The inshore
fishermen in Greece do not face output quotas, and their incentive for misreporting is limited. The inter-
views were conducted by marine biologists of the Fisheries Institute (located in Northeastern Greece).
The fishermen in the sample have known the interviewers for several years. They trust them, and their
responses are reliable.
4 Kirkley, Squires, and Strand (1995, 1998) and Pascoe, Andersen, and de Wilde (2001) developed in-
dexes of stock abundance from information collected through independent routine resource monitoring
programs. Similar information is not available for the multi-species inshore fishery of Greece.
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The present study considers four potential TE determinants. These are the age
and the formal education of the skipper, and the HP and the GRT of the vessel. Since
the inshore vessels in Greece use static gear, their propulsion power is not directly
related to their fishing capacity. Larger HP, however, enables vessels to steam more
safely and at higher speeds to (and between) the fishing grounds and, thus, it may
influence their performance. As noted by Pascoe and Robinson (1998) the GRT,
which provides an indication of the enclosed area on a boat, is a measure of vessel
size alternative to that of the deck area (employed already as an argument in the pro-
duction frontier).5 The age and the formal education of the skipper are included to
capture potential skipper-skill effects on TE.6 Table 1 provides definitions and de-
scriptive statistics of the variables used for the analysis.

Both the distance function and the ray production function are specified in the
translog form which is flexible and accommodates easily the inclusion of the one-
sided error to estimate TE for every trip/observation. The stochastic distance func-
tion with three outputs, four inputs, and three seasonal dummies(s) is:
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*  = ym/y1 (m = 2, 3).

The general translog multi-output distance function encompasses a number of
alternative technologies as special cases. A technology exhibits weak input-output

5 The correlation coefficient between GRT and deck area in the sample is 0.83.
6 As noted by Squires and Kirkley (1999) and Kirkley, Squires, and Strand (1998), “skipper skill” is a rather
complex concept which relates to information gathering and utilization, managing and supervising the crew,
responding to changes in weather conditions and resource abundance, and minimizing risk and uncertainty.
Because of its complexity, it can only be partially measured in terms of basic personal characteristics.
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separability when the marginal rates of technical substitution between (outputs) in-
puts are independent of input (output) levels.7 The existence of weak separability al-
lows aggregation of inputs into a single index (fishing effort), since under this tech-
nology structure one may meaningfully rank alternative effort levels (represented by

7 Strong separability is a more restrictive form and requires the marginal rates of substitution between
variables of different groups be independent of the levels of variables in any other group. Here, there are
only two groups (inputs and outputs); thus, weak separability is equivalent to strong separability.

Table 1
Definitions and Descriptive Statistics of the Variables Used for the Analysis

Statistics

Variables Description Mean SD

Stochastic Distance Function and Stochastic Ray Production Function

Outputs

Fish (y1) In kg 18.255 39.368
Cephalopods (y2) In kg 9.14 24.374
Crustaceans (y3) In kg 2.736 6.554
Eucledian norm of outputs (||y||) In kg 27.003 43.377

Production Inputs

Fishing time (x1) In hours 13.991 10.472
Crew size (x2) In number of persons 1.875 0.873
Gear (x3) In 1,000 Greek drachmas* 1,179.3 1,393.8
Vessel size (deck area) (x4) In m2 30.583 15.116

Polar Coordinate Angles

y1 towards the plane y2 – y3 (θ1) In radians 0.676 0.676
Betw. y2 and y3 in the plane y2 – y3 (θ2) In radians 0.715 0.621

Seasonal Dummies (s1, s2, s3) Dichotomous

Gear Type (D) Dichotomous, with value 1 0.764 na
when trammel nets are
used, and 0 otherwise

Inefficiency Model

HP (z1) In kw 96.089 73.058

GRT (z2) In metric tons 5.572 4.783

Skipper Formal Education (z3) Dichotomous, with value 1 0.783 na
when skipper has either
primary or some secondary
education, and 0 otherwise

Skipper Age (z4) In years 47.588 11.042

Note: *1 EURO = 340.75 Greek drachmas
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isoquants) without knowing the levels and the mixes of the individual species har-
vested. In the same way, it allows aggregation of outputs into a single index (total
harvest), since one may meaningfully rank alternative total harvest levels without
knowing the levels and the mixes of individual inputs. For the multi-output distance
function, weak input-output separability requires:

δkm k m= = =0 1 2 3 4 2 3( , , , ) ( , ).and (14)

A technology is input homothetic when the expansion paths of inputs are rays
emanating from the origin. Homotheticity requires:

βkg
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Input-output separability along with input homotheticity implies the existence of
consistent quantity and price indexes so that the product of the aggregate price and
quantity equals the total cost of the components of effort (or the total revenue of the
components of harvests). Linear homogeneity in inputs (homogeneity of degree –1)
requires, in addition to equation (15),
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The kth production elasticity is defined as:
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and because of equation (13) it becomes:
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It is the proportional increase in y1 due to 1% increase in xk. However, for the calcu-
lation of Ek, output mixes are held constant. Therefore, the production elasticity is
the proportional increase in all outputs caused by 1% increase in the kth input
(Morrison, Johnston, and Frengley 2000). The scale elasticity is the sum of the indi-
vidual production elasticities.

The translog stochastic ray production frontier is:

ln ln . ln lny x b x xi k ki
k

m mi
m

kl
lk

ki li= + + +
= = ==

∑ ∑ ∑∑β β θ β0
1

4

1

2

1

4

1

4

0 5 (19)

+ + + + + −
== == =

∑∑ ∑∑ ∑ρ θ ω θ θ γ φkm
mk

ki mi mn mi
nm

ni p
p

p i ix s D v u
1

2

1

4

1

2

1

2

1

3

0 5ln .

with the symmetry restrictions βkl = βlk (k,l = 1,2,3,4) and ωmn = ωnm (m,n = 1,2).
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Since the polar-coordinate angles depend on output mixes, weak input-output
separability for equation (19) requires:

ρkm k m= = =0 1 2 3 4 1 2( , , , ) ( , ).and (20)

Homotheticity requires:
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while linear homogeneity requires [in addition to equation (21)]
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The production elasticity with respect to kth input is:

E y xk k= ∂ ( ) ∂ln ln (23)

and gives the proportional increase in all outputs induced by a 1% increase in that
input.

The distance function and the ray production function have been estimated
along with the inefficiency model:
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∑δ δ0
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(24)

by maximum likelihood in one-stage using the econometric package FRONTIER 4.1
(Coelli 1996). Prior to estimation, all variables (expect dichotomous) are normalized
around the sample mean to define the point of technology approximation (Huang
and Liu 1994). In several observations (trips), the harvested quantities of one or two
species are zero. To make logarithmic transformations feasible, those zeros have
been replaced by the very small positive number 0.0001.8

Empirical Results

Appendix tables A.1 and A.2 provide parameter estimates. A barrage of Generalized
Likelihood Ration Tests (LRT) follows to shed some light on the structure of pro-
duction technology and the nature of technical inefficiency as implied by the two
models.9 Table 2 presents the LRT results on technology structure for the distance
and ray functions. The null hypothesis of weak input-output separability is rejected
in both cases. Therefore, the two alternative models suggest that it is not possible to

8 This practice is very common in fisheries analysis with trip level data (e.g., Squires 1987; Kirkley and
Strand 1988).
9 The test statistic λ = –2[ln L(H0) – L(H1)], where L(H1) and L(H0) are the log-likelihood values under
the alternative and the null hypothesis, respectively, follows the chi-squared distribution with degrees of
freedom equal to the number of restrictions imposed.
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construct composite indexes for harvests and effort. The null hypothesis of input
homotheticity is also rejected in both cases, implying that input mixes change with
the level of harvests. So is the null hypothesis of homogeneity of degree –1 in in-
puts, suggesting that returns to scale in the fleet of inshore vessels in Greece are not
constant. Indeed, the scale elasticities at the point of technology approximation
(these are the sums of the first order input coefficients) are substantially higher than
unity (1.86 for the distance function and 2.03 for the ray production function). Ac-
cording to the empirical results, therefore, vessels in the fleet operate under increas-
ing returns to scale.

To the best of my knowledge, there has been only one empirical study on input-
output separability in fisheries. That was by Squires (1987) for otter trawlers in New
England, where input-output separability was not rejected. That earlier evidence,
however, should be interpreted with caution, since the technology in Squire’s study
turned out to be of a Cobb-Douglas form (implying that all interaction terms are
zero). It is well known (e.g., Coelli and Perelman 2000) that a Cobb-Douglas tech-
nology is not acceptable for multi-product firms operating in pure competitive in-
dustries (like fisheries) because it fails to satisfy the requirement of concavity in the
output dimensions.10

Scale elasticities that were substantially higher than unity have been reported in
Kirkley, Squires, and Strand (1995, 1998), Pascoe and Robinson (1998), Pascoe,
Andersen, and de Wilde (2001), Sharma and Leung (1999), and Squires and Kirkley
(1999). The economic theory suggests that operation in a sub-optimal (increasing re-
turns) or super-optimal scale (decreasing returns) gives rise to scale inefficiency
which manifests itself in the form of low productivity levels.11 The empirical finding
of increasing returns, therefore, implies that the inshore vessels in Greece may expe-
rience short-run productivity gains by increasing the levels of inputs and harvests.
This appears to be quite reasonable, given that the fleet consists of rather small ves-
sels (table 1). In the longer-run, however, these productivity gains may disappear
because of the negative impact of additional harvests on resource stocks.

Although the two alternative models agree on the general technology structure
(separability, homotheticity, and homogeneity), they exhibit certain differences with
regard to individual parameters. For example, the production elasticity with respect
to fishing time for the distance function is 0.4, while for the ray production function

10 Here, the Cobb-Douglas form (element-wise separability) is strongly rejected for both models. The
empirical values of the LRT statistics are 520.412 and 141.326 for the distance and the ray production
function, respectively, which exceeded, by far, the theoretical value of 32.671 (with 21 degrees of free-
dom at the 5% level).
11 The productivity of all inputs taken together is maximized where constant returns to scale prevail
(Cooper, Seiford, and Tone 2000).

Table 2
Tests on Technology Structure

Distance Ray
Function Function Theoretical

Degrees of Value
Null Hypothesis Test Statistic Test Statistic Freedom  (5% level)

Weak input-output separability 44.642 59.752 8 15.507
Linear homogeneity 63.986 74.632 7 14.067
Homotheticity 10.714 19.774 4 9.486
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model it is 0.73. Similar differences can be observed for the remaining inputs as
well. The limiting factor (that is, the factor with the highest production elasticity)
for the distance function is gear, while for the ray production function, it is fishing
time. The differences in production elasticities are certainly important for designing
policies aimed at reducing harvests through individual input controls.

Turning now to the nature of technical inefficiency, three hypotheses are rel-
evant: first, technical inefficiency is absent; second, technical inefficiency is not sto-
chastic; and third, technical inefficiency does not depend on vessel and skipper char-
acteristics. The first hypothesis requires γ = δ0 = δ1 = δ2 = δ3 = δ4, where:

γ
σ

σ σ
σ
σ

=
+

=u

w u

u
2

2 2

2

2

is the proportion of the total output variability attributed to technical inefficiency.
The second hypothesis requires γ = 0, while the third δ1 = δ2 = δ3 = δ4 = 0.

Table 3 presents LRT tests on the nature of inefficiency. Both models agree that
stochastic technical inefficiency is present and that the skipper and vessel character-
istics considered in the present study do influence TE levels. On the basis of the dis-
tance function, variations in TE explain 20% of output variations, while on the basis
of the ray production function, they explain only 0.8%. Despite the difference in this
respect, both models suggest that stochastic output variability is dominated by un-
controllable random shocks (e.g., those related to resource abundance or weather
conditions) rather than by stochastic variations in TE.

In an empirical analysis, the relative importance of the two sources of stochastic
output variability is likely to depend on the data used. Aggregation of data over a
monthly or yearly time period may smooth out some of the day-to-day random fluc-
tuations and, as a result, increase the relative importance of stochastic variations in
TE. Pascoe, Andersen, and de Wilde (2001) and Sharma and Leung (1999) employed
aggregated data and found that stochastic variations in TE were more important than
uncontrollable random shocks. Kirkley, Squires, and Strand (1995, 1998) employed
trip-level data and reached the same conclusion. They, however, noted that their re-
sult was quite surprising, since in a fishery the uncontrollable random shocks are a
priori expected to dominate stochastic variations in TE.

The coefficients of the z variables in the inefficiency model have the same signs
and, in most cases, are significant at similar levels. Positive (negative) signs of pa-
rameters in the inefficiency model imply negative (positive) effects of the respective

Table 3
Tests on the Nature of Technical Inefficiency

Distance Ray
Function Function Theoretical

Degrees of Value
Null Hypothesis Test Statistic Test Statistic Freedom  (5% level)

Technical inefficiency is absent 19.700 25.647 6 11.911
Technical inefficiency is deterministic 8.612 9.462 2 5.138
Skipper and vessel characteristics

do not affect TE 15.690 18.352 4 9.486

Note: Because in the first and the second hypotheses γ lies at the boundary of the parameter space, the
relevant theoretical values come from Kodde and Palm (1986).
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factors on TE. It appears that higher propulsion power raises TE. The GRT (proxy
for size), however, has a negative impact. In Sharma and Leung (1999), size was
proxied by vessel length and found to have a positive impact. So it was found in
Pascoe, Andersen, and de Wilde (2001), where size was proxied by the number of
crew members. Using Kruskal-Wallis tests on equality of means, Kirkley, Squires,
and Strand (1995) could not reject the null hypothesis that TE is invariant to crew
size. Kirkley, Squires, and Strand (1995) argue (without offering empirical evi-
dence) that there may be a negative relationship between TE and production inputs
which are difficult to adjust. Such a least adjustable input is the GRT, which remains
the same from trip to trip and for low and high harvests.12 Younger skippers with
higher formal education appear to attain higher levels of TE than older with lower
formal education.

The multi-output distance function model and the ray production function model
are used to obtain technical efficiency estimates per trip. Figure 1 presents the dis-
tributions of the efficiency scores. Regarding the multi-output distance function, the
TE estimates are distributed with a mean 0.806, a standard deviation of 0.12, a me-
dian of 0.839, a maximum of 0.946, and a minimum of 0.347. In 16.3% of the trips,
the TE scores are less than or equal to 0.7. In 63.3%, they lie in the interval (0.7-
0.9), while in 20.1%, they are above 0.9. Regarding the ray production function, the
TE estimates are distributed with a mean of 0.853, a standard deviation of 0.123, a
median of 0.855, a maximum of 1, and a minimum 0.552. In 14.2% of the trips, the
TE scores are less than or equal to 0.7. In 41.3%, they lie in the interval (0.7-0.9),
while in 44.6%, they are above 0.9. The Pearson and Spearman rank correlation co-
efficients are very high (0.865 and 0.902, respectively) and statistically significant
at any reasonable level, suggesting that the two models lead to very similar relative
efficiency rankings.

Given that for the ray production function the efficiency score exceeds 0.9 in
nearly one out of two trips, while for the distance function this occurs in only one
out of five trips, it is interesting to test formally whether the scores suggested by the
two alternative models come from the same distribution. To this end, the present
study utilizes the non-parametric Rank-Sum test statistic (Cooper, Seiford, and Tone
2000):
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2 1 2

2 1 122
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that follows approximately the standard normal distribution, with RD being the sum
of rankings corresponding to the distance function model. The empirical value of the
test statistic is –17.77, implying that the efficiency scores come from different dis-
tributions and, in particular, that the scores of the distance function model are sys-
tematically lower that those from the ray production function model.

As mentioned in the Introduction, the two approaches differ only in the way
each econometrically handles the presence of multiple inputs. Therefore, the ob-
served differences in the results must be attributed exclusively to specification; that
is, to the fact that the dependent variables and a subset of the independent variables
(those related to the output mix) in the two models are not the same.

The average rates of TE suggested by the two models are very similar to 0.85
reported by Sharma and Leung (1999) for the long-line fishery in Hawaii, but they
are higher than 0.75 obtained by Kirkley, Squires, and Strand (1995, 1998) for the

12 The same result is obtained if deck is used in place of GRT.
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mid-Atlantic sea scallop fishery. Pascoe, Andersen, and de Wilde (2001) report TE
scores in the range 0.65 to 0.82 for Dutch trawlers.

Conclusions

Comparisons of efficiency scores obtained from different approaches have been an
important research topic during the last ten years. None of the earlier works, how-
ever, considered multi-output parametric frontiers that are the most relevant for fish-
eries economics research. In this paper, a stochastic multi-output distance function
and a stochastic ray production function are applied to trip-level data from the in-
shore fleet of Greece. According to the empirical results:

(a) Both models suggest that the assumptions of weak input-output separability, in-
put homotheticity, and constant returns to scale are not compatible with the real-
world data. Rejection of weak input-output separability, in particular, indicates that
public regulation relying on concepts, such as total catch and total effort, is likely to
be ineffective.

(b) Although the two models agree on the general technology structure, they dis-
agree on the magnitudes of certain parameters (mainly production elasticities),
which are relevant for policies aiming at reduction of harvests through individual in-
put controls.

(c) The multi-output distance function and the ray production function lead to simi-
lar relative rankings of the efficiency scores. The distributions of efficiency scores,
however, are different since the ray production function yields systematically lower
inefficiency levels than the distance function.

(d) The formal education of skippers has a positive impact on TE, while age has a
negative impact. Greece (in the context of the 3rd Community Support Framework-

Figure 1. Distributions of Efficiency Scores per Trip from the two Models
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CSF) is contemplating an early retirement program for fishermen over 55 years old.
It appears that such a program is likely raise technical efficiency for inshore vessels.
Its effect will be stronger if the older fishermen are succeeded by younger ones who
have typically higher levels of formal education.

(e) Propulsion power has a positive impact on TE. Since 1986, the structural policy
of the EU with respect to the fisheries sector has been implemented through the
Multi-Annual Guidance Programs (MAGPs). Early MAGPs provided financial assis-
tance for renovation/reconstruction of inshore vessels in Greece, without placing re-
strictions on propulsion power. It appears, therefore, that the inshore fleet has ben-
efited from those policies. The 4th MAGP places restrictions on HP and GRT and
provides incentives for withdrawal/decommissioning of inshore vessels of 12 meters
or more in length. Vessel size (measured here in terms of GRT) appears to be nega-
tively related to TE. This, however, does not necessarily imply that restrictions on
vessel size will enhance the fleet’s performance. The reason is that any positive im-
pact of such policy on TE will be, at least partially, offset by additional scale ineffi-
ciency (the vessels already too small). Moreover, with vessel size restricted, the
only way fishing effort can be increased is through employing higher quantities of
the remaining inputs. The latter may give rise to economic inefficiency by inducing
non-optimal input mixes, thus deteriorating the economic performance of the fleet
(Squires 1987).
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Appendix

Table A.1
Stochastic Distance Function

Standard Standard
Parameter Estimate Error Parameter Estimate Error

a0 0.766 0.190 a22 –0.059 0.003
β1 0.398 0.121 a23 0.013 0.002
β2 0.269 0.145 a33 –0.059 0.003
β3 0.805 0.115 δ12 0.062 0.017
β4 0.382 0.174 δ13 –0.035 0.013
a2 –0.297 0.012 δ22 –0.057 0.022
a3 –0.299 0.012 δ23 –0.081 0.024
β11 –0.037 0.084 δ32 0.022 0.017
β12 0.099 0.152 δ33 0.032 0.015
β13 0.121 0.075 δ42 0.01 0.025
β14 0.013 0.137 δ43 0.031 0.022
β22 1.698 0.668 γ1 –0.012 0.133
β23 –0.313 0.244 γ2 –0.381 0.141
β24 –0.398 0.468 γ3 –0.181 0.134
β33 –0.147 0.163 φ 0.152 0.130
β34 0.355 0.219 σ2 1.113 0.085
β44 0.533 0.516 γ 0.207 0.074

Inefficiency Model

δ0 –4.411 1.165 δ3 0.806 0.366
δ1 –1.955 0.728 δ4 2.915 1.009
δ2 1.811 0.644
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Table A.2
Stochastic Ray Production Function

Standard Standard
Parameter Estimate Error Parameter Estimate Error

β0 –0.535 0.127 ρ11 0.067 0.014
β1 0.727 0.112 ρ12 0.072 0.014
β2 0.539 0.121 ρ21 –0.021 0.024
β3 0.535 0.092 ρ22 –0.0004 0.021
β4 0.232 0.181 ρ31 0.042 0.016
b1 0.056 0.038 ρ32 0.026 0.015
b2 0.245 0.039 ρ41 –0.018 0.026
β11 0.032 0.061 ρ42 0.01 0.022
β12 0.138 0.112 ω11 0.029 0.008
β13 0.097 0.054 ω12 0.038 0.008
β14 0.043 0.103 ω22 0.072 0.008
β22 0.616 0.422 γ1 –0.286 0.097
β23 –0.328 0.173 γ2 –0.466 0.102
β24 0.098 0.312 γ3 –0.291 0.099
β33 0.021 0.114 φ –0.003 0.096
β34 0.175 0.154 σ2 0.462 0.026
β44 0.573 0.396 γ 0.0084 0.0025

Inefficiency Model

δ0 –0.795 0.092 δ3 0.346 0.063
δ1 –0.337 0.089 δ4 0.574 0.175
δ2 0.386 0.071


