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Forecasting Daily Volatility Using Range-based Data 
 

Abstract 
 

Users of agricultural markets frequently need to establish accurate representations of 
expected future volatility. The fact that range-based volatility estimators are highly 
efficient has been acknowledged in the literature. However, it is not clear whether using 
range-based data leads to better risk management decisions. This paper compares the 
performance of GARCH models, range-based GARCH models, and log-range based 
ARMA models in terms of their forecasting abilities. The realized volatility will be used 
as the forecasting evaluation criteria. The conclusion helps establish an efficient 
forecasting framework for volatility models. 
 
Keywords: range-based estimator, log range, GARCH models, ARMA models, forecast 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

 
1. Introduction 
 

Users of agricultural markets always need to establish accurate representations of 

expected future volatility. For example, future volatility is the main ingredient is 

calculating expected daily optimal hedge ratios. The application of misspecified future 

volatility has the potential to induce inappropriate or even serious assessment of asset risk 

and portfolio selection. Thus, not surprisingly, seeking good volatility forecasts of 

agricultural market volatility has drawn increased attention from financial academics and 

practitioners.  

On the one hand, the existence of volatility clustering at different frequencies has 

been extensively documented in the finance literature. This high degree of volatility 

persistence suggests that financial market volatility is predictable. On the other hand, 

forecasting the future level of volatility is challenging for several reasons. For example, 

volatility is not directly observable; therefore the choice of evaluation metric for 

forecasting performance is uncertain. Establishing an appropriate framework for volatility 

forecasting is an important theme for financial academics and is of great relevance to 

practitioners. 

Numerous papers have employed ARCH (GARCH) models for forecasting. The 

ARCH family of models is specifically designed to model volatility clustering effects, 

and its use in forecasting is quite common. However, the forecasting performance of the 

ARCH family is rather controversial. Contrary to studies seeking new model 

specifications, Andersen and Bollerslev (1998) argue that ARCH models provide good 

out-of-sample forecasts. However, ex-post volatility measures may not provide correct 
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appraisal of performances of volatility models. Thus, establishing more efficient volatility 

measures is useful to evaluate the forecasting ability of existing time series models. They 

reveal that the coefficient of multiple determination, 2R , is low when the daily squared 

returns are used as a measure of ex-post volatility. They show that realized volatility, the 

sum of intraday squared returns, is a much more efficient volatility proxy. 

The fact that range-based volatility estimators are highly efficient has been 

acknowledged by many authors (For example, Parkinson (1980), Garman and Klass 

(1980), Beckers (1983)). Their findings raise the question as to whether the forecasting 

ability of ARCH models can be improved with range-based data. However, these earlier 

works only focus on constructing efficient volatility estimators and little attention is paid 

to the application of these estimators. It was not until Alizadeh, Brandt and Diebold 

(2002) that the usefulness of a simple volatility proxy, the log range, was formally 

established and applied to time series models. They clarify that the log range, defined as 

the log of the difference between the high and low log prices during the day, is nearly 

Gaussian, robust to microstructure noise and much less noisy than alternative volatility 

measures such as log absolute or squared returns. Compared with earlier studies, their 

work fully exploits the distributional properties of the log range estimators and thus 

provides a theoretical underpinning for using the Gaussian ARMA class of models.  

Previous findings related to range-based volatility estimator are essentially statistical. 

It is not clear whether using range-based data leads to better investment management 

decisions (e.g. , more accurate optimal hedge ratios). Furthermore, end-users of 

agricultural markets may not see additional benefits from range-based models when 

compared to extant simple volatility forecast framework, e.g., the RiskmetricsTM model. 
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Information costs may make range-based GARCH models undesirable. If an ARMA 

model of the log range has competitive forecasting ability, it will hold promise for 

practical applications of range estimators in agricultural asset pricing and risk 

management applications. 

Motivated both by the appeal of range-based models and by the practical need to 

check their forecasting ability in agricultural commodity futures market, this study will 

investigate whether ARCH models extended with the range data provide better out of 

sample forecasts of daily volatility and whether a simple ARMA model of the log range 

has competitive forecasting ability. More importantly, this study will check the 

forecasting performance under different criteria using realized volatility.  

The remainder of this paper is organized as follows. Section 2 presents the time series 

models used in this study. Section 3 summarizes the data and the in sample fit of the 

models. Section 4 presents the forecasting results and compare results under different 

criteria. Section 5 concludes. 

 
2.  Time Series Models 
 
2.1 GARCH Models 
 

There are two major categories of time-varying volatility models, the ARCH family 

and the stochastic volatility (SV) family. The autoregressive conditional 

heteroskedasticity (ARCH) model was introduced by Engle (1982). Compared with 

previous econometric models, ARCH processes are specifically designed to model and 

forecast conditional variances. This property of the ARCH model makes it appealing for 

modeling the volatility of economic time series. Bollerslev (1986) proposed an extension 

of the conditional variance function and introduced the generalized ARCH (GARCH) 
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model. For many applications, the GARCH (1,1) model has been proved to be a 

parsimonious representation that fits data well. The representation of the GARCH (1,1) is 

tt cy ε+=         (1) 

ttt ησε =          

2
1

2
1

2
−− ++= ttt βσαεωσ        

where tη  is a mean-zero, unit-variance, i.i.d. random variable.  

Engle and Kraft (1983) were the first to consider the effect of ARCH (GARCH) on 

forecasting. Akgiray (1989) was the first to apply the GARCH model to forecast 

volatility. After that, numerous papers have employed this method. However, the 

forecasting performance of the ARCH family is disappointing in many studies. Different 

conclusions have been drawn for different sample periods and different speculative 

markets. Andersen and Bollerslev (1998) provide a few insights into these results. They 

find that ARCH family performs better if the ex-post volatility is estimated by the sum of 

intraday squared returns.  

 

2.2 GARCH Models Extended with Additional Information 

Andersen and Bollerslev (1998) demonstrate that the daily squared return is a very 

noisy estimator. If the previous trading day is quite volatile, but the closing price happens 

to be the same as the opening price, the lagged daily squared return would be zero. Thus 

by extending the daily GARCH model with information related to the real volatility 

dynamics, the new model will provide a reasonable explanation that the previous day was 

volatile. The conditional variance equation may be extended to allow for the inclusion of 

additional regressors. For example, Bessembinder and Seguin (1993) include daily 
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volume. Laux and Ng (1993) include the number of price changes. Taylor and Xu (1997) 

and Martens (2002) use intraday returns. Martens (2001) use daily range. The 

specification of the variance equation for the extended GARCH models is, 

1
2

1
2

1
2

−−− +++= tttt Iζβσαεωσ      (2) 

where tI  presents any trade related variables such as the traded volume, the sum of 

squared intraday returns or the daily range.   

 

2.3 Simple Regression Model 

The Stochastic Volatility (SV) models are more flexible than the ARCH family in the 

sense that volatility is driven by a noise term which may or may not be related to the 

returns process (Poon and Granger, 2001). However, since SV models involve an 

unobservable, stochastic variance process, this precludes closed-form likelihood 

functions; in turn estimation of SV models is quite difficult. The idea of using the Simple 

Regression (SR) model instead of the SV model to forecast volatility comes from Poon 

and Granger (2001). They suggest that  

 

“One way to avoid this [SV] estimation problem is to abandon the structure of the mean and 

express the volatility simply as a function of its past values. This is known as the Simple 

Regression (SR) method. The SR method is principally autoregressive. If past volatility errors are 

included, one gets the ARMA model for volatility.”1 

 
It would be interesting to explore whether alternative volatility proxies, such as the 

log range and squared intraday returns, fit the class of SR models. The logic is that if an 

estimator is highly efficient, it is possible to extract valuable information about the future 

                                                 
1 Page 8. 
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value of volatility by just using simple technique. Given the findings described by 

Alizadeh, Brandt and Diebold (2002), it is natural to assume that the log-range process 

falls within the Gaussian ARMA models. If true, this will greatly reduce the 

computational costs. Standard forecasting techniques may be applied to generate 

predictions of future log range. Through simple transformations, the forecasts of 

volatility can be obtained. Specifically, the SR model for the range data is, 

tttt vRRR +++= −− ...2211 αα       (3) 

where tv  )1,0(~ iid ; tR denotes the log range. 

 

3.  Data and In-Sample Fit 
 
3.1 Data Description 

The data set consists of Chicago Board of Trade (CBOT) soybean futures intraday 

transaction prices and daily prices. The daily data were obtained from the CRB/Bridge 

Futures Database. The sample consists of daily soybean futures high/low/closing prices 

from January 2, 1985 to July 31, 2001. The intraday data are time and sales transaction 

prices, which were obtained from the Futures Industry Institute. The full sample covers 

the period January 2, 1990 to July 31, 2001. The first 1,264 trading days (January 2, 

1985—December 29, 1989) are used to estimate the parameters of the various models. 

The next 2,909 trading days (for which intraday data are available) are used to test the 

out-of-sample forecasting performance. 

In calculating the returns series, the nearby contracts are used to construct the 

continuous returns series. However, returns are calculated from the second nearby 

contract when the nearby contract is in the delivery month. This switch guarantees that 
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returns are nearly always calculated from the prices of the contract that has the highest 

trading volume.  

Figure 1 plots the prices of the futures data. Figure 2 plots the returns series actually 

used in this study, which is )/ln(100 1−× tt PP  of the futures data. Table 1 reports summary 

statistics for daily returns.  Soybean futures returns conform to several stylized facts 

which have been extensively documented for financial variables. The distribution of the 

returns is almost symmetric and has fat tails and a substantial peak at zero. Excess 

kurtosis of the series indicates that the distribution of daily returns is far from Gaussian. 

The autocorrelations of returns are close to zero. The Q-statistics are smaller than the 

critical values at 5% level. In contrast, the squared returns are significantly autocorrelated.  

Figure 2 reflects another stylized fact, the clustering effect. Variances of returns change 

over time and large (small) changes tend to be followed by large (small) changes.  

In this study, the daily range is defined as,  

),(),( 11 −− −= ttttt clMinchMaxRange     (4) 

where th  and tl denote highest and lowest prices on day t  respectively and 1−tc  represents 

the closing price on day 1−t . Since the current soybean daily data only cover the full 

floor trading from 9:30 a.m. to 1:15 p.m., equation (4) captures information about the 

overnight market activity. While some of the markets previously studied in the literature 

do have trading limits in place, such as the S&P 500, they are much less frequently 

invoked than in physical commodity markets. When the equilibrium price moves beyond 

the trading limits, trading ceases. Since no trades are recorded during these moves, 

equation (4) provides a reasonable range proxy for limit move days. Following Alizadeh, 

Brandt and Diebold (2002), the daily log range is defined as, 
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   ))],(log()),(log[log( 11 −− −= ttttt clMinchMaxR   (5) 

The volatility literature primarily uses absolute or squared returns as volatility proxies. 

To justify the superior efficiency of the log range, Table 2 presents descriptive statistics 

for log absolute returns and the log range. Firstly, the log range is preferable in terms of 

its smaller standard deviation. Secondly, the skewness and kurtosis of the log range are 

0.2405 and 2.9312, respectively. These values are closer to the corresponding values of 0 

and 3 for a normal random variable compared with those for log absolute returns. This 

conclusion is confirmed by checking the Jarque-Bera statistic. It is more obvious by 

looking at Figure 3, which shows the quantile-quantile (Q-Q) plot. The Q-Q plot for the 

log range falls nearly on a straight line and indicates that the log range has a distribution 

close to Normal. In contrast, the Q-Q plot of the log absolute returns curves downward at 

the left end and upward at the right. Finally, the log range proxy is superior in terms of its 

time series dynamics. The large and slowly decaying autocorrelations of the log range 

clearly manifest strong volatility persistence. The erratic fluctuation of log absolute 

returns masks the volatility persistence.    

 

3.2 In-Sample Fit 

3.2.1 Estimation of GARCH Models 

Maximum likelihood estimation of the GARCH model is easy to implement once the 

density function of tε  is specified. If the residuals are not conditionally normally 

distributed, quasi-maximum likelihood (QML) estimator will still be consistent provided 

that the mean and variance functions are correctly specified. 
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The seasonal effects of price volatility are widely documented in many surveys. In 

time series modeling, one can take care of seasonality first and fit a model with the 

deseasonalized data. Or a model can be estimated for seasonally unadjusted data by 

adding a seasonal component in the model. This study follows the second approach. 

Roberts (2001) models the seasonal effects in volatility by including a Fourier expansion 

for the intercept of the GARCH volatility equation. The specification of the GARCH 

model is thus of the form,2  

ttt PP εµ +=× − )/ln(100 1       (6) 

ttt ησε =          

2
1

2
1

2
−− ++= tttt βσαεωσ        

)2cos()2sin(
1

πτψπτφκω mm m

M

m
mt ++= ∑

=

            10 ≤≤ τ   

where τ  denotes the time of year of the observation.  

Estimation results (based on 1985-1989 daily data) for GARCH (1,1) models are 

given in Table 3. All of the specifications capture well the autocorrelation in the volatility 

of returns. For the GARCH (1,1) model without seasonality, the estimates of parameters 

α and β  are highly significant. The persistence in volatility is quite large, with 

βα + larger than 0.98. The Ljung-Box portmanteau test statistic for up to tenth order 

serial correlation in the standardized residuals tη  takes the value Q (10) = 8.0294, which 

is not significant for the 2
10χ  distribution. However, the Q-tests suggest that there exists 

serial dependence in the residuals squares at lag 5 and lag 10. Furthermore, the 

                                                 
2 GARCH (1,1) model is considered to be a parsimonious representation, since results not reported here 
show that higher orders have nothing extra to offer.  
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unconditional sample kurtosis for the residuals is 4.0142, which exceeds the normal value 

of three. And the residuals continue to display asymmetry.  

The second set of results in Table 3 include a first order seasonal expansion. Only one 

of the two seasonal parameters is significant at 5% level. However, the LR test statistic 

equals 9.04, which is significant at 2.5% level in the corresponding asymptotic 

2
2χ distribution. The addition of two parameters is also preferred from an AIC (Akaike 

information criteria) perspective. Moreover, the inclusion of a Fourier series reduces the 

sample kurtosis in residuals.  

For the second order seasonality, only two seasonal parameters are significant at 5% 

level although the LR test and AIC prefer the inclusion of two additional parameters. 

Including a third order seasonality is rejected not only from a LR test perspective but also 

from a t-test perspective.  

Note, the estimated value for α  decreases as more parameters are added into the 

variance equation. This indicates that the reliance of the conditional volatility on the 

previous date is reduced. From the above results, a first order seasonality model 

represents a reasonable tradeoff between the need of model fit and the need of parsimony. 

Also the GARCH (1,1) model with no seasonality is used as the reference basis for 

forecast analysis. 

 

3.2.2 GARCH Models Extended with Daily Range 

In this section, the daily soybean data are fitted to the GARCH models extended with 

daily range. The intercept of the variance equation is defined as, 
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)2cos()2sin(
1

1 πτψπτφζκω mmI m

M

m
mtt +++= ∑

=
−     (7) 

where =tI ),(),( 11 −− − tttt clMinchMax . 

Table 4 presents the estimation results. First, the log-likelihood values of three 

GARCH-I models are greater than those of the corresponding GARCH models in section 

4.2.1. This result suggests that range data improve in sample model fitting and reflects 

the greater precision of the range as a volatility proxy. Second, GARCH-I models are also 

desirable from the AIC and SC (Schwartz criteria) perspectives since both values of AIC 

and SC fall as the daily range is added in. Third, the estimates of α become not 

significant at 1% level or even at 5% level for second order and third order seasonality. In 

contrast, the estimates of range parameterζ are highly significant. This result is 

foreseeable since 2
1−tε and 1−tI are competing factors to present last period’s variance and 

the inclusion of range data reduces the proportions of 2
1−tε  in accounting for last period’s 

volatility. This result also confirms the fact that daily range is a relatively less noisy 

volatility proxy than daily squared returns. 

Omitting range, the estimation results for the GARCH-I models are quite similar to 

the results for the GARCH models in terms of seasonality. AIC, SC and LR test all 

suggest that GARCH-I (1,1) with third order seasonality is readily rejected. The addition 

of one order of seasonality performs better than the second order seasonality model in 

terms of LR test. This conclusion is confirmed by the estimates of second order 

seasonality model. 2φ is significant at 5% level and 2ψ is not significant judged by the 

standard errors. Additionally, the values of AIC are close for both models. Finally, the 

skewness and kurtosis coefficients of the standardized residuals for three models do not 
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provide much information about model selection. The p-values for Q-test are also close 

and tell a similar story for four models. All in all, the first order seasonality model works 

best for GARCH-I models. However, in order to avoid the possible over-fitting problem 

in forecasting, GARCH-I model without seasonality is also included as one of the 

forecasting frameworks. 

 

4.  Out-of-Sample Daily Volatility Forecasts 
 
4.1 Forecast Evaluation Criteria 

It is difficult to compare forecasting performance of competing models since there is 

a variety of evaluation criteria used in the literature. Statistical analysis is one of the 

evaluation measures frequently used. Poon and Granger (2001) suggest that utility-based 

economic criteria are costly to apply and statistical analysis provides a practical way for 

forecast evaluation. West and Cho (1995) consider alternative statistical measures. 

Basically, statistical measures evaluate the difference between forecasts at time t and 

realized values at time kt + . However, asset price volatility is not directly observable and 

measuring the realized values of volatility is challenging. Much effort has been devoted 

to extracting volatility from other observable market activities. The daily squared return 

has been widely used in the literature as ex-post volatility. However, Andersen and 

Bollerslev (1998) show that it is a very noisy volatility estimator and does not provide 

reliable inferences regarding the underlying latent volatility in daily samples. They 

introduce a new volatility measure, termed realized volatility. Realized volatility 

estimates volatility by summing squared intraday returns. Volatility estimates so 

constructed are close to the underlying integrated volatility. Thus, the volatility of a price 
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process can be treated as an observable process.  In this study, realized volatility is 

calculated based on 5-minute return series.  

For the performance evaluation, two forecast evaluation criteria, Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE), are defined by, 

  ∑
=

∧

−=
T

t
trvtT

RMSE
1

22
,

2 )(1 σσ       (8) 

where T denotes the forecast horizon.
∧

2
tσ denotes one step ahead daily forecast and 

2
,trvσ denotes realized volatility. 

   

  ∑
=

=
T

tT
MAE

1

|1 2
,

2
trvt σσ −

∧

|      (9) 

In order to account for the heteroskedasticity, two alternative measures, the 

heteroskedasticity adjusted root mean squared error (HRMSE) and mean absolute error 

(HMAE) are included.  These two measures are computed as follows, 

  2

1 2

2
, )1(1 ∑

=
∧−=

T

t
t

trv

T
HRMSE

σ

σ
      (10) 

  ∑
=

∧−=
T

t
t

trv

T
HMAE

1 2

2
,11

σ

σ
      (11) 

The second metric used to evaluate daily volatility forecasts is the regression-based 

method. The coefficient of determination ( 2R ) of the regression of realized volatility on 

forecasted volatility results from, 

  tttrv v++=
∧

2
10

2
, σϕϕσ        (12) 
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4.2 Results 

Table 5 reports the out of sample forecasts based on evaluation criteria RMSE, MAE, 

HRMSE, HMAE and 2R  . The forecasts are based on parameter estimates from rolling 

samples with fixed sample size of 1264 days.  

A number of conclusions may be drawn. First, the GARCH (1,1) model is inferior to 

other three models: the first order seasonality GARCH (1,1) model, the GARCH (1,1) 

model extended with range data, and the first order seasonality GARCH model extended 

with daily range. The daily GARCH (1,1) model has the smallest regression 2R  and 

highest values for RMSE, MAE, HRMSE and HMAE.  Second, the regression based 

method and summary statistics both suggest that GARCH (1,1) models extended with the 

difference between daily high and low are better than the use of GARCH models ignoring 

daily range. Third, including seasonality improves the out of sample forecasts of the daily 

GARCH (1,1) model. The coefficient of determination 2R , increases from 0.1944 for the 

GARCH (1,1) model to 0.2051 for the first order seasonality GARCH (1,1) model. 

Results are qualitatively consistent across four different statistical measures. Fourth, 

interestingly, the first order seasonality GARCH model extended with daily range is not 

the best model based on 2R  , MAE and HMAE.  The first order seasonality GARCH 

model extended with daily range has an 2R  0.2233, whereas the GARCH (1,1) model 

extended with daily range has an 2R  0.2641. The MAE is 0.6511 for the GARCH (1,1) 

model extended with daily range, whereas it is 0.6569 for the first order seasonality 

GARCH model extended with daily range. Similarly, the HMAE drops from 0.4737 to 

0.4711 when ignoring seasonality. The use of Fourier series does not lead to a superior 

forecasting performance for the extended GARCH (1,1) models.  
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5.  Conclusion 
 

Previous studies reveal that range-based volatility estimator is highly efficient. 

However, little attention is paid to the application of these estimators.  This paper 

compares the performance of GARCH models, range based GARCH models, and log-

range based ARMA models in terms of their forecasting abilities. The empirical analysis 

so far makes the following points: For forecasting soybean futures market volatility it is 

important to include the daily range, defined as the difference between daily high and low. 

For the extended GARCH models, the adding of seasonality become less important, but it 

still improves forecasts results in terms of RMSE and HRMSE. 
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Mean 
Standard Deviation 
Skewness 
Kurtosis 
Minimum 
Maximum 
 

-0.0097 
  1.3233 
-0.4045 
  6.6273 
-8.5892 
  5.7397 

Q-Test Results 
Lags 
 
Lag 1  
Lag 2 
Lag 5 
Lag 10 
Lag 15 

Returns 
  Q-Statistics        P-Value 

0.332         (0.565)
0.340         (0.844)
5.936         (0.313)

12.306         (0.265) 
19.861         (0.177)

Squared Returns 
Q-Statistics    P-Value 

177.27         (0.000) 
229.53         (0.000) 
528.00         (0.000) 

1013.20         (0.000) 
1391.00         (0.000) 

 
 
 

Table 1: Summary Statistics for Soybean Futures Returns ( )/ln(100 1−× tt PP ) 
 

 
 
 

 Log Absolute Returns  Log Range
Mean 
Standard Deviation 
Skewness 
Kurtosis 
 
Jarque-Bera Statistics 
& P-Value 
 
Autocorrelations 
Lag 1 
Lag 2 
Lag 5 
Lag 10 
Lag 20 

 -0.4717
       1.0154

   -0.5119
    3.0743

54.22  
 (0.000) 

 
 

0.170
0.122
0.207
0.155
0.148

-4.2941
0.5600
0.2405
2.9312

12.43  
 (0.002) 

 
 

0.504
0.488
0.486
0.427
0.392

 
 

Table 2: Summary Statistics for Soybean Futures 
Log Absolute Returns and Log Range 
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 No Seasonality 
Estimate          Std. Error

First Order Seasonality 
Estimate          Std. Error

Second Order Seasonality 
Estimate          Std. Error

Third Order Seasonality 
Estimate          Std. Error

µ  
α  
β  
κ  

1φ  

1ψ  

2φ  

2ψ  

3φ  

3ψ  

-0.0167          0.0271 
***0.0885          0.0150 
***0.9020          0.0149 
**0.0176          0.0079 

 

-0.0183          0.0268 
***0.0786          0.0139 
***0.9085          0.0151 
**0.0220          0.0088 

 0.0003          0.0060 
**-0.0170          0.0071

-0.0137          0.0273 
***0.0692          0.0133 
***0.9158          0.0141 
***0.0222          0.0080 

0.0063          0.0062 
**-0.0137          0.0069 
**-0.0152          0.0064 

0.0002          0.0063 
 

 

-0.0105          0.0272 
***0.0665          0.0125 
***0.9185          0.0132 
***0.0226          0.0079 

*0.0104          0.0063 
**-0.0171          0.0076 

***-0.0213          0.0076 
-0.0012          0.0064 
*0.0123          0.0074 

0.0015          0.0061 
 

AIC 
SC 
Log-likelihood 

1.5456 
1.5537 

-1949.5908

1.5436 
1.5558 

-1945.0701

1.5422 
1.5584 

-1941.3016

1.5420 
1.5624 

-1939.1201
Skewness 
Kurtosis 
Q-test P-values# 
Lag 1 
Lag 2 
Lag 3 
Lag 5 
Lag 10 
 

-0.17813 
4.0142 

 
0.2238          0.5243 
0.4769          0.6369 
0.2674          0.7768 
0.4171          0.1028 
0.6260          0.0946

-0.22178 
3.9193 

 
0.1350          0.6166 
0.3266          0.6930 
0.1958          0.7926 
0.3461          0.0691 
0.5894          0.0787

-0.22772 
3.8482 

                                     
            0.0987          0.7622 

0.2552          0.5979 
0.1896          0.7446 
0.3565          0.0492 
0.5185          0.0785

-0.23814 
3.7216 

 
0.0703          0.7740 
0.1937          0.6378 
0.1304          0.7989 
0.2703          0.0914 
0.4280          0.1212

*, **, *** Significant at the 10%, 5%, and 1% level, respectively.   # P-values for η and 2η . 
 

Table 3: GARCH Estimation Results 
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 No Seasonality 

Estimate          Std. Error
First Order Seasonality 

Estimate          Std. Error
Second Order Seasonality 

Estimate          Std. Error
Third Order Seasonality 

Estimate          Std. Error
µ  
α  
β  
κ  
Range 

1φ  

1ψ  

2φ  

2ψ  

3φ  

3ψ  

0.0005          0.0270 
**0.0547          0.0242 

***0.8604          0.0376 
0.0000          0.0215 

***0.0125          0.0040 
 

-0.0003          0.0270 
**0.0391          0.0175 

***0.8641          0.0265 
0.0000          0.0153 

***0.0144          0.0042 
-0.0048          0.0087 

**-0.0236          0.0112

0.0037          0.0276 
*0.0299          0.0159 

***0.8743          0.0225 
0.0000          0.0143 

***0.0142          0.0041 
0.0046          0.0085 

**-0.0249          0.0124 
*-0.0136          0.0082 

0.0094          0.0091 
 

 

0.0067          0.0279 
*0.0262          0.0156 

***0.8771          0.0229 
0.0000          0.0152 

***0.0144          0.0045 
0.0083          0.0086 

**-0.0289          0.0141 
**-0.0215          0.0105 

0.0116          0.0108 
0.0114          0.0093 

-0.0076          0.0086 
 

AIC 
SC 
Log-likelihood 

1.5374 
1.5476 

-1938.3298

1.5350 
1.5492 

-1933.1845

1.5346 
1.5529 

-1930.7353

1.5348 
1.5572 

-1928.9753
Skewness 
Kurtosis 
Q-test P-values# 
Lag 1 
Lag 2 
Lag 3 
Lag 5 
Lag 10 
 

-0.14806 
3.7991 

 
0.1963          0.5978 
0.4320          0.5765 
0.3017          0.7389 
0.4655          0.0141 
0.6568          0.0180

-0.18658 
3.6683 

 
0.1138          0.6012 
0.2861          0.5941 
0.2104          0.7500 
0.3697          0.0069 
0.6150          0.0118

-0.19939 
3.6506 

                    
0.0966          0.5957 
0.2511          0.5064 
0.2179          0.6844 
0.3776          0.0108 
0.5830          0.0210

-0.20334 
3.5381 

 
0.0668          0.5842 
0.1859          0.4813 
0.1530          0.6716 
0.2999          0.0188 
0.5148          0.0299

*, **, *** Significant at the 10%, 5%, and 1% level, respectively.   # P-values for η and 2η . 
 

Table 4: Estimation Results of GARCH Extended with Daily Range 
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GARCH (1,1) 
First Order 
Seasonality 

GARCH (1,1) 
 

GARCH (1,1) 
Extended with 
Daily Range 

First Order 
Seasonality 

GARCH (1,1) 
Extended with 
Daily Range 

RMSE 
MAE 

 
HRMSE 
HMAE 

 
2R  

1.0183 
0.7122 

 
0.5506 
0.4765 

 
0.1944 

0.9906 
0.7081 

 
0.5493 
0.4750 

 
0.2051 

0.8731 
0.6515 

 
0.5474 
0.4711 

 
0.2641 

0.8718 
0.6569 

 
0.5543 
0.4737 

 
0.2233 

 
 
 

Table 5: Daily Volatility Forecast Performance 
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Figure 1: Soybean Futures Prices (1985/01-1989/12) 

 

 
Figure 2: Soybean Futures Returns (1985/01-1989/12) 
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Figure 3: Q-Q Plots of Log Range and Log Absolute Returns 
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