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Abstract: This paper introduces two continuous time models, i.e. time homogenous 

and non-homogenous Markov chain models, for analyzing farm credit migration as 

alternatives to the traditional discrete time model cohort method. Results illustrate that 

the two continuous time models provide more detailed, accurate and reliable estimates of 

farm credit migration rates than the discrete time model. Metric comparisons among the 

three transition matrices show that the imposition of the potentially unrealistic 

assumption of time homogeneity still produces more accurate estimates of farm credit 

migration rates, although the equally reliable figures under the non-homogenous time 

model seem more plausible given the greater relevance and applicability of the latter 

model to farm business conditions. 
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Introduction  

Credit migration or transition probability matrices are analytical tools than can be 

used to assess the quality of lenders’ loan portfolios. They are cardinal inputs for many 

risk management applications. For example, under the New Basel Capital Accord, the 

setting of minimum economic capital requirements have increased the reliance of some 

lending institutions on the credit migration framework to methodically derive these 

required information ((BIS (2001)). 

There are two primary elements that comprise the credit migration analysis. First 

is the choice of classification variables which are criteria measures used to classify the 

financial or credit risk quality of the lenders’ portfolio. The variables could be single 

financial indicators, such as measures of profitability (ROE) or repayment capacity, or a 

composite index comprised of many useful financial factors, such as a borrower’s credit 

score. The second element is the time horizon measurement or the length of the time to 

construct one transition matrix (Barry, Escalante, Ellinger). Normally the shorter the 

horizon or time measurement interval, the fewer rating changes are omitted. However, 

shorter durations also result in less extreme movements, as greater ratings volatility 

would normally result across wider horizons characterized by more diverse business 

operating conditions. In addition, short duration is prone to be affected by “noise” which 

could be cancelled out in the long term (Bangia, Diebold, and Schuermann (00-26)).  In 

practice, a common time horizon is one year, which would be an “absolute” one-year 

measurement or a “pseudo” one year, which is actually an “average” of several years’ 

data into a single measurement (Barry, Escalante, Ellinger). 
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The application of the migration analytical framework has been extensively used 

in corporate finance (Bangia, Diebold, and Schuermann (00-26); Schuermann and Jafry 

(03-08); Jafry and Schuermann (03-09); Lando, Torben, and Skodeberg; Israel, Rosenthal, 

and Wei). Most of these studies focus their analyses on the intertemporal changes in the 

quality of corporate stocks usually using S& P databases as well as corporate bonds and 

other publicly traded securities, which are reported and published quarterly.   

Credit migration analysis, however, is a relatively new concept in the farm 

industry. There is a dearth of empirical works in agricultural economics literature that 

discuss the application of the migration framework to analyzing farm credit risk-related 

issues or replicate the much richer theoretical models in migration that have been tested 

and richly applied in corporate finance. Among the few existing empirical works on farm 

credit migration is a study by Barry, Escalante and Ellinger which introduced the 

measurement of transition probability matrices for farm business using several time 

horizons and classification variables.  Their study produced estimates of transition rates, 

overall credit portfolio upgrades and downgrades, and financial stress rates of grain farms 

in Illinois over a fourteen-year period. Another study by Escalante, et al. identified the 

determinants of farm credit migration rates. They found that the farm-level factors did not 

have adequate explanatory influence on the probability of credit risk transition. Transition 

probabilities are instead more significantly affected by changes in macroeconomic 

conditions.  

The study of farm credit transition probabilities can lead to a greater 

understanding and more reliable determination of farm credit risk. For this model to be a 
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more effective analytical tool, it is crucial to adopt a more accurate estimation for the 

migration matrices. Notably, current estimates of farm credit migration rates presented in 

the literature have been calculated using a discrete time model. In corporate finance, 

however, the adoption of more sophisticated techniques for transition probability 

estimation using the duration continuous time model based on survival analysis has been 

explored.  A number of studies have focused on demonstrating the relative strengths of 

the continuous time models over the conventional discrete time model. 

In this study, we introduce the application of continuous time models to farm 

finance.  Specifically, we will develop farm credit migration matrices under three 

approaches, namely, the traditional cohort method for discrete time model and two 

duration continuous time model variants —— time homogeneous Markov chain and time 

non-homogeneous Markov chain.  As a precondition to the adoption of the continuous 

time models, we establish the conformity through eigen analysis of our farm credit 

migration data to the Markovian transition process, which is a basic assumption under 

these models.  We expect this study to establish the practical relevance of using one of 

the two continuous time models in the better understanding of changing credit risk 

attributes of farm borrowers over a significant period of time. 

The Ratings Data 

The annual farm record data used in this study are obtained from farms that 

maintained certified usable financial records under the Farm Business Farm Management 

(FBFM) system between 1992 and 2001. The FBFM system has an annual membership 

of about 7,000 farmers but stringent certification procedures lead to much fewer farms 
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with certified usable financial records. So the number of farm observations that can be 

used in this analysis vary from year to year throughout the 10-year period. Specifically, 

there are 3,867 certified farms rated at least once in the 10-year period.  However, only 

117 farms are rated constantly over the whole period. Figure 1 shows the number of farm 

observations in each year over the 10-year period. Each year less than 10% of the farms 

were constantly certificated by FBFM. Constraining our data set only to the constant 

sample comprising of farms having certified records over the whole period will 

significantly reduce our sample size.  Thus, we allowed the sample composition to vary 

over time, which incorporate new farms that received their credit rating in that specific 

year and discard those that were not certified in that specific year. This procedure helps 

ensure that the sample size is always large enough to derive reliable statistical inferences.  

Annual farm record data are subsequently classified into 5 different credit 

categories based on the farm’s credit score.  For this measure, we adopted a uniform 

credit-scoring model for term loans reported by Splett et al., which has been used in 

previous studies (Barry, Escalante, Ellinger; Escalante, et al.) 

Analysis of Eigenvalues and Eigenvectors 

Before we explore the application of the continuous time models, we initially 

need to verify the validity of the markov chain process assumption, which is a necessary 

condition for the construction of such time models.  

A Markov process is a sequence of random variables ,...}2,1,0|{ =tX t with 

common space S whose distribution satisfy 

(1)   .}|Pr{},,|Pr{ ..., SAXAXXXXAX tttttt ⊂∈=∈ +−−+ 1211                            
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It indicates that the Markov process is memory-less because the distribution of 

Xt+1 conditional on the history of the process through time t is completely determined by 

Xt and is independent of the realization of the process prior to time t.  

A Markov chain is a Markov process with a finite state-space S = {1, 2, 3,… ,n}. 

A Markov chain is completely characterized by its transition probabilities  

(2)   SjiiXjXP ttij ∈=== + ,}|Pr{ 1  

There has been a long time debate pertaining to whether the credit migration 

follows a Markov chain or not. In many literature and practical analyses (Jarrow, Lando, 

and Turnbull; Lando, Torben, and Skodeberg; Schuermann and Jafry (03-08)), first-order 

Markov process has been merely assumed as true without any tests or justification 

provided by the analysts.  

One of the more widely used approaches to test the Markovian property of a 

matrix is through the analysis of eigenvalues and eigenvectors (Bangia, Diehold, and 

Schuermann). The information of any transitional matrix could be broken apart into its 

eigenvalues and eigenvectors, written as T
nnnnnn *** UΛUP = , where P is the transitional 

matrix; Λ is a diagonal matrix, each element on the diagonal representing one eigenvalue 

of P; U is a matrix with columns nuuu ,,, 21 L  representing P’s eigenvectors 

corresponding to each element of Λ . In addition, any transition matrix can be taken to kth 

power by simply increasing its eigenvalues to its kth power while leaving its eigenvectors 

unchanged, written as T
nnnn ** UΛUP k

n*n
k = . Thus for transition matrices to follow a 

Markov chain, two conditions have to be met.  
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Condition 1:  The eigenvalues of transition matrices for increasing time 

horizons need to decay exponentially; and 

Condition 2:  The set of eigenvectors for each transition matrix need to be 

identical for all transitional horizons. 

All transition matrices have a trivial eigenvalue of unity, which is of the highest 

magnitude and stems from the nature of transition matrices of row sum equal to one. The 

remaining eigenvalues have magnitudes smaller than unity. Those eigenvalues are what 

we focus on in the analysis. 

Using such an eigen analysis, we find it very difficult to reject the Markov chain 

process assumption. Figure 2 presents a plot of the second to the fifth eigenvalues of 

transition matrices with transition horizons varying from one year, two years to four years. 

The calculated eigenvalues show a strong log-linear relationship over the increasing 

transition horizons, thus providing some evidence that farm credit migration rates tend to 

follow the Markov chain process. The results of the eigenvector analysis are presented in 

Figure 3.  The three plots in Figure 3 represent the trends in the values of the 2nd 

eigenvectors for the transition matrices over different horizons.  These plots all seem to 

follow an identical path, which actually suggests that the assumption of a Markov chain 

process cannot be rejected  

Developing Transition Probability Matrices 

The results of the eigen analysis which failed to reject the Markov chain process 

assumption then allow us to explore the development of the farm credit migration 

matrices under the two continuous time models, in addition to the discrete time model.  
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The following sections describe the theoretical frameworks of these models and discuss 

the construction of these different matrices.  

Cohort Method 

Cohort method is the current standard method to estimate the obligor’s credit 

migration rate under the discrete-time framework. The basic idea is as follows: 

considering a specific time horizon t∆ , given Ni obligors being in rating category i at the 

beginning of the time horizon, there are Nij  obligors that migrate to rating category j at 

the end of the time horizon, then t
ijP∆ , the probability estimate of migrating from 

category i to category j over t∆ is  

(3)   
i

ijt
ij N

N
P =∆ˆ  

The probability estimate is the simple proportion of obligors in category j at the 

end of the time horizon out of the obligors in category i at the beginning of the time 

horizon. Typically obligors whose ratings are withdrawn are excluded from the sample.  

The major problem associated with cohort method is the incomplete information 

it provides. It only concerns the rating categories at both ends of the time horizon. Any 

rating change activity occurring in-between the endpoints or within the period is ignored. 

In addition, the discrete time (cohort) model only considers direct migration, for instance 

from category 1 to category 2, but ignores the effect of indirect migration, which, in this 

case would be from category 1 to category 3 via category 2. In other words, if there are, 

for example, two direct migrations from category 1 to category 2 and from category 2 to 

category 3 but no direct migration from category 1 to category 3, the cohort method will 
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yield a zero migration rate from category 1 to category 3. But in reality this specific 

transition could happen via successive downgrades within the continuous time period. 

Stated in another way, if in a time horizon there is no transition from category 1 to 

category 3, but there is at least a transition from category 1 to category 2 and another 

transition from category 2 to category 3, then the maximum-likelihood estimator for the 

transition from category 1 to category 3 should be non-zero, since evidently there is a 

chance, though it might be quite small, of such migration within the time horizon via 

successive downgrades, even if it did not happen on a single particular obligor in the 

sample. Notably, the cohort method, due to discrete time restriction, could not capture 

this probability measure, whereas the continuous time methods could capitalize on it.  

Time Homogeneous Markov Chain 

Under the time homogeneous case, only the length of the time interval matters, 

while the specific time state will not affect the migration rate at all. For example, under 

the time homogeneous case, a one-year period migration rate from 1992 to 1993 is the 

same as that from 1994 to 1995. We can see that this is a really strong assumption which 

will be revisited and refuted later in another continuous time model, the time non-

homogeneous framework. 

Following Lando and Skodeberg (2002), we define P(t) as a KK × transition 

matrix of Markov chain for a given time horizon, whose ijth  element is the probability of 

migrating from state i to state j in a time period of t. The generator matrix Λ is a 

KK × matrix for which 
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(4)   0
0

≥≅= ∑
∞

=
t

k
ttt

k

kk

!
Λ)Λexp()(P                

where the exponential function is a matrix exponential, which would be 

approximated by the infinite summation defined as the most right-hand side. 

The entries of the generatorΛ  satisfy 

(5)    ∑
≠

−=

≠≥

ji
ijij

ij ji

λλ

λ for0
 

The second equation merely guarantees that the row sum of the matrix is equal to one.  

Then the problem of estimating the transition matrix is transformed to estimating 

the generator matrixΛ . We are left with obtaining the estimates of the entries of Λ . The 

maximum likelihood estimator of ijλ is given by 

(6)    
∫

=λ T
i

ij
ij

dssY

TN

0
)(

)(ˆ  

where )(TNij  is the total number of transitions over the period T from credit 

category i to j,  )(sYi is the number of obligors assigned credit category i at time s. The 

numerator counts the number of observed transition from i to j. The denominator, the 

integral of )(sYi , effectively collects all obligators assigned with category i over the 

period T. Thus within T, any period an obligator spends in a category will be picked up 

through the denominator. To illustrate, suppose a farm spent only some of the time period 

T in transit from category 1 to 2 before landing in 3 at the end of T, that portion of time 

spent in category 2 will be counted in estimating the transition probability from category 
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1 to 2. In the cohort method this information has been overlooked. In addition, any 

indirect transition activity could be captured so that that there is always a positive, though 

possibly very small, transition rate for extreme migration movement. 

Non-Homogeneous Markov Chain 

Although the homogeneous markov chain transition matrix could provide richer 

migration information than the cohort method, it is actually very hard to convince that the 

specific time date is unimportant. In fact, in reality (and most especially when 

considering the more volatile farm business conditions) period-specific and heterogenous 

time conditions suggest that the intertemporal placement and sequence of a particular 

observation actually do matter in the analysis of credit migration trends A plausible 

justification is the economic cycle in which the obligator is involved. It is reasonable to 

believe that the migration from i to j over the expansion cycle would be significantly 

different from the same migration over the contraction cycle.  

When we relax the assumption of time homogeneity, we direct to the less 

restriction case of non-homogeneous Markov chain. Again following Lando and 

Skodeberg (2002), let ),(P ts  be the transition matrix from time s to t. Then the ijth 

element indicates the transition probability from category i in time s to category j in time 

t. Given a sample of m transitions over the period from s to t, the maximum likelihood 

estimator of ),( tsP  could be derived using the nonparametric product-limit estimator 

(Klein and Moeschberger) 

(7)    ∏
=

∆+=
m

k
kTts

1
))(ˆ(),(ˆ AIP  
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where Tk is a jump in the time interval from s to t.  

(8)     
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where the numerator of each off-diagonal entry, )( kij TN∆ , donates the number of 

transitions away from rating i to rating  j at time Tk; the numerator of the diagonal entry, 

)( ki TN •∆ , counts the total number of transitions away from i at time Tk; the denominator 

of each entry, )( ki TY , is the number of the exposed farms or farms at risk, that is, the 

number of farms at rating i right before time Tk.  

So the diagonal entry counts, at any time Tk, the fraction of the exposed farms at 

rating i migrating away from that rating. And the off-diagonal entry counts the fraction of 

exposed farms at rating i migrating away from that rating to another specific rating j at 

the particular time Tk. Note that the row sum of the matrix )(ˆ
kTAI ∆+  is equal to one, 

which conforms to the transition property. Also note that when there is only one 

transition between time s to t, 1=m , the non- homogeneous product-limit estimator 

reduces to the cohort method. Or in other words, the non-homogeneous method could be 

viewed as a cohort method applied to extreme short time intervals. 

Comparison of Matrices under the Three Time Models 
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There are various ways of comparing matrices including L1 and L2 (Euclidean) 

distance metrics, and eigenvalue and eigenvector analysis, which are extensively 

introduced and discussed by Jafry and Schuermann (03-09). 

In our study, we use the L1 norm, which is simple but without less power in 

comparing the distance between two matrices.  This evaluation criterion is derived as: 

(9)   || ,,,, jiB

N

i

N

j
jiA PPL −= ∑∑

= =1 1

1 Norm  

L1 norm gives the sum of the absolute value of difference between each 

corresponding entry of any two transition matrices. 

Results  

We have presented three different methods for estimating the farm transition 

matrix. In corporate finance studies, credit migration estimation is based on the widely 

used S&P database. These types of data are recorded on a quarterly basis so the three 

time models considered in this study could be applied to annual transition matrices and 

do some matrices comparisons. However, since our farm data are recorded annually, we 

cannot replicate here the approach used in corporate finance to derive the annual 

transition matrices.  To force this method using the farm financial data in this study will 

produce identical matrices under the cohort method and non-homogeneous method. To 

resolve this issue, we have opted to derive biannual transition matrices, i.e. instead of 

one-year horizon in any two-year period, we used a two-year horizon. In this case, for the 

cohort method, there is only one discrete transition from the first year to the third year, 
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while the continuous time models will produce two transitions within the two-year 

horizon. 

Tables 1-3 present the average transition matrices of the eight biannual transitions 

from 1992 to 2001 for the three different methods. More specifically, for the cohort 

method, transition matrix 1 corresponds for the subset of observations for years 1992-

1994 with transition rate calculated as the change from 1992 rating to 1994 rating.  The 

rest of the transition matrices (numbers 2 to 8) are derived in a similar fashion with 

transition rates calculated based on the rating in the two endpoints of every three-year 

period. We use equation (3) to calculate the transition matrices.  The average of these 8 

matrices are calculated and reported in Table 1. 

The two continuous methods use a similar procedure. The only difference is that, 

instead of grouping only two boundary years within a three-year period, we group all the 

three years together for realizing two continuous transitions to capitalize on equation (6) 

and (8)  to derive the generator matrix for homogeneous method and )(ˆ
kTA∆ matrix for 

nonhomogeneous method. Then the two matrices are converted to transition matrices 

using equations (4) and (7). The same procedure is repeated 8 times and we present the 

average results in Tables 2 and 3 for the last two methods.  

The results presented in Tables 1-3 reveal striking differences between transition 

probabilities reported in four decimal places obtained under the discrete and continuous 

time models. Firstly, there is measurable extreme migration from the top rating category 

to the lowest or the opposite extreme migration in the two continuous time models.  As 

expected, the equivalent/counterpart measures of these entries in the cohort matrix are 
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zeroes. Secondly, the retention rates using cohort method, except for category 1, are 

notably smaller than their corresponding measures in the other two continuous methods.  

This could be due to the fact that under the cohort method, we only count a migration as 

retention when the ratings at both ends of the time interval are the same.  Any migration 

that starts from one category and ends up in another category is treated either as an 

upward movement or a downward movement. However, it could be possible that a 

migration starts from category i to category j somewhere within the time interval and 

retains there from then on to the end. Cohort method will not capture this probability for 

retention while the other two methods will capture it and count the latter part of the 

migration as retention. 

Moreover, based on the continuous time model matrices, the estimator based on 

exponential of the generator and the non-parametric product-limit estimator are slightly 

different.  This difference, however, is apparently much less compared to the difference 

between cohort and either of the two continuous time methods.  

Using the L1 norm, the differences between the average transition matrices 

presented in Tables 1-3 are quite distinct. The L1 norms for the difference between the 

cohort methods and the duration method are 2.1086 and 2.0725 for the time-homogenous 

and time non-homogenous methods, respectively. Both of them are fairly larger than the 

L1 norm for the difference between the duration methods, which only yields a difference 

of 0.3672 at the same scale level. For illustration purposes, Figure 4 compares L1 norm 

difference between the pairs of methods among the cohort and the two duration methods 

in each bi-annual period. 
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In reality, it is hard to believe the plausibility and relevance of the time 

homogeneous model to farm businesses, especially considering the amount of uncertainty 

and risk involved in agricultural operations. Farm business performance could easily 

fluctuate from year to year due to influence of weather, technological change, and pests, 

among other things, on productivity.  Farm businesses could also be more susceptible to 

swings in macroeconomic conditions that modify market environments that ultimately 

results in high price risks.  Given these considerations, it is definitely convincing that 

transition probabilities for farm credit risk could be affected not just by the length or 

duration of migration, but also by the specific placement in time when the migration 

actually occurs. However, from our results we can see that imposition of the potentially 

unrealistic time homogeneity assumption does not significantly affect the result 

comparing to the one of relaxing the time-homogeneous assumption.   

Conclusion 

The increasing importance of the migration framework in the determination of the 

quality of farm credit portfolio creates the need to explore for alternative methods to 

develop more accurate measures of farm transition probability rates.   In this paper, we 

revisit the cohort discrete time method that has been conventionally used in the few 

empirical works, but we also introduce two new approaches based on a continuous time 

framework.  The application of two duration variants, i.e. the continuous time 

homogeneous and nonhomogeneous Markov chains, are introduced in this analysis 

Our results in this study indicate that the Markov chain assumption, which is an 

important condition for the two duration variants, cannot be rejected, which therefore 
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warrants the use of these two alternative time models.  The resulting matrices developed 

both duration continuous time models provide richer, more detailed credit migration 

information that are usually undetected under the traditional cohort method. In addition, 

although the assumption of time homogeneity seems implausible, there is relatively little 

deviation between matrices developed using the two duration continuous time methods. 

In farm credit migration, however, we feel strongly that the non-homogeneous Markov 

Chain approach would be a more realistic and relevant model vis-à-vis the time-

homogenous model that could provide more accurate, reliable and plausible estimates of 

the rate of change in credit risk ratings among farm borrowers across heterogeneous time 

periods.  
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Figure 1: Evolution of Number of Farm Observations with Rating over Time 
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                 Figure 2: Decay of Eigenvalues with Transition Horizon 
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           Figure 3: the 2nd Eigenvector of Matrices with Transition Horizon 
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Figure 4: L1 Norm Differences between Pairs of The Cohort and Two Duration 

Methods in Each Biannual period, 1992-2001. 
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Table 1: Average of 8 Biannual Transition Matrices, Each Estimated Using a Cohort 

Method in the Period 1992-2001. 

 1 2 3 4 5 

1 0.6381 0.2359 0.1136 0.0124 0.0000 

2 0.1787 0.3825 0.3123 0.1107 0.0158 

3 0.0597 0.2097 0.4557 0.2115 0.0634 

4 0.0226 0.2007 0.4058 0.2629 0.1079 

5 0.0000 0.0434 0.3883 0.3019 0.2664 

 

Table 2: Average of 8 Biannual Transition Matrices, Each Estimated Using the 

Homogeneous Method in the Period 1992-2001. 

 1 2 3 4 5 

1 0.6984 0.1612 0.1086 0.0270 0.0049 

2 0.1215 0.5681 0.2087 0.0831 0.0187 

3 0.0528 0.1320 0.6465 0.1269 0.0417 

4 0.0308 0.1191 0.2338 0.5576 0.0586 

5 0.0128 0.0560 0.2329 0.1650 0.5333 
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Table 3: Average of 8 Biannual Transition Matrices, Each Estimated Using a Non-

Homogeneous Method in the Period 1992-2001. 

 1 2 3 4 5 

1 0.7439 0.1485 0.0837 0.0199 0.0039 

2 0.1310 0.5904 0.1930 0.0712 0.0144 

3 0.0560 0.1515 0.6307 0.1198 0.0421 

4 0.0316 0.1205 0.2628 0.5266 0.0585 

5 0.0160 0.0741 0.2636 0.1631 0.4832 
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