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The use of chemical pesticides frequently causes minor pests to become serious problems by

disturbing the natural controls that keep them in check. As a result, it is possible to suffer

heavier crop losses after pesticides are introduced than before their introduction. Efficient use

of pesticides requires complete biological modeling that takes the appropriate predator-prey

relationships into account. A bioeconomic model is introduced involving three key species: a

primary target pest, a secondary pest, and a natural enemyof thesecondarypest.Optimal
decision rules are derived and contrasted with myopic decision making, which treats the

predator-prey system as an externality. The issue of resistance in the secondary pest is

examined briefly.

Chemical pest-control programs directed at a target
pest species often create new economic pests out
of other pest species that had previously been of
minor or sporadic importance. These species, known
as secondary pests, are those which in “normal”
growing seasons do not inflict major crop damage,
although significant outbreaks may sometimes be
stimulated by natural causes such as unusual weather.
Secondary-pest outbreaks are known as’ ‘induced”
when they are brought about by human activities
that disrupt the agricultural ecosystem.

Induced secondary-pest problems often occur
because most available pesticides have broad-
spectrum toxicity, rather than being narrowly tar-
geted to a particular species, so that various spe-
cies, including natural predators, are destroyed along
with target pests. When their natural predators are
reduced in numbers, secondary pests may prolif-
erate to a point where they pose a serious economic
threat to agricultural producers. Not infrequently,
secondary-pest damage may come to exceed dam-
age from the original target pest. Moreover, such
problems may emerge gradually over time because
of “the remarkable ability of pests, but the infre-
quent ability of natural enemies of pests, to develop
resistance to pesticides” (Prokopy, p. 2).

A striking example comes from the Rio Grande
Valley of northeastern Mexico where DDT was
highly successful in controlling the boll weevil, the
region’s primary cotton pest, throughout the 1940s.
By the 1950s, boll weevil numbers were still ba-
sically under control, but the population of a for-
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merly minor pest, the cotton bollworm, was
exploding and could not be controlled even with
eighteen pesticide applications per year. As a re-
sult, cotton production in the region declined from
700,000 acres in 1960 to fewer than 1,200 in 1970,
marking the end of a multimillion dollar industry
(Prokopy).

The problem of induced secondaty pests has been
almost entirely ignored in the economics literature,
even though it is acknowledged to be of worldwide
economic importance (Getz and Gutierrez). Harper
and Zilberman have approached the problem using
static optimization techniques exclusively. Related
work by Feder and Regev described how the bal-
ance of a single pest system, consisting of a primary
target pest and its natural enemy, may be disrupted
when broad-spectrum chemical pesticides are in-
troduced.

Optimal management of predator-prey systems
has been described in detail for cases in which one
or both species have positive economic value. Rel-
atively recent explorations include those by Ra-
gozin and Brown, and by Mesterton-Gibbons.
Predator-prey relationships are equally important
in the world of pest control, but there they play an
entirely different economic role. Typically, in this
setting, the’ ‘prey” is a ~st (i.e., a damage-inflicting
agent that causes economic losses), while the
“predator” functions as a natural form of damage
control.

This paper introduces the optimal management
of a simple multiple-pest system in a dynamic
framework, emphasizing the key role that predator-
prey relationships need to play in multispecies
modeling. The structure of the paper is as follows.
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The biology of a primary-secondary pest system,
incorporating three key species, is first introduced.
An optimal-control framework is then applied to
determine the optimal intensity of pesticide use
under myopic single-pest management and under
comprehensive multiple-pest management, respec-
tively. Finally, the issue of resistance in the sec-
ondary pest is discussed briefly.

It will be shown that, as in Feder and Regev,
once the original predator-prey equilibrium is dis-
turbed by chemical intervention, an economically
and environmentally inferior equilibrium is likely
to be approached over time in which profit is re-
duced in spite of increasing dependence on toxic
chemicals. Moreover, a lengthy and costly adjust-
ment process with high interim levels of crop dam-
age must often be endured if an attempt is made
to reduce chemical use and return to the original
equilibrium. In the absence of complete biological
modeling, even the existence of the potential sec-
ondary-pest problem and the economic importance
of the predator may go unrecognized until exten-
sive damage has already been incurred.

The Biological Model

This paper models a situation in which pesticide
applied to control a target pest in a particular crop
incidentally reduces populations of coexisting spe-
cies as well, in particular a secondary pest and its
natural predator. The natural predator tends to keep
the secondary pest in check and is therefore known
as a “beneficial” species. The primary pest is as-
sumed to have no important natural predators. The
biology of this system is the following:

Primary Pest: X = ~ = F’(Xl),

Secondary Pest: Y = ~ = G(Y,, Z,),

Predator 2 = ~ = If(Y,, ZJ,

where Xl is the primary-pest population, Y,the sec-
ondary-pest population, and ZI the natural-predator
population, Net growth in the primary-pest popu-
lation, X, changes at a rate that is a function of
the current population, Typically as X, increases
beyond a certain level, X decreases and eventu-
ally falls toward zero as the environmental carrying
capacity of the species is approached.

Similarly, net growth in the, secondary-pest and
predator populations, Y and Z, depends on their
current populations, Ytand Z,, respectively. In ad-
dition, however, net growth in the prey and pred-

ator populations is influenced by their interaction.
Secondary-pest population growth falls as preda-
tors become more numerous (GZ< O), while pred-
ator population growth increases as the number of
secondary pests that constitute its food supply in-
creases (Hy > O). In the absence of human inter-
vention, the secondary-pest and natural-predator
populations develop according to their mutual bi-
ology .

When chemical pesticide is applied, it is as-
sumed that all three species are affected, but to
varying degrees. Letting At represent pesticide use
at time t, human intervention transforms the bio-
logical system as follows:

X = ~ = F’(XJ – K(A1, X,),

i’ = ~ = G(Y,, Z,) – L/( Al,Y,),

Z = : = H(Y,, Z,) – M(At, Z,),

where K, L, and M are the respective pesticide kill
functions. It is assumed that more pesticide kills
more pests, and that as a given population in-
creases, the number of individuals killed by a given
dose of pesticide also increases: K~, Kx, LA, Ly,
MA, J4z >0.

Both the primary and secondary pests reduce
crop yield below its maximum potential level.
Therefore, the revenue function, R, = R(X,, Y,),
which represents the increment to crop value at
time t,is a decreasing function of both primary-
and secondary-pest numbers: Rx, Ry <0. The rel-
evant cost function is the cost of pest control, Cl
= C(AJ, which depends on the amount of pesticide
applied, with CA >0.

Single-Pest Management

Potential secondary-pest problems may be over-
looked because of incomplete biological modeling,
or they may be beyond the reach of the individual
decision maker because of common property ef-
fects such as pest mobility, In either case, the pest-
control problem facing the individual producer is
simply to choose a time path for applying pesticide
to control the primary-pest population. The single-
pest management problem is to maximize dis-
counted net revenues from the crop subject to the
natural biology of the primary pest:

max ~~ e-” [R(XJ - C(A1)] dt

subject to X = F(XJ – K(A,, Xl),

where 8 is the rate of discount.
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The current-value Hamiltonian function is

H = I?(x,) – C(A,) + p, [F(XJ – K{A,, L)],

with a solution described by the following neces-
sary conditions:

(1) O=~=–CA–PrKA

(or more generally: choose At to maximize ~);

= 8 p, – Rx – P, [Fx – KX(A,, X,)];
and

(3) X = : = F’(X,) – K(A,, X,).

Expressions (1) through (3) can be solved for
the time path of optimal pesticide use (see appen-
dix), but the decision rule for the general case is
too complex to be very informative. For practical
application, it is necessary to specify a biological
model. The model that will be considered here is
analogous to the well-known Schaefer fisheries
model. The biological growth function is logistic

()F(x,)=qx, 1 –: ,

and the effectiveness of human intervention (the
pesticide kill function) is proportional to both hu-
man effort (pesticide-application rate) and the cur-
rent population level,

K(At, X,) = k At X,,

where q, U, and k are constants. Assuming that
the marginal cost of applying pesticide is constant,
C(A,) = c A,, we have

H = R(XJ – cA, + p, [qXt(l – :) – k At X,].

The difference between this model and the Schaefer
model is that here revenue does not depend posi-
tively on a resource flow, such as fish harvest, but
instead depends negatively on the stock of pests.

Then equation (1) becomes

c = – p,k Xt,

The result is a singular solution that implies the
following decision rule: If the marginal benefit from
killing a pest exceeds the cost of pesticide ( – 1A,
k X, > c), apply at the maximum permissible rate;
if the reverse, apply no pesticide, If the equality
just holds, maintain the economic-threshold pest
population, X,, defined by

X,= –Lk.
1%

In particular it can be shown that the economic-
threshold pest population for this model is given
by (see appendix)

~ = _ Rx(it) k X,
(4)

qx,_— .
c u

To solve explicitly for ~, the only remaining
information requirement is specification of the mar-
ginal revenue function, Rx. No effort has been
made here to give a general characterization of R(X)
because the relationship between crop value and
pest numbers varies intrinsically from crop to crop
and pest to pest.

Equation (4) indicates that the opportunity cost
of capital, 8, should equal the marginal net rate of
return from pesticide use. This rate of return has
two components: (1) the marginal increase in rev-
enue from reduced pest damage per dollar spent
on pesticide and (2) the decrease in future pest
pressure due to a lower pest growth rate. The sec-
ond effect will not be taken into account in static
pest management models.

Since R() is a single-valued function of X,,
expression ($) ha! a unique solution, implying that
X = Oand Xt = X along the singular solution path.
Rearranging (5), we have

(5)

(6)

– 8CU , orx=
RxkU + qc

Rxk Xc=–
8 + qxlu “

The optimal decision rule is therefore to apply
pesticide at the maximum or minimum rate possible
until the pest population reaches the economic
threshold X. Thereafter, optimal pesticide use, ~,
is select~d to maintain t~eapest population at X.
Since qX( 1 – X/U) = kAX, this means

(7)

The solution is to apply a bang-bang control until
the economic threshold is reached, followed by a
steady; state solution with constant pesticide use at
level A. Given a specific reven~e function, R(X),
the threshold pest population, X, and the optimal
level of pesticide use, A, can be derived explicitly.

The Secondary-Pest Externality

When an amount of pesticide, At, is applied to
combat the primary pest, unintended reductions of
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the secondary-pest and predator populations also
occur, given by the kill functions L and M. The
destruction of secondary pests is apositiveexter-
nality, but because thenatural predator is useful in
controlling the secondary pest, its destruction is a
negative externality of pesticide use. The net con-
sequence depends on the biological relationships
that relate the predator, the pest, and the chemical
pesticide.

The natural extension of the logistic growth model
to a predator-prey system is the Larkin model. This
is perhaps the simplest dynamic model which sat-
isfies basic conditions for structural stability. 1 For
both the prey (secondary-pest) population, Y,, and
predator (natural-enemy) population, Z,, the Larkin
model combines the basic logistic growth function
with a predator-prey response. The natural biology
is described by

i’ = G(Y,, 21) = rYJl – :) – fxY(Z,

2,
z = H(Yt, 2. = Szt(l – # + pYt 2[,

where r, V, W, s, W, and ~ are nonnegative pa-
rameters.

In the absence of human intervention, this sys-
tem is characterized by two linear isoclines, one
upward sloping and one downward sloping (Fig-
ure 1):

Y= Yf[r(l– $-aZ,]=O, and

z = 2[ [s(1 – ;) + pYt] = o.

There are three nontrivial equilibria: {Y = O, Z =
W}; {Y = V, Z = O}; and {Y = YO,Z = ZO},
where

y. = sV(r – a W)

cI~VW + sr

z~ =
rW(s + (3V),

fI~VW + sr

1 A simpler model is the Lotka-Volterra specification:

Y = G(Y,,Z,)= rY,– aY~,

Z = H(Y,, Z,) = –(XZ, +(3 Y, Z,.

This system generates closed-orbit population cycles. It is not structural] y
stable, however. Small changes in the structure of these functional forms
may lead to great changes in the nature of tbe solutiun, resulting in
converging or chverging spirals. The model cannot, therefore, be con-
sidered a valid description of natural biological systems (May; Clark, p.
183).

It can be shown that if the equilibrium solution
{YO,2.} exists in the positive quadrant, then that
solution is a stable node or focus toward which the
system will tend from any nontrivial point of origin
(Clark). In the absence of external shocks to the
system, the secondary-pest and natural-predator
populations approach these levels over time.

When chemical pesticide is introduced, the rel-
evant model of predator-prey biology plus human
intervention becomes the following:

Y = G(Y,, Z,) – L(A,, Y,)

Y,
— rY,( 1 — —) — aY~r — lAfYf,—

v

Z = H(Y,, Zr) – M(A,, 2,)

2,
= sZ, (1 – ~) + ~Y~t – rnA/Zf.

The essential properties of the model are un-
changed by the introduction of pesticide. The equi-
librium shifts but remains stable so long as it still
occurs in the first quadrant. The intercepts, but pot
the slopes, of each isocline are affected. The Y=
Oisocline shifts downward, and the Z = Oisocline
shifts to the right. The new equilibrium secondary-
pest and predator-populations are

Y’~ = Y~ +
AtV(aWnI – N)

apvw+sr

z’~ = z~ +
A,W( – (3VL – rm)

c@VW + sr

Since parameters are nonnegative, Z’. < 2., mean-
ing that in equilibrium there are unambiguously
fewer natural predators when pesticide is used. The
secondary-pest population, however, may be larger
or smaller with pesticide use; that is, Y’omay be
greater or less than Yo,depending on the biological-
parameter values.

Specifically, the effect of an increase in the rate
of pesticide use on the secondary pest is given by

dY’o V(ciWm – sl)—=
dA, CX(3VW+ sr

The equilibrium secondary-pest population in-
creases if ix W m > s 1and decreases if the reverse.
Not surprisingly, it is the relative toxicity of the
pesticide to the secondary pest and to the predator,
1 and m respectively, that determines whether the
positive externality outweighs the negative exter-
nalityy, or the reverse. The appropriate weights in
making this comparison are seen here to be s and
cxW, wheres and W are logistic growth parameters
for the predator, and w is the rate of predation.
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Multiple-Pest Management

In contrast to myopic single-pest management, which
considers only the effect of pesticide on the target
pest X,, optimal management takes into account its
effects on the complete system. Potential crop dam-
age from secondary as well as primary pests is
incorporated, and the rate of pesticicle use, A,, is
adjusted to allow for undesirable or desirable ef-
fects of the pesticide on the secondary-pest popu-
lation.

The complete optimization problem is to maxi-
mize discounted net revenue over time, subject to
all biological interactions:

max J_: e-” [R(X1,Y,) – C(AJ] dt,

subject to X = F(XJ – K(At, XJ

Y = G(Y,, Z,) – L(A,, Y,)

2 = H(j,, Z,) – M(Af, Z,).

The Hamiltonian function for the complete prob-
lem is therefore a function of the primary- and
secondary-pest populations, the predator popula-
tion, and the amount of pesticide applied:

fi(X,, Y,, Z,, AJ = R(X,, Y,) – C(A,)

+ px [F(X,) – K(A,, XJ] + py[G(Y,, ZJ

– L(A,, y,)] + P.z [H(Y,, z,) – ~(A, z,)].

Because X and Y are pests while Z is beneficial,
we expect to find p,x <0, p,y <0, and ~z >0.

Necessary conditions for an optimum are

NJARE

The maximum principle, as reflected in condi-
tion (1. 1), indicates that pesticide should be applied
at a rate such that its marginal cost equals the value
of its total effect, which includes the current and
future impacts of reducing the primary-pest, sec-
ondary-pest, and natural-predator populations.

For the Larkin-type model, conditions (1.1) and
(2. 1) become the following (see appendix):

(4.1) O = – c – pxkX – pylY – pzmZ;

Px=px[fh+%:+W -Rx;

ky=Py[8–r+2f+d–lA]

– pz (3Z – Ry;

wz=Pz[a –s+2s; –pY–mA]

+~yrl Y.

The optimal solution to the myopic single pest
management problem was seen to approach a steady-
state solution (A = X = O). In addition, the sec-
ondary-pest population tends toward a stable equi-
librium with its natural predator for any constant
rate of pesticide use. It follows that the solution to
the complete optimization problem will also ap-
proach a steady-state solution (A = X = Y = Z
= O). An optimal constant rate of pesticide use,
A*, will be chosen that takes into account the effect
of the chemical in reducing all three species through
the respective pesticide kill functions, K, L, and
M.

(1.1)

(2.1)

O =2 = – CA – FXKA – ~YLA – p,zMA
1

PX=WX-~= PX[~-FX+KXl –Rx;
1

dH
l.Ly=@y-t i=I. Ly[8-Gy+ LY]–pzHy– Ry;

a;
@z=8Pz– ~=1.Lz[8-Hz+Mzl –1.LYGz

t

(3.1) x=~x; Y=gy; i=E
13pz

(Kamien and Schwartz, p. 132)
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The equilibrium thus described, if it occurs in
the positive quadrant, is a stable node or focus since
it results from linear shifts in each isocline. In
addition, there are no limit cycles in this model,
as can be confirmed using du Lac’s test (Clark, pp.
195, 324).

To see how the economic-threshold population,
X*, and the optimal rate of pesticide use, A*, are
influenced by secondary-pest considerations, note
that for any pesticide use pattern which is constant
over time (Ar = A), the primary- and secondary-
pest populations are also constant:

X = X(x) = U (1 – k&q), and

r = y(A) =
sV(r–a W)+ V(aWm-, sl)A

a@VW + sr

Then discounted profit is simply

J%e-” (R {X(A);Y (~)} - C (A)) df

= .f~e-” (R (A) – cA) df.

The optimal solution for the Larkin-type multi-
ple-pest problem is the following:

c= – I@& – @Y – pzmZ;

0=~x(F5+q#– Rx;

o=pz(8+ s;–(3Y)+waY,

which can be solved to obtain
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economic benefit resulting from the destruction of
secondary pests. The third term, opposite in sign
to the other two, reflects the loss in benefits re-
sulting from the destruction of the naturaI predator.

In principle, it is possible for net economic ben-
efits from pesticide to increase when secondary-
pest effects are taken into account if the second
right-hand term outweighs the third. One might
conclude that a prescription for heavier use of pes-
ticides would be a common result of complete bi-
ological modeling. Historical experience suggests,
however, that in many settings the harm done by
destruction of natural pest predators outweighs the
immediate benefit that results from toxicity to sec-
ondary pests, particularly when resistance effects
are taken into account. In U.S. cotton production
alone, severe secondary-pest outbreaks have in-
cluded, besides cotton bollworm, the tobacco bud-
worm and cotton leafperforator. In situations such
as these, the optimal level of pesticide use therefore
tends to be reduced when the secondary pest and
its predator are taken into account.

In evaluating optimal pesticide use in particular
cases, correct specification of the revenue function,
RIX;Yl, representing biological interactions be-
tween pests and plants, plays just as important a
role as conect specificationof the interactions among
pests and predators (Lichtenberg and Zilberman).
It is necessary to know something about not only
the toxicity of the pesticide to all three species, but
also the relative marginal crop damage that can be
expected from primary and secondary pests. If the
impact of the secondary pest is large when its pop-
ulation increases, and if the pesticide is more toxic
to the natural predator than to the secondary pest
itself, it is very possible for pesticide use to increase

(5.1)
kx

c=
- ‘x(8 + qx/u)
– Ry

lY(s+sz/w–p Y)

(8 + sZ/W – B Y) (8 + rY/r + ciz) + 13ZaY
a YmZ

+ ‘y (8 + sZ/W – (3Y) (8 + rY/V + d) + @Zci.Y

This expression indicates that marginal cost, c, net pest damage, even when it is effective in re-
should equal the sum of marginal benefits, which ducing the primary-pest population,
consist of three types. The first right-hand term is
identical to that in equation (6) for the single pest Resistance in the Seconda~ Pest
management problem, reflecting the pesticide’s
marginal contribution to crop value by reducing The predator-prey model implies that if either the
primary-pest damage. The second term, which has pest or its predator should develop resistance to the
the same sign as the first, reflects the additional pesticide in the future, the pesticide kill functions
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and, hence, the equilibrium secondary-pest popu-
lation will change, even if pesticide use is contin-
ued at the same level. Historically, it has often
been secondary pests, rather than primary pests or
natural predators, that have developed resistance
to pesticides, insomecases to one chemical after
another. “For a variety of genetic, behavioral, and
ecological reasons, predators and parasites of pests
are much less able than pests themselves to build
into pesticide-resistant populations” (Prokopy,
p. 11).

In the present model, the effect of secondary-
pest resistance is to decrease kill effectiveness, 1,
and increase the equilibrium secondary-pest pop-
ulation. One familiar scenario for resistance is that
initially the pesticide is a good control for second-
ary as well as primary pests. Even though the pes-
ticide reduces the number of predators, the secondary
pest is kept in check better by the combined effect
of predators and pesticide than it was by predators
alone (i. e., Y’. < Yo). As resistance develops in
the secondary pest, however, the pesticide effect
becomes weaker, and the reduced number of pred-
ators permits the equilibrium secondary-pest pop-
ulation, Y’o, to rise above the prepesticide level,
resulting in heavier and heavier crop damage.

Another scenario is that the use of pesticide drives
the natural-predator population to extinction in the
local geographical area, leaving the secondary pest
to be controlled by pesticide alone. This state of
affairs may initially be satisfactory for the pro-
ducer. As the secondary pest becomes resistant to
the pesticide over time, however, the absence of
natural biological controls becomes evident. In this
case, an additional pesticide must be used to control
the secondary pest, or else natural predators must
be reintroduced along with a less intensive chem-
ical pesticide regime.

Conclusions

Although it is often acknowledged in principle that
pest managers need to address multispecies inter-
actions, this is seldom done in practice. This paper
has attempted to identify an extremely common,
but easily overlooked, situation: that in which a
pest of secondary economic importance becomes
transformed into a major threat as a result of the
system of chemical control used against a target
pest. For many crops, secondary pests have the
potential to inflict crop damage that is at least as
devastating as that due to primary pests if the sec-
ondary-pest population is permitted to increase to
a sufficient level.

The effects of chemical pesticide on a predator-
prey system consisting of the secondary pest and
its natural enemy often function as a pest-control
externality. Ignoring secondary pests can lead to
devastating crop damage that may continue over a
considerable period of time. Induced secondary-
pest infestations, once they arise, may prove
difficult to control by chemical means. Many sec-
ondary pests have rapidly developed resistance to
one chemical after another. Some highly successful
integrated pest management strategies, such as the
one now used in high plains cotton, originated largely
out of failure to achieve chemical control of sec-
ondary pests.

Crop ecosystem models that incorporate all rel-
evant pests and natural predators are required to
determine economically optimal pest management.
Chemical control of a primary pest should ideally
be used with knowledge of its likely effects on not
only natural predators of the target pest, but also
natural predators of relevant secondary-pest spe-
cies. In addition, complete modeling is needed in
the regulatory environment, when costs and ben-
efits of various pest controls are evaluated, to avoid
overestimating economic benefits attributable to
chemical controls.
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Appendix

A general expression for the optimal time path of pes- These two expressions can be solved to obtain expres-
ticide use can be derived as follows. From (1), sion (4).

For the multiple pest management problem, conditionsp,, = – CAIK. (4. 1) are derived as follows. For the Larkin-type model,
and hence (1. 1) through (3.1) give

c= – P.xkx – pylY – p,zmZ;
@ = –+; A++[KMA+G&,

A

which with (2) can be solved to get a general optimal
[

@i-q+ ~+k A 1–RX=O;
solution:

– RXK2. – C.KA [b – F’X + KJ – C~KAx [F(XJ – K(A,, x,)]A=
– CMKA i- CAKM

For the Schaefer-type model with constant marginal
costs of pesticide, (1) and (3) give

[
pY8–r+~+csZ+[A 1–pz~Z– Ry=O;

~=g
[ 1~z8–s+:–pY+ti +pyaY=o.

1

C(qx, – qx;lu– kA,xl)——
kx; However, in a steady state, qX(l – ~) ==

and (2) gives kAX, rY(l – ~) = lAY, and sZ(l – # =

8–q+2qxju+kA,
p=–l?x+p,

kx,
mAZ. This gives condition (4.1).


