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1. Introduction

Concerns over the degradation of agricultural land andrmedities associated with
agricultural production have recently lead to studies mtadled “sustainable agriculture”,
especially in the fields of agronomy and soil sciencgudlly utilizing replicated field trials and
researcher-selected management practices, these stadéesXamined biological and chemical
responses to alternative management regimes, includmgnlorganic input farming, cover
cropping, and disparate tillage practices. While certaingtructive from a biogeochemical
standpoint, there is a need to incorporate these ideasn economic model of agent behavior
in order to analyze, and in some cases predict, thevioehaf individual growers when faced
with a set of economic incentives.

Many economic models have been developed to analyze adpsoill management
strategies, beginning with those of McConnell (1983) and eBarf1991). These models
recognized that the problem of optimal soil managemerst dyaamic in nature, and used
optimal control theory in order to analyze optimahavior. Extensions to the basic dynamic
model appearing in the literature include a more realispcesentation of specific biophysical
processes (Seppelt 1999), inclusion of multi-period invedtwvenables to account for capital
stocks (Grepperud 1997), and explicit modeling of the choibesugh which the farmer
optimizes his profits through indirect manipulation of #teck of the soil natural resource,
including input utilization (LaFrance 1992; Barrett 1991; Krautkrere 1994; Brekke, et. al
1999; Hoag 1998) and choice of cropping system (Goetz 1997).

To date, however, these models have included relatiwelyles representations of soil
guality via a single state index representing productivitsgemtsally ignoring the nutrient cycles

now generally accepted and utilized in agronomic simulatitodeling (see Baisden and



Amundson 2003 for details). As the sustainable agricultuneement seeks to find management
practices that can be used to affect these cyclesiltaol® pool structure of nutrient availability
is an imperative. In fact, a more realistic biogeodoahrepresentation of the nutrient cycling
process has important implications for the qualitativeratterization of the optimal fertilization
path and total nitrogen stocks. Few if any analytical dynaeonomic optimization models
have been constructed that have this capability, andfewear have examined optimal behavior
under different sustainability paradigms (one notabteption is Richter and Seppelt 1996).

As such, this paper provides a basic model that can defarseheoretical and numerical
analysis of the sustainability rules of farm-level iagitural practices under alternative
definitions of the concept, including the Rawlsian notidra constant aggregate consumption
(or utility) level known as the “maximin” criterion drthe “wealth-constant” criterion put forth
by Hicks in 1939 (Hartwick 1977; Solow 1986; Farzin 2002; Farzin 2004)3yAamic
biophysical/economic optimal control model is developedimulti-disciplinary framework,
treating soil as a multi-pool portfolio of a particulemiting mobile nutrient (e.g. nitrogen). This
specification allows for fertilizer to directly entdre active pool, while tillage initially affects
the decadal pool, reflecting the realities of agricultpraduction. Several sustainability criteria
are proposed, and the optimal paths are evaluated ircahtext of each definition. For
simplicity, we restrict attention to interior solois, essentially ruling out cases where initial
nutrient stock levels are high relative to their respectteady state values. Upper bounds on
fertilization, through regulation or leaching, is alsouassd away for simplicity; as such, any
generalizations to the results should be made with caution
2. The General M odel: An Economic Biogeochemical Representation

2.1 A Model of Nutrient Cycling



Our general model is an adaptation of the long-term delakecosystem
biogeochemistry model presented in Baisden and Amundson (2@@3yed to here as the BA
model. The BA model is a relatively simple analyticgresentation of the structure of popular
(and considerably more complex) dynamic simulation nspdrich as Century and EPIC, that
account for the interaction between plants and soban and/or nutrient flows between storage
compartments. Assuming three pools of a yield-limiting eatr{nitrogen) and one pool of both
above- and below-ground plant biomagfe model can be written as the following system of
differential equations:

9dN=IN+B, (1)
dt

whereN is a 4x1 vector of nutrient poold, is the 4x4 matrix of transfer coefficients that
describes movement between the pools,Eadénotes the vector of exogenous nutrient inputs or
outputs of the system. The first row Mfrepresents storage of nitrogen in plant biomass, while
the last three rows correspond to pools of nitrogen tilat over on an approximate annual,
decadal, and millennial scale. We detail our adaptaticimisfgeneral model below; for more
information on the BA model and how it is estimategk 8aisden and Amundson (2003), and
Baisden, et al. (2002a, 2002b).

In order to embody the appropriate biogeochemical strigtuan analytical economic
optimization framework suitable for our analysis, wliitly represent the evolution of two
storage compartments, or stocks, of nitrogen in a matmesaidentical to rows two and three
of (1). Before turning to the full specification, howevé is instructive to trace through the
conceptual framework of the model, beginning with the emoge entry of a unit (kg/ha/yr) of

nitrogen into the system via atmospheric deposition, ddnbyey. This unit first enters the

! The authors argue that due to the chemistry of soésnttdel can be written in terms of carbon pools usiegfi
C:N ratios for each pool. However, in the interestsimiplicity, the analysis is performed using N.



“active” nitrogen pooN;, so called because it turns over (i.e., gets releasedther portions of
the model) approximately every year. Denote the parartiee governs this turnover txy~1,

so thatk;y of the initial deposition leaves this pool within a y&afthisk;y, a fractionp, (.08 <

p2 < .36 in the BA model) enters the decadal pool of nitrogenoted\,, another fractioms
(.001 <p3 < .007) enters the millennial pool, and the remaindep{1,3) enters the available
supply of nitrogen to any potential vegetation. More geherdle entire pre-existing stock bif
turns over at the same rdtg and follows the same pathways, with the majoritieeng the
available supply every year. The second stécturns over as well, witk, (.02 <k, <.08) of the
existing decadal stock released to the available supply gear through natural decomposition
processes. The release from this pool can be acazlethtough tillage practices, denoted

1<T <(k /k;), so that the fraction of total release from theadket pool isk.T for a given

tillage regime. Because the millennial pool essentiddigs not turn over under most scenarios,
the dynamics of the millennial pool are not explicitipdeled, and as sughkiN; is exported
directly from the active pool each year.

As alluded to above, nitrogen in plant biomass is nottiyenodeled as a stock, but
rather the nitrogen available to any vegetation is catledl as a flow measure. This supply,
denotedN,, consists of a linear combination of the explicitlpnesented state variablBls and
N;, taking into account exports via leaching, erosion, deoatibn, etc... and additional supply

sources such as fertilizer and the input from the exogemdiesinial pool. Specifically, define
N.(1) = @=7)[ A= £, = PIK N, O+ K TN+ Yo+ Yo F( )] 2
wheren represents the export rate out of the system viallbgeaprocesses; denotes inputs

from the excluded pooK(t) characterizes fertilizer inputs as a multiplicatisetbr of the natural

rate of atmospheric depositionr, and all other variables are as defined above. Note tha



fertilization is subject to the same export ratehesdther sources of nitrogen, and that fertilizer
is a perfect substitute for indigenous nitrogen.

Finally, in order to complete the nitrogen cycle, taurn of any plant biomass and/or
unused nitrogen from the available supply to the active [gompresented. Following the BA
model, denote a harvest indelx 0 < H < 1, to represent the proportion of available supply, in

nutrient units, extracted through harvest of crop matenmdlying (1-7)(1-H )N, is returned to

the active pool each year. If, for example, the lankkft fallow, H=0. If a crop or sequence of
crops is cultivated, theH is specific to the biological realities of the cramlats nutrient use
efficiency. Baisden and Amundson (2003) assume that FR<.5 in explaining the effect of
agriculture on the natural system. With these assungtitie dynamics of the nitrogen cycle

can generally be represented as
N, =[Q-7)A-H)A- o, = p5)- TkN+ (=7 )& H [ KTNA ot Vo Fl 4V (3)

Nz = P,k N, = K, TN, 4)

which, when taken with (2), essentially corresponds &ofiist three rows of the BA model
presented in (1). We thus have a system of two simpdaiidifferential equations that generally
define the movement of a limiting nutrient through the bimfpemical process. A schematic
representation of the nutrient cycle is presentedgoreil.
2.2 A Model of Economic Behavior

One of the primary contributions of this paper is teegnate this general analytical

description of nutrient cycling, which is at the corev@ny agricultural simulation models, with

2 Of course, these assumptions represent a restrictedfasnore general model that allows for differereigiort
rates for fertilizer and imperfect substitution betwéstilizer and indigenous nitrogen. While we recogrfide
potential for generalization, we maintain that the ienfrom the relative simplicity outweigh any potehtasts.



the traditional behavioral assumptions of economicgalicular, we assume a sole agent who
owns a normalized unit of land which admits a nitroggecie described by equations (2) - (4).
This (risk-neutral) agent seeks to maximize the streahnisgsrofits over an infinite time horizon
by cultivating a crop or sequence of crops with given é&irindexH and associated tillage
systemT, with fertilizer application as a choice variable.rhore formal terms, the agent solves

the problem (suppressin@gs an argument for available nitrogen and fertilizer)
. _ Alt
rpg)x![pY(l\L,H,T) cHe" d (5)

subject to (2) - (4), and the initial conditions and megativity constraints given by

N,(0)=N,,>0,N,(0)= N,,> O,N, (t> O, andN, {3 ( We definep as the relative price of

one unit of yield, defined by the production functi®(N,), while c is the relative price of

fertilizer in the appropriate units. We assume thandT exogenously and jointly determine the
structure of YN, H,T), andY'(N,)>0, Y'(N,)<0, andY(0)=0.

Several points regarding these assumptions and theus&umt the model are worth
mentioning. First, this specification can be described lagbrid between a traditional renewable
resource problem and a traditional investment problenh, iba dynamic setting. From the point
of view of a renewable resource problem, hartesiepletes a natural resource std¢k N; +
N2 which evolves naturally over time and in the absen@ntifropogenic activity, tends towards
a steady-state. In the model described in this papergVewthe conventional “effort” (as
measured by the harvest inde¥ is not a choice variable, nor does one directlgscmne and
accrue benefits from exploitation of the resourcegh&aH is determined through crop choice,
and one can view the choice of the tandérand T (and thus the associated yield function) as

occurring prior to fertilization choice, and fixed throughthe time horizon. This is obviously a



gross simplification, especially with regard to the dixeature of these choices over time, and
can be relaxed (see Bond 2004), but we restrict attentign tbethe specification in (5) for
simplicity. Viewing the problem as an investment probletme agent purchases stock-
augmenting flows (i.e., investment) in each time periotich in turn add to stock levels
subsequently used in the production process. In this sens@pitee the indirect nature of the
relationship between the state variables and the weftarction. Note that unlike some firm
investment models, there are irreversibilities in itvest, in that one can only augment, rather
than deplete, the nutrient stocks through direct manipulatf the control. In other words, we
are constrainingF(t) to be positive over the planning horizon, and therecas be no
“disinvestment” in nutrient stocks available due to thehjimtive costs of doing so. A value of
F(t)=0 with a harvest index greater than zero impliesvailon without any fertilization.

Second, we have assumed constant relative pricegl@/&me horizon. While this may
be troublesome if the model were extended over a largegrgguic area, thus introducing
endogeneity into price determination, we argue that tlgdesprice-taking agent specification
minimizes any potential errors given the necessaryacall simplifications. Of course, different
expectations over future prices can (and most likeli) ailer the optimal investment strategies.
Lastly, we have specified an infinite terminal timergkely as a result of the fact that the problem
makes economic sense only if a steady-state solutithetproblem exists.

We now turn to the necessary and sufficient condtithat must be satisfied for a
solution to (2) - (5) and the initial and terminal coratis. Define the current-value Hamiltonian
as

HY(F,N,, N,, 4,4, H,T)= pY( N(N, N, B; H J- cF

+/]1[a'11N1+ a12N2"' (1_’7)(1_ H)(}/3+ Vatm F)+yatm] (6)
+A[anN; + &, N



wherel; andi; are the current-value costate variable®lpandN,, respectively, reflecting the
shadow values of the two stocks, and dfie (i,j=1,2) are the coefficients a¥ andN; in (3)
and (4)% Defining the Lagrangian as

L(F,N;, N,, A, A, 1, H,T)= H' (F, N,N, A AHTHUF (7)
whereu is the shadow value associated with the non-negativitgtcaint onF, Theorem 36.3 of

Caputo (2004) gives the necessary conditions for an apsatution:

Le =(@-m)[PY' (N, )am + A Q= HY o] = ¢+ =0; F2 0,42 0, u F= ( (8)
] — _ _ d (all+k1)_
A=(r-ay)A pY(l\L)—(l_H) aA, (9)
i vy a, _
A, =(r=ay)A,= pY'(N) —H) as, (10)

Nl =[(1_I7)(1_ H )(1_ P~ P )_ ]] k1N1+ (1_/7 )(1_ H I szN2+ (/3"' Vatm F] + Vam (11)

Nz = Pk N, = K, TN, (12)

im N, >0, i=1,2. (13)

to o

We will restrict attention in this paper to the eadf an interior solution; i.ey4=0, although it
should be noted that there are some interestirgsasken the non-negativity constraint binds at
some point over the planning horizon (see Bond 42@@ further details). As such, the optimal
solution will lead to a steady state. Sufficienonditions are satisfied as well, as Theorem 36.4

of Caputo (2004) can be used because for any aithieis®ntrolF and associated state paih

2
L is concave inf, Ny, N), and lim > [N] -~ Nj]so, whereN; is the optimal state path

*In other wordsa,, =[A-7)A- H)(1- o, p,)- 1 k,. 8, = A=)~ H)k,T, &, = p,k, and a, = -k,T.



associated with any optimal contBl that satisfies (8)-(13). Thus, any solution to the necgss
conditions is an optimal control, although this theodsras not guarantee uniqueness.

Interpretation of the necessary conditions is nedait straightforward. Equation (8) states
that the marginal value generated by application of aodifértilizer, in terms of botimmediate
benefits through crop growth and harvesting amdirect benefits through the unused portion
returned to the nitrogen system, must equal the margosdl of fertilizer at each moment in
time. Equations (11) and (12) just restate the structurehef system, and (13) is the
transversality condition that ensures non-negativityhe nitrogen stocks. From (9) and (10),
each costate variable (or the shadow price associatecach pool of nitrogen), must grow at
the rate of discount less the marginal value lost gghiin each pool through export (import) of
both harvesting and natural processes. Because fert@imb indigenous nutrients are perfect
substitutes, we are assuming an interior solution, agek tis no upper bound on fertilizer use,
the reader might already suspect that the costat@bl@siare constant over time, a result we will
confirm for a special case (yet without loss of geritgjah the next section.
2.3 Solution to a Linear-Quadratic Approximation

We now turn to the characterization of the optinwdditson. In order to more fully depict
the solution to the problem under consideration, thedyfahction is approximated by the
quadratic equatiorY(N,; H, T)= bN - dN?, with the understanding that and T, in part,
implicitly determine the coefficients andd. This approximation is not necessary in order to
apply the methodology applied here; however, it doearerthat the results are global, rather

than local around a neighborhood of the steady state.r&ader is reminded that we are

restricting attention to interior solutions.
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First, it is instructive to examine the question of &xise and stability of the steady state.
From (8), an expression fé1 in terms of the state and costate variables can leedgidetails

available from the authors). Denoting this functiBfN,, N,,A,), and substituting into the four

differential equations above, the modified Hamiltorsgmamic system (MHDS) can be written

as:

N = kon s @H) ) Yan(@=m](=Hbp+ 2y, ] + (1= He

(14)

2dp 1-17)2dWm
Nz = kipz Nl_ szNz (15)
/11 = (k1 + r)/]l - k]pz/] 2" Ckl(l_ypz — ,03) (16)
J, =@ kA, - ST (17)

atm

The dynamics of this system of linear differengglations are governed by the Jacobian of the
- . oX
system, denoted here by the 4x4 matkjxwith typical elementa—; X,zO(N, N,AA,).
Z

Because the determinant &0 and the system is linear, the steady-state exits,iardct, is
unique (proof available from the authors). Furthermoreait be shown that the determinant is
positive, and satisfies the conditions of Theorem Batkner (1985). The stationary point is
thus a saddle point, and exhibits a two-dimensional staldeepon which all paths
asymptotically approach the steady state (Tahvonen 1991kast one of these paths is the
solution to the problem.

We can identify this path by recognizing that along thblsteanifold, the solution to

this system, in general, can be expressed as

o(t;x,,X,,A) =X, +cVviet + v & (18)
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where @(QI=(N,(t) N,(t) A(D Az(t))' V', i=1,2 are the 4x1 eigenvectors &fr; are the
negative eigenvalues of, ¢, are constants that are determined by the initial tondi
X, ={Ny, N,}, andx, are the steady state values of the system. Thefispgmiution to the
problem is thus

Nl(t) = Nloo +( NlO_ leo) ex! (19)

= & — Skt _ kipz _ skoT)t
N (t) = N, +_k1+k2T(N10 N,.) e +[ Ny N@+—_K+ IgT( N, '\L)j e (20)

A=A, (21)
A=A, (22)

Substituting these values into the equatior8ithe optimal control is

_ k1(1_102 - /03) sz (1_ H )
Ft, N, N, A )= — ST P 7P Kol N (e BT
v Vam ST Ve o @-n)2pdy g

+A=7)PVen (- A-77)2dy;)- C
(1-7)*2pdys,,

(23)

As can be seen in (23), optimal fertilizer appleoatis inversely related to both nitrogen stocks,
as should be expected. Similarly, an increase enntiarginal value of the active nitrogen pool
through a change in one of the relevant problenameaters (e.gc, r, or T) increases the

marginal benefit of fertilizer, resulting in a gteaapplication rate. We now discuss the optimal
paths of the state and control variables, whichiangely determined by the initial stock values.

The proofs of the following three propositions available from the authors.

PROPOSITION 1The optimal time path of the active nutrient stdgkis monotonic, and its

direction is solely determined by the initial stdekel.

* We keep the solution fd¥ in terms of the state and costate variables duenplexity of the solution.
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PROPOSITION 2The optimal time path of the decadal nutrient stbgkis not necessarily
monotonic, even if the initial stock levels of bothand N are greater or less than their
respective steady state values, but can changetaineonly once.

The fact that a nutrient pools can exhibit a nomatonic optimal path is a feature of the
multiple state variables in the model, and one tlaanot occur with models incorporating only
one state variable. A similar result regarding globarbon cycles in the context of carbon

accumulation in the atmosphere can be found inifrard Tahvonen (1996).

PROPOSITION 3The optimal time path of the fertilizer control & imonotonic if the initial
stock levels of both;Nand N are greater than or less than their respectiveagiestate values.

If, however, one of the initial levels is greatiean its respective steady state value and the other
is less, the optimal fertilization time path wiltheer be monotonic or switch direction exactly
once.

The dependence of each nutrient stock level orother thus allows for a U-shaped or inverted
U-shaped optimal fertilization schedule. For exampIN; is low andN. is high initially, it may

be optimal to directly substitute for the activeopeia decreasing, but positive, fertilization
levels in the beginning of the planning horizonjlding up the stocks of the decadal pool as
well. As a result of leaching and crop export, hesve these gains are eventually diminished,
and increasing fertilization levels are possiblgai, a model with one state variable and an
infinite time horizon cannot admit an optimal fezation schedule that is non-monotonic. Thus,
a more realistic biogeochemical representationhef nutrient cycling process has important
implications for the qualitative characterizatidrtlze optimal fertilization path and total nitrogen

stocks.
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A graphical representation of these concepts vergin Figure 2, which depicts phase
portraits along the optimal stable manifSlfigure 2a shows the relationship between nutrient
stock levels, and confirms qualitatively the praposs proved above. The diagonal dotted line
depicts the non-negativity constraint, in that astgrting values to the left of the line are
admissible under the assumption of an interiortgmu Using this information, it is clear that the
non-negativity constraint is binding primarily itustions when initial nutrient levels inoth
pools are relatively high, or the relative distanftem the steady state for one pool is
considerably higher than the other. We would expedial values such as these to be
representative of undisturbed land not previousliivated. Note that along the stable manifold,
the admissible paths to the steady state can luzildes as a stable node, with monotonic paths
for N; regardless of the level fod,. Furthermore, for these parameter values, it easelen that
unlessNy is very close to the steady state level, it tandse monotonic as well.

Figures 2b and 2c represent the same paths as ithds, but with fertilization on the
vertical axis and one stock on the horizontal aRis.these graphs are relatively difficult to
interpret, it is important for the reader to recagrthat the paths depicted here are conditional on
the starting values of the stock not representdtiergraph. To see the relationship between the
three graphs, one particular path labeled “a” heenhidentified. Figures 2b and 2c graphically
display the fact that the optimal fertilization edales are much more likely to be non-
monotonic in nature tham,, a fact which will be quite important when we exaenthe
alternative sustainability criteria in the next ts@t.

3. Sustainability Criteria and the Economic Biogeochemical M odel

® We take here the parameters in Baisden and Amundson @0@3ir 600x16 year old soilk;=1.05,k,=.052,
ks=.0002,p,=.085,p5=.0012 5#=.061,y,,,=20, T=5, H=0.5, ¢=.05, p=2, b=0.8, and d=0.01.
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We now turn to a discussion of this model in teohslternative notions of sustainable
agriculture, using the macroeconomic growth literatas a guide. Pezzy (1997) summarizes
several alternative sustainability concepts in temh constraints that could be placed on a
present value optimization problem like the onecdbsd in equations (2) - (5), and we use
these, as well as the concepts of constant aggragelfare level known as the Rawlsian
“maximin” criterion and the “wealth-constant” criten put forth by Hicks to examine the
sustainability properties of the optimal soluticderived in Section 2 (Solow 1974; Hartwick
1977; Solow 1986; Farzin 2004). For each criteriva,wish to know if the utilitarian optimal
solution satisfies the particular definition of &isability, and if not, precisely where it fails t
do so.

For each criterion under consideration, we firsirnfally define the notion of
sustainability, and then subsequently analyze thi#gmal solution to answer the question of

satisfaction. We examine each in turn.

DEFINITION: An optimal path is “strongly sustainable”, or eqgalently “ecologically
sustainable”, if the sum of total nutrient levelsrass the stock pools does not decline

throughout the planning horizon.

This is the criterion that is the most restrictimea purely physical sense, in that it implies that
N(t) =N, (1) + N,(§ >0 Ot0[0,0).In other words, the initial stock levels are (ats

maintained indefinitelywith no decline in total nutrient stocks allowedaaty point over the
time horizon.From an intergenerational equity point of viewistimplies that every subsequent
generation has at least the same total physical &hthe nutrient stocks available for production

as did the immediately preceding generation. Wetlams not necessarily concerned with an
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economic welfare measure under this criterion,rathier an ecological measure. Note that this
does not require, however, that each individuatistmust satisfyN, >0,i=1,2, as some radical
ecologists might favor.

To evaluate the optimal solution under strongasnability, differentiate (19) and use the

time derivative of (20) to obtain

¢ J = — k1/02 St szkaz S(kT)t _ _ kTt -
N1+N2{ k{—sz—klﬂje Mo 6 }(mo N.)- kTED( D= W) (24)

As both of the coefficient terms ofN,, — N ) are non-positive and declining init should be

obvious that a sufficient condition for the optimalusion to satisfy this criterion is that the
initial value for each\; is less than the steady state value. Thus, evehytpahe southwest of
the steady state in Figure 2a is strongly sustainableruhe definition. However, it igot a
necessary condition, as the different decay ratesngby the eigenvaluekr—and kT allow for
the possibility that the starting values can be on dfgpsgles of the steady state and yet still
satisfy the definition. In other words, although onehef nutrient stocks might be declining over
a particular subset of the time horizon, the total eatrstocks may be increasing. In any of these
cases, however, the initial conditions determine tl¢us of the optimal solution under the
criterion.

It is also noteworthy to recognize that a similatecion would be the condition that

N(t) = N, () + N,()= Ny+ N,,= N,Ot In this case, the aggregate pool is allowed to decline

over some period of time, but only if the stock wag fimsreased through investment, and not to
the extent that it ever dips below the initial leveAssimple way to evaluate if the optimal
solution  satisfies this  modified ecological criterionis to define the

line N, (t) = N,,+ N,,— N(9and graph it on Figure 2a. Any path that lies continuouslithe



16

right of this line satisfies the criterion; in the cakpicted, most of the paths with relatively
small initial stocks oN, fulfill the condition, while those with relativelargerN, stocks at time

0 do not. However, in terms of the implications for faed across generations, we have
essentially arbitrarily chosen the first generatismdenchmark, with no real ethical justification
for this choice. Furthermore, there would be no needistinguish between the modification
and the original definition in the case of one statgabée, as the saddle point property in two

dimensions would ensure monotonicity, and thus equivalefite @riterion.

DEFINITION: An optimal path is “yield sustainable” if the time path of yield doeesdecline at

any time throughout the planning horizon.

Yield sustainability, as defined here, is essentiallyidgler between a physical concept and an
economic concept, because the actual object to be rebtai still physical in nature, but the
sole source of revenue in the model. As output pri@s dmt change over time, this idea could

be called ‘“revenue sustainability” as well. Formally,e wdefine this criterion as

Y() =Y'(N) N =0.Recall that we assumed that over the relevant rahgatrient availability,

the marginal product of nutrients is positi/equs, this condition can be written &k >0. By

using the expression obtained forfrom the first order condition (8) and substituting (&),

available nitrogen can be expressed as

N — —C+ (1_,7)yatm(bp+ (1_ HMl) .

(1=17)2dpY

(25)

But recall from (21) that the shadow values associatéld @ich pool are constant, and thus

N, =0 Ot. Under this model structure, themy optimal path is yield sustainable.

® There is little evidence in the literature that susphutrient availability decreases yields; rathegeiterally
implies a switching of the limiting nutrient or silari element necessary for crop growth.
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Several caveats need to be recognized at this paist, We have not restricted fertilizer
application to an upper bound, thus allowing for constandgetn availability over the planning
horizon (and constant shadow values). This is quitesti&alinder slightly degraded conditions,
for example, but unlikely to be possible if soil is selyetegraded in terms of nutrient content.
However, it is the driving force behind the conclusiort Hrey optimal path is yield sustainable,
as the optimizing agent essentially seeks to mairitiaithrough the time horizon. The lower
bound can also affect this conclusion, as high initidles may produce large, economically
unsustainable yields due to the cost of fertilizer. He@ugin this case, such situations are ruled
out. Second, we have assumed that there are ndettf®ffrom continuous fertilizer usage, such
as water pollution, that subsequently adversely affgekis in future periods. For more

discussion about these non-negativity and externabtyess, see Bond (2004).

DEFINITION: An optimal path is “profit sustainable” if the time pabf profit does not decline

at any time throughout the planning horizon.

Unlike the previous two criteria, profit sustainability aesncerned with the time path of an
economic welfare measure rather than a physical stoftéw. The profit function in the model

is 77=pY(N,) - cFso that the time derivative i= pY'(N,) N, - cF=- cFusing the result
obtained from the yield sustainability criterion. &y, then, we require further analysis of the
optimal fertilization schedules. Figure 3 depicts theedeedules as a function of time, assuming a
variety of starting values for both the active andadet nitrogen pools, and splits them into
paths which violate profit sustainability and those gwtisfy it. The initial values, reported in
the legend relative to the steady state (except fosdterely degraded soil), are a subset of those

shown in Figure 2. Mathematically, we can describe ldgesof the path as
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E=- k’(1-p, - ps) N, - (k,T)? N (26)

y atm atm

Recognizing that both coefficients on the time denwtiof nutrient stocks are negative, it is

clear that decreasing stock levels over time is suffide violate the profit sustainability rule, as

F <0 implies 77>0.This is also the case when one of the pools just hapebsgin at the
steady state level and the other begins above itsatéspestationary level and monotonically
declines. The converse is true for increasing stock lewads time, as severely degraded soil
offers the opportunity to use fertilization to augment ratdeposition and restore fertility, and
with profit levels low initially, profit sustainabiltis achievable. However, and perhaps most
importantly, it is likely that if the initial stockd autrients are of mixed sign with respect to their
distance from the stationary point, thé&will change sign and the criterion will be violated.

Again, this result cannot be achieved with a one-state Imnode

DEFINITION:An optimal path satisfies the Rawlsian “maximin” sustainabilityesrdn if the
profit level at each point in time is equal to the maximum conststéntaneous profit level

possible.

This criterion, which has been much discussed in theaeaonomics growth literature, differs
from profit sustainability in that it requires a degredrérgenerational equity (i.e., maximum
constant profits over time) not essential under the definitioh profit sustainability. This
criterion suggests a version of the zero net aggregagstment rule, which states that the
current value of changes in productive asset stocks at goh in time over the planning

horizon should equal zero (Hartwick 1977; Solow 1986; FarzidR®arzin (2002) shows that
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for any positive discount rate>0, sustainability in the sense of constant utility (herefits
defined aspY (, H T ) cF) requires

AN, +A,N, =0 Ot. (27)
Thus,in aggregatethe value of the change in nutrients to the farm’slpcavity must be zero at
each time in the planning horizon.

As is obvious from the previous discussion, it is quitékely that the optimal solution
would satisfy (27), as the shadow values are constanthendime derivative of individual
nutrient stocks can take virtually any sign, and not sesmdy of offsetting magnitude. In
general, then, the optimal solution does not admit timsteot maximum profit level typical of
intergenerational equality. This is not to say that susblution does not exist, just that it is not
optimal under the utilitarian paradigm. Such a statiopati? would necessitate a loss of welfare
over some subset of the time horizon by the definibibaptimality, but the extent of this loss is

not examined in this paper. For further analysis, see B2d@4]j. However, if we allow (27) to
be satisfied with an inequality, such thaN, + A,N,> 0, the value of net aggregate investment

will not decrease over time, and thus provides the oppbytiam future generations to be at least
as well off in terms of profit as previous generatiohgain, the optimal solution satisfies this
modified constraint in the case of severely degradesd wdtih low initial starting values.

It is worth noting at this point that the Rawlsianxmain criterion introduces the notion
of value of the nutrient stocks through the shadow valugsas opposed to the other
sustainability criterion that focus primarily on thdueof flows alone. It is this difference that
primarily separates the economic notions of sustdihaliiom more traditional, and perhaps
more familiar, definitions. In a more general casehsag a fertilization constrained problem, it

is likely that the values of the stocks will changerthe planning horizon (i.e., thewill not be
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constant), so the investment rules that would resmfh imposing maximin sustainability would

likely be more complicated.

DEFINITION: An optimal path is “stock value sustainable” if theuelof the resource base is

kept in tact over the time horizon.

The internal competitive valuation of any resourcelsisgiven by the shadow valugt), so at
any point in time, the competitive value of the resolnase is given by
V(t) =A N, +A,N,.
Farzin (2004) suggests that the maintenance of Hicksiammceequires the time derivative of
V(t) be greater than or equal than zero, or formally,
V(1) = AN, +A,N,+ A, N,+A,N,>0. (28)

Note that this measure takes into account not only the \luke change in nutrient stock
levels, as in (27), but also the change in the valueeo§tock, or the capital gains from holding
the nutrients in the soil (Farzin 2004). However, as ptshodiscussed, the shadow values on
each nutrient stock are constant over time, so tbectteria are identical in this case.

We have thus shown that in the purely renewable resowadel presented here,
assuming perfect substitutability between fertilizer andgegwbus nutrients and no constraints
on quantity of nutrients the actor can add to the g$bdt four of the five sustainability

constraints take the form
&N+ ¢ N, 20, (29)
where theg; are positive coefficients of th& criterion on the time derivative of th8 stock.

Clearly, the initial values of each nutrient pool aréical to the utilitarian solution satisfying a

particular sustainability rule. While not necessargutiicient condition for the optimal solution
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to be sustainable for each of the four is for thé teobe extremely degraded compared to the
steady-state level of the stock. In the case diainstock levels greater than the steady state
considered here, “soil mining”, defined as extracting #surce stocks faster than they can be
replaced, is an optimal strategy. As seen above, tlag ar may not satisfy any of the
sustainability criteria.

Furthermore, the yield sustainability criterion highlghhe difficulty in selecting an
appropriate sustainability rule. Particularly, is i tAvailability of a nutrient that must be
sustained, which in this case ensures constant yieldse totéh nutrient stock level defined by
the sum of the stocks®ny optimal solution here satisfies the former, but netessarily the
latter or any of the other criteria, including the vatdaet investment, value of the entire farm,
or profits over time. When considering policies assediavith “sustainable agriculture”, then,
researchers should be especially vigilant in definingtvexactly is to be sustained (a physical
resource, a flow of physical resources, or a measurveetifre) over what time period (Pezzy
1997).

4. Concluding Comments

The biophysical representation of the nutrient cyolesail degradation models is an
important factor in evaluating optimal paths of ferélizapplication and the sustainability of
agricultural systems. Inclusion of multiple stateiafles in the form of nutrient pools allows for
non-monotonic paths of nutrient stocks and fertilizationeslules, which subsequently impact
the characterization of the sustainability of thetesysunder alternative criteria. In particular,
inclusion of the decadal pool allows for an explicit egntation of tillage practices in the
model, essential for an analysis of these managemeirdicthesc Previous analyses neither

addressed these multiple stocks, nor analyzed the suslisynaf optimal responses.
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While the model presented in this paper incorporateg tleagures, it does have several
shortcomings. For example, only interior solutions aneswered, essentially ensuring stability
of the endogenous value of each nutrient pool over timeedlity, we would expect that
fertilizer application would certainly be constrainedipes, but also might be constrained from
above as a result of regulation or chemical reakiyrther analysis in the presence of these
constraints is forthcoming in Bond (2004). Furthermorerdghhas been some evidence that
fertilizer and indigenous nutrients are not perfect sules, in that long-run fertilizer use
adversely affects yield levels (Kim, et. al 2001). Thigssentially an empirical question, but
such a relationship could certainly be incorporated intonaodel. We have also constrained the
analysis to one limiting nutrient and one choice vaealibr simplicity. Allowing for the
endogeneity of harvest index and tillage may provide a riahalysis, but at the expense of
enormous complication. Additional nutrients would alslol @omplexity, and make the model
essentially intractable from an analytical standpdigvertheless, numerical simulation methods
could be used to solve the more complicated problems, amcerical analysis of the
sustainability criteria and comparative statics are iptesqfor the model presented here,
analytical comparative statics are available fromathihors).

This general model, which utilizes a biogeochemical strectcommonly used in other
disciplines, can be used to analyze a wide varietyg®fes relating to sustainable agriculture.
The sustainability criteria developed here, which incorpdratk physical and economic notions
of sustainability, can also help to shed light on whkatdy is to be sustained and over what time

scale, often neglected in other scientific literature.



Figure 1. Schematic of the Nutrient Cycle
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Figure 2: Optimal Trajectories and Non-Negativity Constraint
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Figure 3: Optimal Fertilization Schedules Over Time
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