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A wide variety of pest problems have been analyzed using the tools of economics.  

Examples include assessments of the economic impact of an invasive species, estimates 

of the value of transgenic crops, evaluations of pest eradication programs, impact 

assessments of pesticide bans, development of economic thresholds for IPM, and 

designing optimal strategies for managing insect resistance to pesticides (Carlson, Sappie 

and Hammig; Hurley, Babcock, and Hellmich; Mitchell, Gray and Steffey; Hurley, 

Mitchell, and Rice; Perrings, Williamson, and Dalmazzone).   

Economic analyses of pest issues can use yield and pesticide application data to 

estimate production functions or pesticide demand using duality based methods 

(Lichtenberg and Zilberman; Saha, Shumway and Havennar).  However, problems can 

occur if pest population data and/or pest damage data are not available (Norwood and 

Marra).  Experimental data are another commonly utilized source of data to directly 

estimate a pest damage function that predicts yield loss as a function of pest population 

densities or measures of plant damage by the pest (Mitchell Gray and Steffey; Hurley, 

Mitchell, and Rice).  This paper focuses on the use of experimental data to estimate pest 

damage functions. 

Unbalanced panels are a common problem when estimating damage functions 

with experimental data.  Field experiments typically use multiple replicates, but the 

experiments are often conducted in different locations, for more than one year, with 

different hybrids, different pesticides, or different management regimes (e.g. crop 

rotation or tillage).  However, in field experiments, replicates are often lost, and 

locations, hybrids, pesticides, and management regimes change over the years of the 

project, so that the number of replications for each possible grouping variable (year, 
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hybrid, locations, pesticide, etc.) for analysis using panel data methods is not equal.  

Recent advances in panel data methods have included development of estimators for 

unbalanced panels for nested random effects models.  The purpose of this paper is to 

describe and illustrate the application of some of these unbalanced nested panel data 

estimators to estimate pest damage functions, and then demonstrate the statistical and 

economic weaknesses of using ordinary least squares (OLS) or some of the simpler 

analysis of variance (ANOVA) estimators.   

This paper uses the nested error component model recently developed by Baltagi, 

Song, and Jung to estimate an insect damage function with unbalanced panel data.  With 

unbalanced data, the OLS estimates of regression coefficients are still unbiased and 

consistent, but their standard errors are biased, which may lead to incorrect conclusions 

concerning their significance.  The unbalanced nested composed error model improves 

the accuracy of the estimated standard errors for the regression coefficients and allows 

use of panel data methods to estimate the random effects of factors such as location and 

year on the estimated distribution of yield loss due to insect damage.  Also, since the 

standard OLS regression model uses a single error term, it attributes all variability in 

yield loss from the pest, regardless of the source.  The component error model uses a 

component error term to estimate the effect of location and year on the variability in yield 

loss due to the pest, separate from variability due to experimental errors, measurement 

errors, and similar effects.   

Thus the unbalanced nested component error model has two important 

advantages.  First, it allows the data to be unbalanced and accounts for obvious nesting 

structures, both of which commonly occur with agricultural field data.  Second, it 
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estimates the specific random effects attributable to experimental error and the nesting 

variables such as year, location, and hybrid.  The first advantage improves the analysis of 

the pest’s effect on mean yield loss, while the second advantage improves the analysis of  

the pest’s effect on the variance of yield loss.   

This second advantage of using the unbalanced, nested component error model is 

important and often missed by economists using panel data methods.  Baltagi, Song, and 

Jung (p. 358) note that “[s]tatisticians and biometricians are more interested in the 

estimates of the variance components, … [e]conometricians, on the other hand, are ore 

interested in the regression coefficients.”  Because farmers and agricultural economists 

are interested in assessing risk and changes in risk, we believe that agricultural 

economists are interested in estimating both the regression coefficients and the variance 

components and hence should benefit from applying unbalanced nested component error 

model to analyze data from field experiments.  

This paper first presents a general unbalanced nested random effects panel data 

model, and then describes four different estimators for the regression coefficients and 

error components based on the work of Baltagi, Song, and Jung.  Next, an empirical 

application is presented that involves estimating a western corn rootworm damage 

function and the value of a new transgenic corn that controls this important corn pest.   

 
Unbalanced Nested Component Error Model 

Grouping variables for panel data analysis of field data from pest experiments are usually 

clear.  For example, data can be grouped by year, location, crop, hybrid, pesticide, and 

similar.  If the data can be grouped by more than one such index, the data are nested.  For 

this description of the unbalanced nested error component model, we assume that the 
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grouping variables are year t = 1 to T and location i = 1 to L, since these fit the data used 

for the empirical application.  The unbalancedness of the data is reflected in the last 

index, the replication r = 1 to Rt ∀t, implying that for each year t, the number of 

replicates is Rt.1   

Replication is part of standard experimental methods, but field experiments often 

do not have the same number of replications across years and locations.  Observations are 

lost because of weather events, accidents, and similar factors, as well as changes in the 

availability of funding, land, chemicals, and other experimentally controlled factors 

determining the number of replicates, so that the data become unbalanced.  

Finally, the total number of observations for this model is N = ∑
=

T

t
tRL

1

.  Note that 

the unbalancedness could be expressed equivalently as r = 1 to Ri ∀i, implying that for 

each location i, the number of replicates is Ri.  In this case, N = ∑
=

T

t
iRT

1

 = ∑
=

T

t
tRL

1

.   

The standard OLS regression model for estimating a pest damage function is: 

(1)  ytir = xtir′β  + utir,  

where y is yield loss, x is a K x 1 vector of regressors (e.g., pest population densities, pest 

damage measures), β  is a K x 1 vector of regression coefficients to estimate, and u is the 

error term, assumed to be independent and identically distributed (iid) with mean zero 

and variance 2
uσ .  The OLS model aggregates all experimental errors into the single error 

term u and estimates its variance 2
uσ . 

                                                 
1 Baltagi, Song, and Jung develop estimation methods that allow unbalancedness in the index i as well (i.e., 
i = 1 to Lt for all t).  However, we do not explore this extension here, since it does not occur for our data, 
but it is fairly straightforward. 
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The nested error component model is the same, except that it uses a component 

error term utir = µt + νti + ε tir,  

(2)  ytir = xtir′β  + µt + νti + ε tir.  

In this case, µt is the tth unobservable random year effect, νti is the unobservable nested 

random effect of the ith location within tth year, and tirε is the random disturbance.  Each 

component of the error term is assumed to be iid, with zero mean and respective 

variances 2
µσ , 2

νσ , and 2
εσ .  The nested error component model estimates the three 

variance components, but only 2
εσ  is attributed to experimental errors.   

Equation (2) is a random effects model because the fixed effect (within) estimator 

performs poorly when the ratio of either component error variance to the experimental 

error variance ( 22 / εµ σσ , 22 / εν σσ ) is small.  Moreover, Baltagi, Song, and Jung find that 

random effects analysis of variance (ANOVA) estimators perform well for estimating 

regression coefficients, and that random effects maximum likelihood methods perform 

best for estimating variance components and standard errors of regression coefficients.  

Therefore, we describe different ANOVA estimators and maximum likelihood estimation 

of the parameter vector β  and the variance components 2
µσ , 2

νσ , and 2
εσ , but first we 

reformulate the model for presentation.   

In matrix notation, the standard OLS regression model in equation (1) is  

(3)  y = Xβ  + u,  

where y is a N x 1 vector of yield losses, X is a N x K matrix of regressors, and u is a N x 

1 vector of disturbances.  Similarly, write the component error term for the nested error 

component model in equation (2) as:  
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(4)  u = Zµµ + Zνν + ε,   

where µ is a T x 1 vector of year effects, ν is TL x 1 vector of location effects for each 

year, and ε is a N x 1 vector of errors for each replication within each year and location, 

i.e., µ′ = (µ1, …, µT), ν′ = (ν11, …, ν1T, …, νL1, …, νLT), and ),,,,('
11111 TTLRLR εεεε KK= .  

Also, Zµ = diag(
tRL ll ⊗ ) and Zν = diag(

tRL lI ⊗ ), where lL and 
tRl are L x 1 and Rt x 1 

vectors of ones, IL is a L x L identity matrix, ⊗ denotes the Kronecker product, and 

diag(
tRL ll ⊗ ) implies diag(

TRLRL llll ⊗⊗ ,,
1
K ).   

With this reformulation, the disturbance variance-covariance matrix E(uu′) is Ω = 

)('' 2
222

tRvvv IIdiagZZZZ ⊗++ εµµµ σσσ , or  

(5)  Ω = )]()()([ 222

ttt RLRLvRL IIJIJJdiag ⊗+⊗+⊗ εµ σσσ ,  

where JL = lLlL′ and '
ttt RRR llJ =  are matrices with all elements equal to one and respective 

dimensions of L x L and Rt x Rt.  Ω is a block diagonal matrix with the tth block given by: 

(6)  )()()( 222

ttt RLRLVRLt IIJIJJ ⊗+⊗+⊗=Λ εµ σσσ ∀ t = 1 to T.  

Following Wansbeek and Kapteyn, decompose Λt as follows: 

(7)  )()()( 222

ttt RLRLtRLtt IIJIRJJLR ⊗+⊗+⊗=Λ ενµ σσσ ,  

where LJJ LL /= , and tRR RJJ
tt
/= .  Substituting LLL JIE −=  and 

ttt RRR JIE −=  into 

equation (7) and combining equivalent terms gives the following decomposition for Λt: 

(8)  ttttttt QQQ 332211 λλλ ++=Λ ,  

where 
tRLt EIQ ⊗=1 , 

tRLt JEQ ⊗=2 , and 
tRLt JJQ ⊗=3  and  

(9)  2
1 εσλ =t , 22

2 εσσλ += vtt R , 222
3 εµ σσσλ ++= vttt RLR .   
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Furthermore, following Baltagi, Song, and Jung,  

(10)  )(1 tRL EIdiagQ ⊗= , =2Q )(
tRL JEdiag ⊗ , )(3 tRL JJdiagQ ⊗= .   

The advantage of this decomposition is that  

(11)  t
P

tt
P

tt
P

t
P

t QQQ 332211 λλλ ++=Λ ,  

where P is an arbitrary scalar, so that finally we can write: 

(12)  ][][ 3
1

32
1

21
1

1
11

ttttttt QQQdiagdiag −−−−− ++=Λ=Ω λλλ .   

The OLS estimator yXXXOLS ')'(ˆ 1−=β  is still unbiased and consistent in 

unbalanced nested panel regression if the variance components are positive, but its 

standard errors are biased.  For notation, define OLS residuals as OLSOLS Xyu β̂ˆ −= .   

The within (fixed effects) estimator can be obtained by pre-multiplying equation 

(3) by )( 21 tREIdiagQ ⊗=  and then applying OLS.  Pre-multiplying by Q1 removes µt 

and νt i whether they are fixed or random effects, since Q1u = Q(Zµµ + Zνν + ε) = Qε, so 

that wtnβ
~

, the K – 1 vector of within coefficient estimates excluding the intercept, is  

(13)  yQXXQX ssswtn 1
1

1 ')'(
~ −=β ,  

where Xs denotes the N x K – 1 matrix of regressors excluding the intercept.  The within 

intercept estimate is wtnswtn Xy βα
~~ −= , where the bar indicates averaging, and the within 

residuals are wtnsNwtnwtn Xlyu βα
~~~ −−= , where lN is a N x 1 vector of ones (Amemiya).   

 
Unbalanced Nested Component Error Model Estimators  

Following Baltagi, Yong, and Jung, this section reports the derivation of different 

estimators for the regression coefficients and the variance components, i.e., the parameter 
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vector β  and 2
µσ , 2

νσ , and 2
εσ .  First, three ANOVA estimators are reported, then 

maximum likelihood estimation.  The ANOVA estimators are derived by equating sums 

of squared residuals to their expectations and then solving for the variance components.  

The estimators differ because each uses different residuals.  Because each extends  

balanced panel ANOVA estimators to the unbalanced case, they are termed modified 

estimators.  Regression coefficients are then estimated by GLS with these variance 

components estimates inserted into the variance-covariance matrix Ω.  Maximum 

likelihood here assumes normality for the error components µt, νti, and ε tir in equation (2).  

Nevertheless, solving first order conditions requires an interative numerical procedure.  

Baltagi, Song, and Jung report Monte Carlo results showing that these simple ANOVA 

estimators for the regression coefficients compare well with the more complicated 

maximum likelihood estimates, but perform poorly for estimating the variance 

components when the unbalancedness is severe.   

 
Modified Wansbeek and Kapteyn Estimators 

The modified Wansbeek and Kapteyn (WK) estimator uses the within residuals 

for the Q1, Q2, and Q3 diagonal matrixes defined by equation (10), specifically 

(15)  wtnwtn uQuq ~'~
11 = , wtnwtn uQuq ~'~

22 = , wtnwtn uQuq ~'~
33 = .   

Defining R = ∑
=

T

t
tR

1

, the respective expected values of q1, q2, and q3 are: 

(16a) E(q1) = 2)1( εσ+−− KTLN , 

(16b) E(q2) = 22
2

1
1 )(}]')'{([ vssss RNXQXXQXtrTTL σσ ε −++− − , 

(16c) E(q3) = 2'1'
1

'
3

'1
1

' }]){(}){(1[ εσsmsssssss XJXXQXtrXQXXQXtrT −− −+−   
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         ∑∑ −+−+
t tv

t
t NRLNNRLR 22222 ]/[]/[ µσσ .   

Equating the qi in equation (15) to their expected values in equation (16) and 

solving for the variance components gives the following modified WK estimators: 

(17a) )1/(~'~
1

2 +−−= KTLNuQu wtnwtnεσ  

(17b) ( ) )/(])}'()'{([~'~ 2
2

1
12

2 RNXQXXQXtrTTLuQu sssswtnwtnv −+−−= −
εσσ  

(17c) ( }')'{(1[~'~
3

1
13

2
sssswtnwtn XQXXQXtrTuQu −+−−=µσ    

     ) ( )∑∑ −−−− −
t tvt tsmsss NRLMNRLRXJXXQXtr //]/[}]')'{( 222221

1 σσ ε .   

These variance components can be used with equation (12) to obtain Ω–1, as well as  

(18)  ( ) ( ) ( ) ]///[ 3
5.0

3
2

2
5.0

2
2

1
5.0

1
22/1

tttttt QQQdiag λσλσλσσ εεεε ++=Ω −  

  )([)]([][ 21 ttt RLtRLtRL JJdiagJIdiagIIdiag ⊗−⊗−⊗= θθ ,  

where θ1t = 1 – σε/(λ2t)0.5, θ2t = σε/(λ2t – λ3t)0.5.  To apply feasible GLS, multiply equation 

(3) by 2/1−Ωεσ  and run OLS on this transformed model.  The variance of the estimated 

coefficients follows the GLS rule, so that 11 )'()ˆvar( −−Ω= XXGLSβ . 

 
Modified Swamy and Arora Estimators 

The modified Swamy and Arora (SA) estimator uses three regressions to obtain 

residuals.  Specifically, multiply equation (3) by Q1 and run OLS to obtain residuals 1
~u .  

In the same manner, multiply by Q2 to obtain residuals 2
~u  and multiply by Q3 to obtain 

residuals 3
~u .  Let 1111

~~~ uQuq = , 2222
~~~ uQuq = , and 3333

~~~ uQuq = .  It can be shown that 1
~q is 

the same as q1 in equation (15), so that the expected value of 1
~q  is the same as in 

equation (16).  The other expected values are: 
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(19a) 21
22

2
2 }])')(''{([)1()~(E vsssvvs XQXXQZZXtrRNKTLNq σσ ε

−−−++−−= , 

(19b) 21
33

2
3 }])')(''{([)()~(E vsssvvs XQXXQZZXtrRKTLq σσ ε

−−+−=  

21
3 }])')(''{([ µµµ σ−−+ XQXXZZXtrN .   

Equating the iq~  to their respective expected values and solving for the variance 

components gives the following modified SA estimators: 

(20a) )1/(~'~~
1

2 +−−= KTLNuQu wtnwtnεσ , 

(20b) 
})')(''{(

)1(~'~
~

1
22

2
2222

−−−
+−−−

=
sssvvs

v XQXXQZZXtrRN
KTTLuQu εσ

σ , 

(20c) 
})')(''{(

~}])')(''{[[)(~'~
~

1
3

21
33

2
3332

−

−

−
−−−−

=
XQXXZZXtrN

XQXXQZZXtrRKTuQu vvv

µµ

ε
µ

σσ
σ .   

The same GLS procedure as for the WK estimators gives the regression coefficients. 

 
Henderson and Fuller and Battese Estimators 

Based on the extension of Henderson by Fuller and Battese (HFB), this estimator 

also uses three different residuals.  First, use the within residuals to obtain wtnwtn uuq ~'~~ *
1 = .  

Second, multiply equation (3) by (Q1 + Q2), run OLS, and collect residuals to obtain 

*
2

*
2

*
2

~'~~ uuq = .  Third, use the standard OLS residuals to obtain OLSOLS uuq ˆ'ˆ~ *
3 = .  The 

expected value of *
1

~q  is the same as for the WK and SA estimators, while the expected 

values of *
2

~q  and *
3

~q  are: 

(22a)  )1()~(E 2*
2 +−−= KTNq εσ  

]}))(')(''[({ 1
212

2 −+−−+ sssvvsv XQQXXQZZXtrRNσ ,  

(22b)  ]})')(''[({)()~(E 122*
3

−−+−= XXXZZXtrNKNq vvvσσε  
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]})')(''[({ 12 −−+ XXXZZXtrN µµµσ .   

Equating *
1

~q , *
2

~q  and *
3

~q  to their expected values and solving for the variance 

components gives the following HFB estimators: 

(23a) )1/(~'~~
1

2 +−−= KTLNuQu wtnwtnεσ , 

(23b) 
}])(')[''{(

~)1(*~*'~
~

1
212

2
222

−+−−
+−−−

=
sssvvs

v XQQXXQZZXtrRN
KTNuu εσ

σ , 

(23c) 
})')(''{(

~]})')()('[({)(ˆ'ˆ~
1

212
2

−

−

−

⊗−−−−
=

XXXZZXtrN

XXXJIdiagXtrNKTuu vRLOLSOLS t

µµ

ε
µ

σσ
σ .   

The GLS procedure used for the WK and SA estimators gives the regression coefficients. 

 
Maximum Likelihood Estimation 

Define ,/ 22
1 εµ σσρ =  ,/ 22

2 εσσρ v=  and Σ=Ω 2
εσ .  Rearranging equation (12) 

with these definitions gives ])12()1([/ 321221
2

tttttt QRRQRQdiag +++++=Ω=Σ ρρρσ ε .  

Because Σ has the same arbitrary scalar as Ω,  

(24)  ]
)12(

1
)1(

1
[ 3

21
2

2
1

1
t

tt
t

t
t Q

RR
Q

R
Qdiag

++
+

+
+=Σ −

ρρρ
.   

After removing constants, the log- likelihood function is (Baltagi, Song, and Jung): 

(25)  )1(
2
1

ln
2

)(ln 21
2 ++−−=⋅ ∑ ρρσ ε tt t RLR

N
L  

 21
2 2/'

2
1

)1ln(
2

1
εσρ uuR

L
tt

−Σ−+
−

− ∑ .   

Solving the first order conditions for β  and 2
εσ  gives the following closed form 

solutions as functions of ρ1 and ρ2 :  
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(26a)  yXXXML
111 ')'(ˆ −−− ΣΣ=β , 

(26b)  NXyXy MLML /)ˆ()'ˆ(ˆ 12 ββσ ε −Σ−= − .   

The first order conditions for ρ1 and ρ2 give the following implicit definitions for ρ1 and 

ρ2, given β  and 2
εσ : 

(27a)  )(')'(
2

1
)'(

2
1)(ln 11

2
1

1

ββ
σρ µµ

ε
µµ XyZZXyZZtr

L
−ΣΣ−+Σ−=

∂
⋅∂ −−−  = 0, 

(27b)  )(')'(
2

1
)'(

2
1)(ln 11

2
1

2

ββ
σρ ε

XyZZXyZZtr
L

vvvv −ΣΣ−+Σ−=
∂

⋅∂ −−−  = 0.   

Because no analytical solution exists for equation (27), solving these first order 

conditions (26) and (27) requires a numerical iteration procedure.  We summarize the 

Fisher scoring procedure described by Baltagi, Song, and Jung.   

Beginning with initial values of 1ρ̂ and 2ρ̂  (the WK, SA, or HFB estimates are 

obvious choices, but other values can be used), calculate updated values as follows: 

(28)  

jj

jj
L

L

LL

LL



















∂
⋅∂

∂
⋅∂






























∂
⋅∂

−







∂∂

⋅∂
−









∂∂

⋅∂
−









∂
⋅∂

−

+







=









−

+

2

1

1

2
2

2

21

2

21

2

2
1

2

2

2

1

12

1

)(ln

)(ln

)(ln
E

)(ln
E

)(ln
E

)(ln
E

ˆ
ˆ

ˆ
ˆ

ρ

ρ

ρρρ

ρρρ
ρ
ρ

ρ
ρ

.   

Here the subscript j denotes the jth iteration.  Equation (27) gives the elements of the 

gradient vector for ρ1 and ρ2, using equation (26) to calculate MLβ̂  and 2ˆ εσ .  The 

elements of the information matrix can be obtained as follows: 

(29a)  ∑ ++
=









∂
⋅∂

−
t

tt

t

RR
RL

2
12

2

2
1

2

2

)21(
)2(

2
1)(ln

E
ρρρ

, 

(29b)  ∑ ++
=








∂

⋅∂
−

t
tt

t

RR
RL

2
12

2

21

2

)21(
2

2
1)(ln

E
ρρρρ

, 
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(29c)  ∑∑ ++
+

+
=









∂
⋅∂

−
t

tt

t
t

t

t

RR
R

R
RL

2
12

2

2
2

2

2
2

2

2

)21(2
1

)1(2
1)(ln

E
ρρρρ

.   

Iteration continues until the values of 1ρ̂ and 2ρ̂  converge, then the associated MLβ̂  and 

2ˆ εσ  can be determined.  The information matrix allows calculation of standard errors.   

 
Empirical Application 

As an empirical illustration of the differences between these different estimators for the 

unbalanced nested component error model, we estimate a pest damage function for the 

western corn rootworm.  To illustrate the economic significance of these differences, we 

then use each estimator to assess the farmer value of the new Bt corn for corn rootworm.   

Corn rootworms, a group of related insect species, are among the most 

economically important pests of corn in the United States, with yield losses and control 

costs estimated to exceed $1 billion annually (Metcalf).  The most problematic species 

are typically the western and the northern corn rootworm, though other species are 

important in some areas.  Corn rootworm larvae hatch in the soil during the spring and 

feed almost exclusively on corn roots.  Larvae emerge from the soil as adults in summer 

and adult females lay eggs in the soil in the late summer to continue the cycle (Levine 

and Oloumi-Sadeghi 1991).   

Larval feeding causes yield loss by disrupting several plant functions and making 

corn plants more likely to lodge (Gray and Steffey).  Because corn rootworms typically 

lay eggs only in existing corn fields, crop rotation is an effective and widely used control 

strategy in much of the Corn Belt.  For non-rotated corn, soil insecticides applied at 

planting to control larvae and aerial applications in summer to control adults are the most 

common control strategies (Gray, Steffey, and Oloumi-Sadeghi; USDA-NASS).   
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In recent years, two corn rootworm species have developed resistance to crop 

rotation as a control strategy.  The western corn rootworm soybean variant lays eggs in 

corn and in other crops, especially soybeans (Levine and Oloumi-Sadeghi 1996; O’Neal, 

Gray, and Smyth; Levine et al. 2002).  Where a corn-soybean rotation is common, eggs 

laid in soybean fields hatch in corn fields the next spring and larvae cause yield loss.  The 

soybean variant first appeared in east-central Illinois and northwestern Indiana in the 

mid-1990’s and has spread through the eastern Corn Belt (Onstad et al.).  Northern corn 

rootworm have evolved extended diapause as an adaptation to two-year corn rotations 

(Krysan, Jackson, and Lew).  Extended diapause eggs hatch after two winters, so that 

where a corn-soybean rotation is common, eggs laid in corn hatch when corn is again 

planted in a field.  Extended diapause occurs in varying levels wherever northern corn 

rootworm are found, but is most prevalent in Iowa, Minnesota, and South Dakota. 

Bt corn active against western and northern corn rootworm larvae was registered 

for sale during the 2003 crop year (CITATION).  As with Bt corn active against 

European corn borer and other lepidopteran pests, only limited seed was available during 

the initial years of product sales.  Because of the widespread prevalence of economic 

damage from corn rootworm and the success of other Bt corn products, sales are expected 

to grow.  Additional demand is expected since a stacked variety of Bt corn active against 

both corn rootworm and lepidopteran pest has been registered and sales will occur during 

the 2004 crop year. However, as with all new technologies, its value is somewhat 

uncertain, especially during initial years of its availability.  The value of Bt corn for 

controlling European corn borer and other lepidopteran pests has been studied (Hyde et 

al.; Hurley, Mitchell, and Rice).  As a result, we estimate on the value of Bt corn active 
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against corn rootworm as an illustration of the economic differences that result when 

using each of the previously described panel data estimators.   

 
Estimation Data and Results  

Data for estimation were from three years (1994-1996) of field experiments 

conducted in two locations in Illinois (Urbana and DeKalb) concerning the effect of corn 

rootworm on corn yield and the effectiveness of soil insecticides for controlling damage 

(Gray and Steffey).  Whole plot treatments were 6-10 replicates each for several 

commonly grown hybrids.  Sub-plot treatments were two rows treated with the soil 

insecticide Counter® (terbufos) and two untreated rows.  Collected data included 

machine-harvested yield for each sub-plot and the average root rating for five plants in 

each sub-plot.  The final data are 574 observations of the soil insecticide yield (Yt) and 

average root rating (At) and the untreated control yield (Yc) and average root rating (Ac).   

Root ratings are commonly used to assess corn injury from corn rootworm 

because accurately measuring larval densities is difficult—the tiny larvae live 

underground and hundreds can infest a single plant.  The root rating is an index of corn 

root injury based on the number of corn root nodes exhibiting feeding scars or completely 

destroyed by corn rootworm larval feeding.  Though other root rating scales exist, the 

most widely used when the experiments were conducted was the 1 to 6 scale of Hills and 

Peters.  The larger the root rating, the greater the damage—a 1 indicates no corn 

rootworm feeding injury and a 6 indicates three or more root nodes completely destroyed.   

Following Mitchell, Gray, and Steffey, who used most of these same data for their 

analysis, the dependent variable for estimation is proportional yield loss y = (Yt – Yc)/Yt 

and the independent variable is the squared root rating difference x = Ac – At, which is 
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always positive.2  In terms of the unbalanced nested component error model in equation 

(2), the grouping variables are year t = 1 to 3 (so T = 3) and location i = 1 to 2 (so L = 2).3  

The number of replicates each year is 108, 113, and 56 for 1994 to 1996 respectively, so 

the unbalanced pattern is significant.  Also, since only one regressor is used, X in 

equation (2) is the vector x and the parameter vector β  consists of an intercept β0 and 

slope β1.   

Table 1 reports estimation results for all previously described estimators.  

According to the standard errors, the OLS estimates for the intercept and the slope 

parameters are significant.  However, since OLS ignores the year and location effects, the 

corresponding standard errors are biased, so that this conclusion concerning significance 

may be incorrect.  Table 1 also shows the differences in the regression coefficients that 

exist between the OLS estimates and the other estimators.  For example, the unbalanced 

nested panel data estimators all indicate that the intercept is not significant, opposite the 

conclusion based on the OLS estimate.  An insignificant intercept makes biological sense, 

since when the squared root rating difference is zero, no difference between the damage 

measures exists and so the plots should have the same expected yield, which implies a 

zero intercept.  In terms of the slope parameter, the unbalanced nested panel data 

estimators all (with the exception of the SA estimator) imply a value between 0.0.1 and 

0.015, substantially less than the OLS estimate.  This difference is substantial and implies 

a much greater proportional yield loss with the OLS estimate than with the unbalanced 

nested panel data estimators for the same squared root rating difference.  

                                                 
2 Unlike Mitchell, Gray, and Steffey, who only used the data for one location (Urbana), we found the 
squared root rating difference provided a better fit when the data from DeKalb was also included.   
3 Because preliminary data analysis found no significant hybrid effect (also reported by Gray and Steffey), 
it was dropped from the nesting structure. 
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In terms of the estimated variability in proportional yield loss, the estimators vary 

substantially.  Since the unbalanced nested panel data models assume independent errors 

for each component, the total variance of proportional yield loss is the sum of the three 

error component variances.  Hence, relative to the OLS estimate of 0.036, only the 

maximum likelihood estimate of 0.299 is lower.  The WK estimate of 0.039 is 

comparable, while the other estimators are much larger—0.0483 and 0.0770 for the SA 

and HFB estimators respectively.  However, all panel data estimators all agree that the 

contribution of experimental errors to proportional yield loss is 0.022, the same as the 

within (fixed effects) estimators.  Our results concerning the differences between the 

ANOVA estimators and the maximum likelihood estimate are consistent with the 

findings of Baltagi, Song, and Jung, since the unbalancedness of our panel is substantial.  

They conclude that the ANOVA estimators compare well with maximum likelihood 

estimators for the regression coefficients, but perform poorly for estimating the variance 

components when the unbalancedness is severe.  

 
Conclusion 

Our analysis concludes at this point, but more work is needed.  To better understand the 

economic implications of the differences among these estimators, we will build a model 

of per acre farmer returns in order to estimate the value of the new Bt corn active against 

corn rootworm.  We intend to build a hierarchical model similar to that developed by 

Mitchell, Gray and Steffey.  Because they differ not only in terms of the mean effect of 

corn rootworm damage (the regression coefficients), but also in the terms of the variance 

effect (the error components), we expect substantial economic differences among the 

estimators.   
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However, before developing this empirical economic model, we want to better 

assess and finalize the unbalanced nested panel data model.  Two issues remain to be 

addressed.  First, because the logic of pest damage implies that a zero intercept is 

reasonable, and the panel data models support this conclusion, we want to impose this 

restriction on the estimation before conducting the economic analysis.  Mitchell, Gray 

and Steffey impose this restriction on their analysis as well.  Second, wew want to better 

asses the use of the squared root rating difference as the regressor.  Mitchell, Gray and 

Steffey used many of the same data and found that the linear model fit better.  We found 

that when the squared difference was included, the linear term was insignificant, and so 

we dropped the linear term.  Perhaps when we drop the intercept as Mitchell, Gray and 

Steffey recommend, our analysis will be consistent with theirs.   
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Table 1. Parameter estimates for western corn rootworm damage function for different unbalanced nested component error model 

estimators (standard errors in parenthesis). 

 
 

Estimator 

 
Intercept 

β0 

 
Slope 

β1 

Year 
Effect 

2
µσ  

Location 
Effect 

2
vσ  

Experimental 
Error 

2
εσ  

Ordinary Least Squares 

(OLS) 

0.087 

(0.013) 

0.029 

(0.002) 

-- -- 0.036 

Within (Fixed Effect) 

(WTN) 

0.160 

(--) 

0.013 

(0.003) 

-- -- 0.022 

Wansbeek and Kapteyn 

(WK) 

0.140 

(0.071) 

0.015 

(0.003) 

0.012 0.005 0.022 

Swamy and Arora 

(SA) 

0.113 

(0.093) 

0.022 

(0.002) 

0.026 0.0003 0.022 

Henderson and Fuller and Battese 

(HFB) 

0.146 

(0.130) 

0.014 

(0.003) 

0.046 0.009 0.022 

Maximum Likelihood 

(ML) 

0.145 

(0.266) 

0.015 

(0.017) 

0.0009 0.007 0.022 

 


