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1. Introduction 
 
Empirical firm size distributions are the cumulated result of underlying firm dynamics 

involving entry of new firms and growth, decline, and exits of incumbent firms. In this 
paper we give an overview of firm size distributions that result as steady states from 
models differing in the way these firm dynamics are modelled.  

 
What is the use of such an overview? First, it facilitates researchers in deciding which 
steady-state distribution to use dependent on the situation with respect to entry, exit, 

growth, and decline of firms in an industry. Second, it gives information about what 
future changes in the firm size distribution one could expect when there are changes in 
the underlying firm dynamics. Alternatively, historical changes in the firm size distribu-

tion over time or differences between industries might be explained out of changes or 
differences in underlying firm dynamics. Third, it gives insight into what kind of firm 
dynamics may be underlying specific firm size distributions. Hence, possible interpreta-

tions of the parameters of the size distribution in terms of firm dynamics are provided. 
Furthermore, relationships between different firm size distributions become clear in 
terms of underlying firm dynamics. Fourth, it gives possible candidates which firm size 

distributions to use for fitting purposes. Fifth, one gets an impression to what extent it 
is possible to explain the various shapes of firm size distributions that we encounter in 
practice by the steady-state approach. Sixth – because the precise relationship between 

firm dynamics and the resulting firm size distribution becomes clear – determinants of 
firm dynamics can be translated into determinants of firm size distributions and vice 
versa. 

 
What is the contribution of this paper to the literature? First, it catalogues in one place 
all analytic steady-state distributions that have so far been derived in the literature. Till 

now these were scattered over the literature. Among others, we bring together the re-
sults of Gibrat (1931), Kalecki (1945), Simon (1955, 1960), Steindl (1965), Ijiri and 
Simon (1977), Levy and Solomon (1996), Sutton (1997), Gabaix (1999), and Malcai et 

al. (1999). 
Second, by confronting results from many different sources we were able to compare 
them, derive common results, and explain seemingly contradictory results. In a few in-

stances, this led to the discovery of flaws in the existing literature. 
Third, to improve the value of this overview we sometimes reinterpreted existing mod-
els, elaborated more upon them, or gave the firm size distributions the right labels. For 

example, this paper introduces the Waring distribution and the extended Katz distribu-
tion (already present but unnamed in the work of Simon) into this area of research. 
Fourth, by making this overview we discovered some gaps in the literature, which we 

closed by developing some extensions to existing models. In particular, we extended the 
Simon model to involve (i) a general deviation from Gibrat’s law and (ii) size-dependent 
exits. 

Fifth, the latest empirical insights concerning the shape of firm size distributions are 
shortly reviewed (noteworthy those of Sutton (1997) and Axtell (2001) and references 
therein) and it is analysed to which extent the reviewed models are able to explain 

these. 
 
The remainder of this paper is structured as follows. The various models leading to 

steady-state distributions appear to differ with respect to the precise steady-state con-
cept used, the way the steady state is imposed or the steady-state distribution is calcu-
lated. These theoretical aspects are discussed in section 2. The various models also dif-

fer with respect to the assumptions made. Section 3 discusses the plausibility and use-



 5 

fulness of these assumptions in the light of theoretical and empirical considerations. 
Section 4 is the heart of the paper. It tabulates all the steady-state firm size distributions 

and shows how these depend on the underlying assumptions regarding firm dynamics. 
It is indicated where these distributions are calculated in the literature and it is dis-
cussed how results from different models compare to each other. Section 5 summarizes 

the general tendencies resulting from the steady-state approach and shows to what ex-
tent this approach is able to explain the shape of firm size distributions that we meet in 
practice. Finally, section 6 concludes. 

 

2. Theory 
 
This paper reviews models in which firms are assumed to grow, decline or exit with 

probabilities that may be a function of current firm size. Optionally new firms may enter 
at a certain rate or as a fraction of aggregate industry growth. Such firm dynamics 
models are said to have a steady state if the firm size distribution that results from these 

conditions evolves to a state in which it does not change any more. 
Not all models evolve to a steady state. Furthermore, models may differ with respect to 
the precise steady-state concept used, the way the steady state is imposed or the 

steady-state distribution is calculated. In this section some typical models are discussed 
that differ in these respects from each other. Successively, we will discuss the models of 
Gibrat (1931), Kalecki (1945), Simon (1955, 1960), Steindl (1965) and Levy and Solo-

mon (1996).1 The main characteristics of these models are summarized in table 1. 

 Gibrat  (1931)  
The most elementary firm dynamics model is that of Gibrat (1931). He considers a fixed 
number of firms, each facing the same distribution of growth rates, independent of 

their size. This is referred to as the Gibrat assumption in the literature. Gibrat shows 
that in his model the logarithm of firm size follows an unrestricted random walk. Ac-
cordingly, he finds that the firm size distribution approaches a lognormal distribution 

with ever increasing mean and variance when time goes on.2 Hence, the model has no 

real steady state: the parameters of the firm size distribution keep changing. In the end, 
when the variance of the lognormal distribution is infinite, firm size is undetermined: 
the probability that a firm’s size is in a certain interval approaches zero for any size in-

terval. 
 
The Gibrat model has no steady state. It is in need for a stability condition to restrict the 

random walk of the (logarithm of the) firm’s size. In the models below we will encoun-
ter three alternative stability devices to impose a steady state. 
1 The average growth rate of firms is negative correlated with size. 

2 There is a constant stream of small new firms at the minimum firm size. 
3 Firms cannot decline below a certain minimum firm size. 

 

1
 In section 4 results of more models are discussed. However, those extra models do not differ from 
the ones discussed here with respect to the issues here at hand. 

2
 Proof, based on Scherer (1980, p. 147). Let s0 denote the initial size of a firm at time 0 and let εt 
denote the random growth multiplier in time interval t. Then the size of a firm at time t is st = s0 ε1 
ε2 .. εt, that is: the cumulative product of its initial size times a string of t random growth multipli-
ers. Taking logarithms we obtain: ln st = ln s0 + ln ε1  + ln ε2  + .. + ln εt. Hence, the logarithm of 
firm size follows an unrestricted random walk. By the central limit theorem the distribution of the 
sum of t random variables is asymptotically normal with mean tµ and variance tσ2, where µ and σ2 
denote mean and variance of the random variables ln εt. By definition, if log size is distributed nor-
mally, then the size itself is distributed lognormally. 
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All these three devices restrict in a different way the random walk result that in the end 
firm size is undetermined. The first device accomplishes this by giving up the Gibrat as-

sumption. Growth is impeded: on average, growth rates are smaller for larger firms so 
that small firm sizes become more probable than large firm sizes. The second device in-
troduces a constant stream of small new firms at a certain minimum firm size. As a re-

sult, there will be relatively more small firms than large firms in the steady state. Finally, 
the third device introduces a minimum firm size below which firms cannot decline. 
Hence, there will be relatively many firms at or somewhat above the minimum firm size. 

These are the firms that would have decreased below the minimum firm size if there 
had not been a lower bound. 

Kaleck i  (1945)  
The Gibrat model has no steady state because the variance of the lognormal distribu-

tion keeps increasing. Hence, to impose a steady state, Kalecki (1945) proposes a new 
model in which it is demanded that the variance of the firm size distribution remains 
constant. He deduces that this condition can be satisfied if there is a negative correla-

tion between the average growth rates of firms and their size.3  

S imon (1955)  
Simon (1955) introduces a constant stream of new small firms to accomplish a steady-
state solution. In particular, he considers a growing industry where at each time interval 

one size unit is added to the industry.4 Each new unit could be either a new firm of size 

1 (with probability p) or a unit of growth of an incumbent firm (with probability 1-p). If 
the unit of growth accrues to an incumbent firm, the probability that it accrues to a 

particular firm is proportional to the firm’s size. Hence, the Gibrat assumption holds. 
Furthermore, the model considers no decline and/or exits of firms. 
As a result, the model describes a growing industry: industry size and the number of 

firms grow. Obviously, in the steady state – having by definition a constant firm size dis-
tribution - the number of firms of any size grows at the same speed in this model. 
The above described growth process determines a relationship between the probability 

density before and after the adding of a size unit to the industry. Furthermore, there is 
the steady-state condition that the probability density should remain unaffected by the 
adding of the size unit once the steady state has set in. Simon (1955) shows that both 

relationships together determine the steady-state distribution. It is a discrete distribu-
tion function because of the discrete size unit approach of Simon. 

S imon (1955,  a l ternat i ve )  
In the same paper Simon (1955) introduces a variant of his model that is interesting be-

cause of the differing formulation of the steady-state condition. The model is exactly 
the same except that now the size of the industry and the number of firms is kept con-
stant by introducing size-independent firm exits that occur at the same frequency as 

firm entries. Hence, the model describes a stationary industry. Furthermore, the model 
leads to the same steady-state distribution as before because - obviously - the introduc-
tion of size-independent exits cannot change the shape of a steady-state size distribu-

tion. 
Because the industry has been made stationary in this model, the steady-state condition 
can be formulated differently. Now, it demands that in the steady state the number of 

firms of any size – say s – should be constant. Hence, it reads: 
 

 

3
 See also the discussion of the Kalecki model in Steindl (1965, pp. 32-33). 

4
 Originally, Simon’s model has been stated in terms of a word frequency model. We have translated 
it here in terms of a firm dynamics model. 
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“inflow because of growth from s-1 to s” = “outflow because of growth from s to s+1” 
 

     + “outflow because of exits of size s” 
 
By assumption, the inflow because of growth from s-1 to s is proportional to the den-

sity function at s-1. On the other hand, the outflow because of growth from s to s+1 
and the outflow because of exits are both proportional to the density function at s. 
Hence, the steady state condition prescribes a recurrent relationship between f(s-1) and 

f(s) for all sizes s. This determines the density function completely because density func-
tions are normalised to 1. See appendix 1 for a specific example. 

S imon (1960)  
Simon (1960) introduces another way to make his original model describe a stationary 

industry. Each time a size unit is added to the industry, also a size unit is taken away 
from an incumbent firm. Hence, either an incumbent firm declines with one size unit or 
an incumbent firm exits – if its size was only one size unit. 

This model describes a stationary industry: industry size and the number of firms are 
constant, once the steady state has set in. However, the process that causes the indus-
try to be stationary is fundamentally different than in Simon (1955, alternative) because 

of the introduction of firm decline instead of size-independent exits. As a result, the 
steady-state condition and the resulting steady-state distribution are also different. 
Because the industry is stationary, for any size s the number of firms should be con-

stant. A sufficient condition for this to hold is the following steady-state condition: 
 
“inflow because of growth from s-1 to s” = “outflow because of decline from s to s-1” 

 
Note the difference with respect to the steady-state condition of Simon (1955, alterna-
tive). First, the inflow of firms from s-1 to s is not compensated by the outflow of firms 

of size s due to growth to larger sizes but by the outflow due to the decline of firms of 
size s to smaller sizes. Second, there is no outflow of firms due to direct exits (except for 
firms of size 1). 

As before, the density function can be derived from the steady-state condition. For, by 
assumption, the inflow because of growth from s-1 to s is proportional to the density 
function at s-1, while the outflow because of decline from s to s-1 is proportional to the 

density function at s. Hence, the steady state condition prescribes a recurrent relation-
ship between f(s-1) and f(s) for all sizes s. Normalization of the density function does 
the rest. See appendix 1 for a specific example. 

Ste ind l  (1965)  
Steindl (1965, pp. 45-63) generalizes the Simon (1955) model by introducing the possi-
bility of firm decline and firm exits (equivalent to a firm declining to size 0), while still 

considering an industry with a growing number of firms. As a result, Steindl has to cal-
culate the steady-state distribution in a totally different way as compared to Simon. 
Steindl starts by calculating the distribution of a cohort of firms of the same age. Sub-

sequently, he calculates how firm ages are distributed in the steady state. Finally, he 
mixes these two distributions to arrive at the proper steady-state firm size distribution. 
Just as the distribution functions of Simon it is discrete due to the discrete approach of 

Steindl. 

Levy and So lomon (1996 )  
Levy and Solomon (1996) start with the Gibrat model: a fixed number of firms, each 
facing the same (arbitrary) distribution of growth rates. However, they add to the model 
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a minimum firm size below which firms can’t decline.5 In particular, all firms face the 

same (arbitrary!) distribution of growth rates in this model. At each time interval a firm 

draws a growth rate from this distribution.6 If, however, a firm draws a negative growth 

rate such that it would decline below the minimum firm size, it is assigned the mini-
mum firm size instead. 
Because the model assumes an arbitrary distribution of growth rates of individual firms, 

it is possible that on average individual firms grow. Obviously, in this case the mean of 
the firm size distribution of all firms together will grow forever, so that there is no 
steady state. To get rid of this trivial result and to focus on the shape of the steady-state 

distribution instead, Levy and Solomon shift their attention to normalised firm sizes: 
firm sizes divided by the average firm size of the industry.7 Hence, the search in this 

model is for the steady-state distribution of normalised firm sizes. 

The steady-state distribution is derived along the same lines as in Simon (1955).8 First, 

the above described growth process determines a relationship between the probability 
density before and after the time interval in which firms grow. Second, there is the 

steady-state condition that the probability density should be the same before and after 
a time interval once the steady state has set in. Levy and Solomon (1996) show that 
both relationships together determine the steady-state distribution uniquely. It is con-

tinuous due to the continuous approach taken by Levy and Solomon. 
 

3. Plausibility of assumptions 
 
The models of the next section for which steady-state distribution are derived, start 

from different assumptions. In this section the plausibility and usefulness of these as-
sumptions are discussed in the light of theoretical and empirical considerations. 

Minimum f i rm s i ze  
In most models of the next section a minimum firm size is introduced. This can be justi-

fied by the existence of a minimum efficient size, an idea that is well established in eco-
nomic theory. Moreover, if one measures firm size as the number of persons that work 
in the firm, there is a natural minimum size of one person (see e.g. Axtell, 2001). 

The role that the minimum firm size plays differs between models. First, it may serve as 
the starting size of new firms. Second, it may determine the exit of a firm: if a firm 
would decline below the minimum firm size it exits. Third, it may only serve as a lower 

bound to sizes: firms cannot decline below it but remain in business at the minimum 
size if they hit upon it. 

 

5
 This is (arguably) the simplest and most elegant way to prevent firms from becoming too small and 
hence to guarantee a steady-state solution. However, it is just one of the possibilities. Another pos-
sibility would have been that of Kesten (1973). See also Gabaix (1999, pp. 750-751 and pp. 761-
762) and references therein. 

6
 While in the models of Simon and Steindl growth in a time interval is restricted to one size unit up 
or down, the Levy-Solomon model is more elegant in this respect: an arbitrary size growth up or 
down is permitted in one time interval. 

7
 The original Gibrat model cannot produce a steady-state solution by the same trick. For, in the 
Gibrat model the distribution of normalised sizes has still a variance that increases without limit 
when time goes on. 

8
 Mathematics is totally different though because of the more general continuous approach of Levy 
and Solomon. 
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Assumpt ions concern ing entr ies  and ex i t s  
In many models simplifying assumptions are made such as: no entry of firms, no exit of 
firms or even no entries and exits at all. This seems to diminish the practical relevance of 

these models to almost zero because in reality firms do enter and exit. However, one 
should realize that in this paper model results are only dependent on the net sum of 
entry and exit. This increases the practical relevance of these models a great deal. For 

example, results of a model with no entry and exit at all are also relevant for a situation 
in which entry and exit cancel each other out. Or, to give another example, results of a 
model with no exits and only entry at the minimum size are also relevant for a situation 

in which there are exits at the minimum size that are more than compensated by entries 
at the minimum size. 
In the next section we will review quite a few models starting from the most basic as-

sumption one could think of: a fixed number of firms. Because of its simplicity this as-
sumption is a natural starting point of analysis. Furthermore – as we remarked above - 
models starting from this assumption have also practical relevance for understanding 

industries in which entries and exits cancel each other out approximately.9 

Apart from models with a fixed number of firms, in the next section also models with a 
positive net entry rate of firms are reviewed.10 In most of these models net entry takes 

only place at the minimum firm size. This seems a reasonable approximation of reality 
because in practice most firms start small. There is one model that is more general in 
this respect. In this model firms enter in different sizes that are geometrically distrib-

uted. Hence, also in this model there are more entries of small firms than of large firms. 
In those models that explicitly model the exits of firms, in most cases exit is modelled as 
firms declining below the minimum size. Hence, firms exit only at the minimum size in 

these models. There is one more general model in this respect. In this model firm exits 
are proportional to 1+x/s with x a positive parameter and s denoting firm size. Both 
these ways of modelling do justice to the stylised fact noted by Sutton (1997, p. 46) – 

based on an overview of the empirical literature - that small firms exit more often than 
large firms. 

Assumpt ions concern ing growth  and decl ine o f  incumbent  f i rms 
Various models of the next section adopt the Gibrat assumption: each firm faces the 

same distribution of growth rates, independent of its size. The theoretic argument in 
favour of this assumption is that - from a certain size onwards - firms exhibit constant 
returns to scale and thus have the same growth chance (see, e.g., Ijiri and Simon, 1977, 

pp. 3-11, 140-142). Besides, there is a large empirical literature about the validity of 
this assumption. See e.g. the overview of Sutton (1997, pp. 43-47) and references 
therein. On the basis of this empirical literature it seems fair to conclude that – in 

 

9
 This is also the reason why the model of Levy and Solomon – a fixed number of firms with a mini-
mum firm size below which firms cannot decline – has more practical importance than one maybe 
would think at first sight. For, the model can reinterpreted in the sense that firms exit when they 
decline below the minimum size but are replaced by new firms at the same time so that the number 
of firms remains the same. 

10
 Obviously, no models with a negative net entry rate are reviewed. Such models have no steady 
state because in the end there will be no firms left in such models. 



10  

agreement with the theoretic argument - especially for larger firms the Gibrat assump-
tion may be not a bad first approximation.11 

However, especially if smaller firms are taken into account, it is an empirical fact that, 
on average, growth rates are decreasing in size (Sutton, 1997, p. 46). To do justice to 
this stylised fact there are models in the next section in which a firm’s average growth 

rate is proportional to 1+g/s where g is a positive parameter and s denotes firm size.12 

This way of modelling simulates exactly the features we find in practice for firms in 
most cases: 
- The average growth rate of a firm is gradually decreasing in firm size. 

- Smaller firms have, on average, a significantly larger growth rate than larger 
firms. 

- Large firms share a similar average growth rate because the term g/s becomes 

negligible for large firms. Hence, for larger firms the Gibrat assumption approxi-
mately holds. 

There are also models in the next section in which growth rates are proportional to s-g 

(g a positive parameter, s denoting size). In these models growth rates decrease in size, 
just as in the previous models. However, contrary to the previous models, the speed at 
which growth rates decrease remains the same with climbing size so that the Gibrat as-

sumption does not hold approximately between large firms either. Hence, this is the 
case of impeded growth. It is relevant for describing plants instead of firms because for 
plants there are natural limits to growth (see, e.g., Steindl, 1965, p. 32). 

The case in which growth rates are inversely proportional to size is a special case of im-
peded growth. According to Sutton (1997, pp. 48-52) this special case if of relevance 
for firms as well. He claims (based on empirical evidence) that the steady-state distribu-

tion that follows from this growth assumption provides a good description of the least 
unequal distribution that we are likely to find in practice at the 4/5-digit SIC level or 
higher. 

Some models of the next section adopt the Gibrat assumption, modified with the condi-
tion that there is a minimum size below which firms can’t decline.13 Although some-

times it may be indeed the case in practice that firms hitting upon the minimum size 

may linger there instead of exiting, on the whole this does not seem a very realistic as-
sumption. Hence, we prefer the reinterpretation of this model already noted above: 
firms that decline below the minimum size actually exit and are replaced by new firms 

of the minimum size. 

 

11
 Sutton (1997) summarizes the empirical literature till 1980 by quoting Scherer (1980): “at least for 
the United States, empirical studies suggest that assuming growth rates uncorrelated with size is not 
a bad first approximation”. Sutton goes on by reviewing the empirical literature from the eighties, 
notably the studies of Hall (1987), Evans (1987a, 1987b), and Dunne et al. (1988, 1989). Sutton 
notes that all these studies suggest that growth rates decrease with size. However, Sutton fails to 
note that Evans (1987a) remarks that for larger firms the deviation from the Gibrat assumption is 
moderate. Furthermore, the results of Dunne et al. are derived only for plants, not for firms. Hence, 
we conclude that for larger firms the Gibrat assumption tends to hold approximately. See for col-
laborate evidence Simon and Bonini (1958) and references therein. 

12
 In some of these models growth and decline are modelled separately: growth is proportional to 
1+g/s and decline is proportional to 1+d/s. 

13
 Hence, especially for smaller firms (which have a higher chance of hitting upon the minimum size) 
the Gibrat assumption is violated in this model. Average growth will be higher and the variance in 
growth will be smaller for them. 
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Finally, there are models in the next section in which – for simplicity - only growth and 
no decline of firms is modelled. Obviously, these models are only relevant for describing 

growing industries.14  

Eva luat ion 
Although across the various models there is a large variety in assumptions, of which 
most can be justified by theoretic or empirical arguments, it cannot be denied that most 

assumptions are rather basic and elementary. Of course, this is necessary in order to 
preserve analytic tractability. In the light of this, three remarks are in order. 
First, we cannot expect the results of these models necessarily relevant for small and 

very specific industries, such as narrowly defined product markets. In such industries 
very specific mechanisms may be prevalent that cannot be captured by quite general 
regularities. See Sutton (1997, p. 47) and references therein. However, it is to be ex-

pected that if we consider broader industries, e.g. 4/5-digit SIC level or higher, very 
specific mechanisms cancel each other out so that the models become more relevant. 
Second, the models in this paper focus on the steady state. No attention is paid to the 

transitional state before the steady state sets in nor to the time that it costs before the 
steady state is expected to set in. Hence, these models are not fit to explain the firm 
size distributions for specific young industries with phenomena such as shake-outs. See 

Sutton (1997, p. 47-48) and references therein. 
Third, one should bear in mind that a model starting from some stylised assumptions 
can produce valuable results, although these stylised assumptions are never met in prac-

tice precisely. For example, in physics the gas laws for ideal gases produce useful re-
sults, while in practice gases never are ideal.15 In the same manner, the Gibrat assump-

tion may produce useful results for a sample of large firms, while it is not satisfied fully 

in the sample. Hence, the question is not whether a stylised assumption is precisely met 
in practice but whether or not it can serve as a (first) good approximation. 
 

4. Steady-state distributions 
 

In this section we describe which steady-state firm size distributions result from differ-
ent assumptions regarding the underlying firm dynamics. Table 2a gives results for a 
fixed number of firms. Table 2b gives also results for a fixed number of firms but now 

also offsetting entries and exits at the minimum firm size are modelled explicitly. Table 
2c gives results for a growing number of firms. Main characteristics of the steady-state 
distributions that are found are presented in table 3. For ease of reference, appendix 2 

catalogues the symbols used. We will discuss tables 2a-c successively. 

 F i xed number  of  f i rms 
Consider the Levy-Solomon model already described in section 2:  a fixed number of 
firms growing according to the Gibrat assumption, modified with the condition that 

there is a minimum size below which firms can’t decline. Malcai et al. (1999, pp. 1300-
1301) show that this model leads in the steady state to a continuous Pareto distribu-
tion, of which the parameter is dependent on the number of firms N and the minimum-

 

14
 Obviously, in practice some firms also decline in growing industries. Nevertheless, models with only 
growing firms have practical relevance if we assume that underneath there is a (not modelled) proc-
ess of firm growth and decline that cancel each other out. Hence, we interpret these models as 
models in which only the net growth is modelled. 

15
 We have borrowed this example from Ijiri and Simon (1977, pp. 4-5, 109-116) who elaborate on 
the argument much more. 



12  

size parameter c, defined as the fraction of minimum and average firm size.16 See table 

2a, 1st row. 

The model contains two interesting special cases that deserve attention. 
If we remove the condition that firms do not decline below a minimum size (that is, if 
we set c=0) the Gibrat assumption holds perfectly and we arrive at the model of Gibrat 

(1931). As already shown in section 2 in this case the firm size distribution approaches a 
lognormal distribution with parameters ς, σ2 going to infinity. See table 2a, 2nd row. For 
large values of σ2 the lognormal distribution (with a parabolic density function on a log-

log scale) resembles quite well the Pareto distribution with a parameter equal to 0 
(straight line on a log-log scale) for firm sizes that are not too small or large (Montroll 
and Shlesinger, 1982, or Sornette and Cont, 1997, p. 432). In fact, in the limit when σ2 

= ∝ the two distributions coincide. This explains why we find a Pareto distribution with 
a parameter equal to 0 when setting c=0 in the Levy-Solomon model (see Malcai et al. 
(1999, p. 1301).17 

We get another special case of the model if we take the minimum firm size relatively 

small (but not too small) as compared to average firm size. In this case we get in the 
steady state a Pareto distribution with a parameter approximately equal to 1. See table 
2a, 3rd row. 

Gabaix (1999, pp. 756-757) introduces deviations from the Gibrat assumption in the 
model. He finds that the parameter of the Pareto distributions will become smaller than 
1 in some size domain, if in that domain average growth and/or the variance in growth 

is larger. See table 2a, 4th row. 
Finally, Kalecki (1945) also analyses a model with a fixed number of firms. Instead of 
introducing a minimum firm size, he introduces a negative correlation between growth 

and firm size. He shows that this leads in the steady state to a lognormal distribution.18 

See table 2a, 5th row. 

F ixed number  of  f i rms;  entr ies  and ex i t s  at  min imum s ize  
Consider a continuous stream of new firms entering at the minimum size, which is pre-

cisely offset by a continuous stream of exiting firms at the minimum size so that the 
number of firms is constant. The fraction of industry growth due to new firms is con-
stant and labelled p. Moreover, the average growth rate of incumbents is proportional 

to 1+g/s (g>=0), while the average decline rate is proportional to 1+d/s (d>=0). This is 
the model of Simon (1960), for which he derives the steady-state distribution. Since 
1975 this distribution is called the extended Katz distribution.19 See table 2b, 1st row. 

Note that its parameters depend on the entry parameter p, and the growth and decline 
parameters g and d. 

 

16
 Gabaix (1999) also analyses the model. When deriving the expression for the parameter ρ of the 
Pareto distribution from the normalization condition (p. 750), he overlooks the fact that the normal-
ized distribution function is bounded from above. As a result, he gets ρ = 1/(1-c), which in fact is 
only valid if the number of firms would be infinite (see Malcai et al, 1999, p. 1301). The same flaw 
is present in the heuristic proof of Gabaix (1999, p. 744). 

17
 When setting c=0 Gabaix (1999) finds ρ=1because he starts from ρ = 1/(1-c). Because this expres-
sion is only valid for an infinite number of firms (see the previous note on the subject), Gabaix’s re-
sult is false for any finite number of firms. His conclusion that Gibrat’s law in itself is a sufficient 
condition to get a Pareto distribution with ρ=1 is therefore false. Also an extra condition with re-
spect to the minimum firm size (to be discussed next in the main text) is needed. 

18
 See also the discussion of the model in Steindl (1965, pp. 32-33). 

19
 Proof and results are somewhat sketchy in Simon (1960). Hence, we provide more details in appen-
dix 1 of this paper. These are necessary to derive some of the results for the special and limiting 
cases to be discussed next in the main text. 
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The model contains a number of interesting special or limiting cases (see also figure 1). 
If decline is independent of size (that is: d=0), we find in the steady state the negative 
binomial distribution. See table 2b, 2nd row. If also the average growth rate is propor-
tional to 1+1/s (that is: g=1) the distribution becomes geometric. See table 2b, 3rd row. 
Both these results are derived easily by substituting the parameter values into the ex-

tended Katz distribution. 
Ijiri and Simon (1977, p. 54 and p. 61) mention also three special/limiting cases. They 
derive that for d=g (that is: both the growth and decline rate are on average propor-

tional to 1+g/s), for d=g=0 (the Gibrat assumption), and for d=0/g→∞ (decline inde-
pendent of size while the average growth rate is proportional to 1/s) the steady state is 
characterized by a generalization of the logarithmic distribution, the logarithmic distri-

bution, and the Poisson distribution, respectively. See table 2b, rows 4-6. This can be 
verified by substituting the parameter values in the extended Katz distribution.20 

If the entry parameter p approaches zero, the model approaches the situation of a fixed 

number of firms. In the model with the Gibrat assumption (d=g=0) the logarithmic dis-
tribution approaches then the Pareto distribution with parameter 0.21 This is as ex-

pected: see table 2a, 2nd row. 
If, on average, the decline rate of incumbents decreases substantially faster with size 

than the growth rate (that is: if d >> g), the model has no steady state. The highest 
value of d for which there exists a steady state, is reached for d = (1+g)/(1-p). We can 
prove that in this case the steady-state distribution boils down to the Waring distribu-

tion.22 See table 2b, 7th row. If we set g=0 in this latter model, we get the case for 

which the average growth rate is independent of size, while the average decline rate 
decreases – mainly for smaller values of firm size – according to 1+ [1/(1-p)]/s. It follows 

(by substituting g=0 in the above derived Waring distribution) that in this case the 
steady state is characterized by the Yule distribution. See table 2b, 8th row. 

Growing number  of  f i rms  
Consider a constant stream of new firms entering at the minimum size smin. The fraction 

of industry growth due to these new firms is constant and labelled p. Entries may be 
(partly) offset by exits as long as the exit chance is independent of firm size. Further-
more, growth rates of incumbent firms deviate in an unspecified way from the Gibrat 

assumption: average growth rates are proportional to g(s) where g(s) is an unspecified 
function and s denotes firm size. Finally, firms do not decline. It is noted that these as-
sumptions imply that (i) average firm size is equal to smin/p and that (ii) the net entry rate 

of new firms is larger than the average growth rate of the incumbent firms.23 In appen-

dix 1 we show that this model leads in the steady state to the generalization of the 
Waring distribution presented in table 2c, cell (1,1). 

 

20
 Only the Poisson distribution does not follow straightforwardly. To get it from d=0/g→∞, first sub-
stitute d=0 to arrive at the negative binomial distribution (see above in the main text). Second, sub-
stitute: λnb = 1- exp(-λp/g). Third, use pnbg

g λλ =
∞→

lim to find the Poisson distribution. 

21
 Proof. If p approaches 0, the parameter λ of the logarithmic distribution approaches 1. See table 
2b, 5th row. Hence, the logarithmic distribution approaches 1/s (see table 3). 

22
 From the expression of the extended Katz distribution (see table 3) it is clear that for λ=1 the distri-
bution boils down to the Waring distribution (take δ=γ+ρ). Hence, we know the mean of the distri-
bution: Es=d/(d-g-1) (from table 3 on the Waring distribution). Then, from the expression λ=(1-
p)(Es+d)/(Es+g) (see appendix 1 on the extended Katz distribution) it follows that d=(1+g)/(1-p). 

23
 Proof. Let N denote the number of firms, S the size of the industry, Sinc the size of the incumbent 
firms together. By definition we have: smin dN = p dS at all times. Then, we must have in the steady 
state: smin N = p S. Hence, average firm size S/N is equal to smin/p. Furthermore, we have by defini-
tion: dSinc = (1-p) dS. It follows that (1/N) dN/dt  = 1/(1-p) (1/S) dSinc/dt > (1/S) dSinc/dt. 
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The model contains a number of interesting special or limiting cases, which deserve at-
tention.24 See also figure 1. 

By setting g(s) = 1+g/s with g a positive parameter we get in the steady state the War-
ing distribution. See table 2c, cell (2,1). This model was briefly analysed by Ijiri and 
Simon (1977, p. 38) as a sensitivity check. However, they do not interpret assumptions, 

do not derive the probability density fully, and are not aware that the Waring distribu-
tion that they derive is called that way. 
If the average growth rate of incumbents is inversely proportional to firm size we arrive 

at the “boundary” model of Sutton (1997). He derives that the steady state is charac-
terized by the geometric distribution. See table 2c, cell (3,1). This is easily verified by 
setting g(s)=1/s in the generalization of the Waring distribution derived above. 

If the average growth rate of incumbents is set independent of firm size – that is, if the 
Gibrat assumption holds - we arrive at the model of Simon (1955). He shows that it 
leads in the steady state to the Yule distribution. See table 2c, cell (4,1). This result is 

easily verified by setting g(s)=1. 
If in the latter model the entry parameter p approaches zero, the model seems to ap-
proach the model of Gibrat: a fixed number of firms growing according to the Gibrat 

assumption. At the same time the steady state distribution approaches the Pareto dis-
tribution with parameter 1.25  This is unexpected, because characteristic for the Gibrat 

model is a Pareto distribution with parameter 0 instead of 1 (cf. table 2a, 2nd row). The 
result can be understood if one realizes that – however small parameter p gets – the 

entry rate of new firms remains larger than the average growth rate of incumbent firms 
(we showed this in a previous note). Hence, the Gibrat model cannot really be reached 
by taking the limit of p to zero. Note also that when approaching the limit situation p=0 

convergence of the model to the steady state distribution becomes increasingly trouble-
some (see Krugman, 1996, pp. 96-97). 

Three genera l i zat ions  of  spec ia l  cases 
There are three generalizations of special cases of the above model (that are not in-
cluded in the original model) worth discussing. See also figure 1. 
First, in the model in which small firms grow faster than large firms (g(s)=1+g/s) we in-

troduce size-dependent exits. More specific, the chance of exiting is taken proportional 
to 1+x/s with x a positive parameter. (We get back to size-independent exits or no exits 
by setting x=0.). In appendix 1 we show that the model leads in the steady state to the 

particular generalized hypergeometric distribution that is shown in table 2c, cell (2,3). 
Its parameters are dependent on the entry parameter p, the growth parameter g, and 
the exit parameter x. 

Second, in the Simon model in which average growth rates are independent of size 
(g(s)=1) we introduce size-dependent entries. More specific, sizes of entering firms are 
geometrically distributed with parameter n. (We get back to entries solely at the mini-

mum size by setting n=0.). The resulting model is that of Ijiri and Simon (1977, pp. 78-
81) although they have a different interpretation of the model. They show that in the 
steady state the model leads to the Waring distribution (although they are unaware of 

 

24
 Ijiri and Simon (1977, pp. 76-78) discuss a special case of this model in which the growth rate 
between incumbent firms is distributed according to a negative binomial distribution. They show 
that it leads to a Yule distribution with an incomplete beta function in the steady state. 

25
 Proof. If p approaches 0 the parameter of the Yule distribution approaches 1. See table 2c, cell  
(4,1). The Yule distribution with parameter 1 is equivalent to the discrete Pareto distribution with 
parameter 1 as one can verify easily from table 3. 
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its name), where the parameters are dependent on the entry parameters p and n. See 
table 2c, cell (4,4). 26 

Third, in the Simon model in which average growth rates are independent of size 
(g(s)=1) we introduce the possibility of size-independent decline together with exits 
when firms decline below the minimum size. The resulting model is that of Steindl 

(1965, pp. 45-73). He shows that the tail of the resulting steady-state distribution fol-
lows a Pareto distribution of which the parameter is dependent on the net entry rate of 
new firms e and the average growth rate of incumbent firms f. See table 2c, cell (4,2).27 

In the Steindl model the parameter of the Pareto distribution is above 1 as long as e>f. 
This is consistent with the findings in the Simon model. For, as we have shown, in the 
Simon model e>f holds by implication, while we find in the steady state a Yule distribu-
tion (that has the same tail behaviour as the Pareto distribution) with a parameter above 

1. 
Because of the more general set-up of the Steindl model as compared to the Simon 
model, it is possible to let the model approach the Gibrat model by letting the net entry 

parameter e approach zero. The steady state distribution approaches the Pareto distri-
bution with parameter 0 in this case (see table 2c, cell (4,2)), as we would expect (cf. 
table 2a, 2nd row). 

Gabaix (1999, pp. 751-752) introduces the entry of new firms into the model of Levy-
Solomon (with a fixed number of firms) that we discussed earlier. In this way he arrives 
at a model of which the main characteristics are the same as those of the Steindl 

model. Not surprisingly therefore he finds that the tail of the steady-state distribution is 
Pareto with a parameter larger than 1 as long as the entry rate of new firms is larger 
than the average growth rate of incumbent firms.28 

 

5. Discussion and evaluation 
 
The overview given in the previous section is necessarily rather technical because of the 
complicated mathematics involved. Hence, we begin the section by summarizing in a 

non-technical way the general tendencies that emerge from the overview. Second, we 
evaluate how well the steady-state approach is able to explain the shape of firm size 
distributions that we encounter in practice. Third, this paper reviews quite a few func-

tional forms that can be used to describe and/or fit empirical firm size distributions. We 
conclude by reviewing other functional forms that are sometimes used for this purpose. 

Genera l  tendencie s  
Point of departure is the well-known model of Gibrat (1931): a sample of a fixed num-
ber of firms growing according to the so-called Gibrat assumption, that is: they each 

 

26
 Steindl (1965, pp 58-61) also introduces size-dependent entries in his model (which is to be dis-
cussed next in the main text). In accordance with the findings of Ijiri and Simon he finds that the tail 
behaviour of the steady-state distribution is not changed by the introduction of size-dependent en-
tries. 

27
 Blank and Solomon (2000) – clearly unaware of the model of Steindl – analyse a model that is very 
similar to that of Steindl. Indeed, they find (not analytically but only by simulation) in the steady 
state a Pareto distribution. 

28
 For the case that the entry rate of new firms is smaller than the growth rate of incumbent firms 
Gabaix (1999, pp. 751-752, 762-763) finds that the tail of the distribution is Pareto distributed with 
parameter 1. This is surprising because the Steindl model predicts a Pareto distribution with a pa-
rameter between 0 and 1. Noting this discrepancy we have studied the Gabaix proof in detail and 
indeed discovered a flaw. In particular, Gabaix overlooks in his proof the fact that for each age co-
hort of new firms minimum firm size (that is strictly related to the average firm size of the age co-
hort) increases beyond all bounds for very large values of time t. 
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face the same growth distribution independent of their size. In this model, after some 
time a lognormal firm size distribution29 emerges. However, this distribution is only tran-

sitional. In the end it will break down and firm size becomes undetermined. 
Shifting our attention temporarily to plants instead of firms, we introduce the case of 
impeded growth, that is: the Gibrat assumption is abandoned and replaced by average 

growth rates negatively correlated with plant size. Kalecki (1945) shows that under 
these circumstances the lognormal is not only transitional but remains permanent in the 
steady state. 

Shifting our attention back to firms, we introduce a minimum firm size below which 
firms can’t operate: if firms happen to decline below it they exit and are replaced by 
new firms. Then a Pareto distribution30 emerges (Levy and Solomon, 1996). The larger 

the minimum firm size is with respect to average firm size, the thinner the tail of the 

distribution will be. Its parameter is near 1 as long as the minimum firm size is small 
(but not too small) with respect to average firm size.  
When on top of the minimum firm size a constant stream of small new firms is intro-

duced, the picture remains more or less the same. Dependent on the precise specifica-
tions a Yule distribution31 (Simon, 1955, 1960) or a Pareto distribution (Steindl, 1965, 

Gabaix, 1999) emerges. The more small firms enter, the thinner the tail of the distribu-

tion. Its parameter is near 1 as long as the growth due to new firms is small compared 
to aggregate industry growth. 
It is a stylised empirical fact that for a sample of firms that include small firms the aver-

age growth rate is decreasing with size, although this effect will be moderate for larger 
sizes. If we introduce this feature, the steady-state distribution changes to a Waring dis-
tribution (this paper based on Simon, 1955). It is more concave for smaller firm sizes 

but still has for larger sizes the same tail behaviour as the Pareto distribution. 
In the limit, if we reject the Gibrat assumption altogether by taking the average growth 
rates of firms inversely proportional to firm size, we get the boundary model of Sutton 

(1997). He claims that the resulting geometric distribution32 provides a good description 

of the least unequal firm size distribution that we are likely to find in practice at the 
4/5-digit SIC level or higher. 

Most models exhibit new entries only at the minimum size. Starting from a model ex-
hibiting the Yule distribution in the steady state, the introduction of size-dependent en-
tries changes it into a Waring distribution (this paper, based on Ijiri and Simon, 1977). 

Hence, size-dependent entries make the steady-state distribution more concave for 
smaller sizes, while the tail behaviour of the distribution is not altered. This is in accor-
dance with the findings of Steindl (1965). 

Finally, Gabaix (1999) shows that if the average growth and/or the variance in growth is 
larger in some size domain, in that domain the distribution will be relatively less steep 
downwards. 

 

29
 The density function of the lognormal is concave parabolic on a log-log scale. See table 3. 

30
 The density function of the Pareto distribution is a straight downwardly sloped line on a log-log 
scale. See table 3. 

31
 The Yule distribution exhibits the same tail behaviour as the Pareto distribution. See table 3.  

32
 The density function of the geometric distribution is exponentially decreasing on a log-log scale. 
See table 3. 
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Exp la in ing the shape of  f i rm s ize  d i st r ibut ions in  p ract i ce  
In order to evaluate how well the steady-state approach is able to explain the shape of 
the firm size distributions that we encounter in practice, we give a – very brief – over-

view of the empirical literature. In particular, we describe how the probability density 
looks like on a log-log scale. 
1 Especially for large number of firms, the density is - for a very long size range – well 

described by a straight line with a downward slope of approximately -2. That is: a 
Pareto distribution with a parameter near 1 is found. Only for very small and very 
large sizes there is a noteworthy deviation from this line. See e.g. Axtell (2001) and 

references therein. 
2 Often - on closer inspection - the above-mentioned straight line is in fact some-

what concave. See e.g. Ijiri and Simon (1977). 

3 It is also reported (see e.g., Gibrat (1931), Hart and Prais (1956), Hall (1987, p. 584) 
and Stanley et al. (1995)) that the empirical density can be described quite well by a 
lognormal density function.33 That is: a (concave) parabolic density function is 

found. Note that this is in line with the previous remark. 
4 For smaller industries it can appear that a Pareto distribution is found with a pa-

rameter substantially different from 1, or even that neither the Pareto nor the log-

normal describes the empirical density function satisfactorily. See, e.g., Quandt 
(1966) and Silberman (1967). Hence, Sutton (1997, p. 52) concludes that probably 
there is no general density function that describes all empirical densities well. 

 
From the general tendencies summarized at the beginning of this section it follows that 
these empirical regularities might be explained as follows. 

First, the basic shape of firm size distributions in practice – the Pareto distribution with 
a parameter near 1 – can be explained by adopting the Gibrat assumption together 
with the introduction of a minimum firm size below which firms can’t operate. This re-

sult is valid whether or not a stream of small new firms is present. 
Second, various alternative explanations are offered to explain the often observed con-
cavity of firm size distributions in practice. For example, this might be due to (i) small 

firms growing faster than large firms on average, (ii) small firms having a higher vari-
ance of growth rates, or (iii) firms entering with different sizes instead of only at the 
minimum size. 

Third, the appearance of a lognormal firm size distribution can be due to impeded 
growth (average growth rate negatively correlated with firm size). Alternatively, it may 
be just the transitional state of the Gibrat model: a sample of firms all facing the same 

growth distribution independent of their size. 
Fourth, the appearance of firm size distributions with a downward slope substantially 
steeper than a Pareto distribution with a parameter near 1 might be due to (i)  a sub-

stantial entry rate of small new firms, and/or (ii) a relatively high minimum firm size. 
Alternatively, the appearance of firm size distributions with a downward slope less 
steep than a Pareto distribution with a parameter near 1 might be due to (i) small firms 

having on average a higher growth rate or a higher variance in their growth, and/or (ii) 
a particular small minimum firm size with respect to average firm size. 

 

33
 Sornette and Cont (1997, p. 432) note that the lognormal distribution can be mistaken for an 
apparent Pareto distribution with a parameter that is slowly varying with the range on which firm 
sizes are measured. This can be understood quite easily by realizing that if the parabolic shape of 
the lognormal is stretched it can be approximated by successive straight lines. This may complicate 
matters when trying to decide empirically whether the Pareto or the lognormal distribution describes 
the empirical density function best. 
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From the above  we conclude that the steady-state approach offers many plausible 
(sometimes alternative) explanations of the various shapes of firm size distributions that 

we encounter in practice. However, the following caveats are in order. First, the steady-
state approach cannot give all answers with respect to explaining the shape of firm size 
distributions encountered in practice, because of the obvious fact that not all industries 

are in a steady state. Second, as we suggested at the end of section 3, due to the rather 
basic and elementary assumptions adopted, the approach is more appropriate for 
broader industries, e.g. 4/5-digit SIC level or higher. For smaller industries other ap-

proaches seem more appropriate to explain the shape of the firm size distribution. 

F i rm s i ze  d i st r ibu t ions wi thout  f i rm dynamica l  bas i s  
This paper reviews quite a few functional forms that can be used to describe and/or fit 
empirical firm size distributions. In practice, still other functional forms are sometimes 

used. Noteworthy are the generalized beta distributions of the first and second kind 
and the many special and limiting cases of these distributions, for example: the beta 
distributions of the first/second kind, the (generalized) gamma distribution, the Singh-

Maddala distribution, the lognormal distribution, the Weibull distribution, the Fisk dis-
tribution, and the exponential distribution. See McDonald (1984). 
However - as far as we know - no firm dynamics models have been developed yet that 

lead to these distributions – with the exception of course of the lognormal distribution. 
Hence, at present, the parameters of these distributions cannot be related explicitly to 
underlying firm dynamics. This is in contrast with the parameters of the firm size distri-

butions reviewed in this paper, which can be directly related to underlying firm dynam-
ics: see section 4.34 

 

6. Conclusion 
 
This paper provides an up-to-date overview of analytic steady-state firm size distribu-
tions that can be derived from assumptions concerning underlying firm dynamics. By 

bringing together results from many different sources we were able to sort out com-
mon results and explain seemingly contradictory results. Furthermore, we gave an im-
pression of how well at present the steady-state approach is able to explain the shape 

of the firm size distribution that we encounter in practice. 
The overview can be used in many different ways. To name a few, it could facilitate re-
searchers in deciding which steady-state distribution to use dependent on the situation 

with respect to entry, exit, growth, and decline of firms in an industry. Second, it could 
provide information about what changes in the firm size distribution one might expect 
when there are changes in the underlying firm dynamics. Third, it gives insight into 

what kind of firm dynamics may be underlying specific firm size distributions. Hence, it 
provides possible interpretations of the parameters of the size distribution in terms of 
firm dynamics. 

 

Appendix 1. Derivations 
 
Derivation of generalization of Waring distribution 
Assume (i) a constant stream of new firms of size 1 (the fraction of growth due to new 

firms is labelled p), (ii) exits independent of firm size, (iii) the average growth rate of in-

 

34
 Because the same steady-state firm size distribution can be derived from different model assump-
tions, there are alternative firm dynamical interpretations of the same distribution parameter, 
though. See section 4. 
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cumbent firms of size s proportional to an unspecified function g(s), and (iv) no decline 
of firms. Assume also - without loss of generality - a stationary industry. Hence, the 

steady-state condition of Simon (1955, alternative), see section 2 on theory, is applica-
ble: 
 

“inflow because of growth from s-1 to s” = “outflow because of growth from s to s+1” 
 
     + “outflow because of exits of size s” 

 
This condition can be written as: 
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where: f(s) denotes the density function of firm sizes and  E() the expectation. The rea-
soning behind this is as follows. 

− The inflow term on the left should be proportional to (s-1) g(s-1) by assumption 
and to the number of firms of size (s-1) and hence to f(s-1). The factor (1-p) follows 
from the fact that the growth from all incumbent firms together should add up to 

1-p. 
− The expression for first term on the right is explained in the same way. 
− The exit term on the right should be proportional to the number of firms of size s 

and hence to f(s). The factor p follows from the fact that the exits of all incumbent 
firms together should add up to the fraction of growth due to new firms, p. 

Rearranging the steady state condition gives the following relationship between f(s) and 

f(s-1): 
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where the auxiliary parameter ρ is defined as:  
 

  )(
1

sEsg
p
p
−

≡ρ  

 
It follows that the steady state density can be expressed as: 
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where A is a normalizing constant. It is calculated most easily by using the steady-state 
condition for firms of size 1: 
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where we have used that the term on the left “inflow because of growth from size 0 to 
size 1” should be equal to the fraction of growth due to new firms: p. Substituting f(1) 

and using the definition of ρ gives: A=ρ. 
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Derivation of particular hypergeometric distribution 
With respect to the previous model two assumptions are changed: (i) exits are propor-

tional to 1+x/s and (ii) the average growth rate of firms of size s is proportional to 1+g/s 
with g a nonnegative parameter. Then the steady state condition changes into: 
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Note that the last term on the right has now an extra factor because exits are assumed 
to be proportional to 1+x/s. Rearranging the steady state condition gives the following 

relationship between f(s) and f(s-1): 
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where the auxiliary parameter ρ is defined as:  
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It follows that the steady state density can be expressed as: 
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where A is a normalizing constant of which the value can be found as a function of the 

parameters ρ, g, and x by normalizing the density function to unity. 
 
Derivation of extended Katz distribution 
With respect to the previous model two assumptions are changed: (i) the average de-
cline rate of firms of size s is proportional to 1+d/s (with d a nonnegative parameter) 
and (ii) exits are equivalent to declining firms of the minimum size 1. Because in this 

model decline is included, while exits occur only at the minimum size the steady state 
condition changes into (see section 2 on theory, Simon (1960)): 
 

“inflow because of growth from s-1 to s” = “outflow because of decline from s to s-1” 
 
This condition boils down to: 

 

)()1(1)1( sf
dEs
dssf

gEs
gsp

+
+=−

+
+−−  

The term on the left is already familiar from the previous model. The reasoning behind 
the term on the right is as follows. It should be proportional to s+d by assumption and 
to the number of firms of size s and hence to f(s). The term on the right is normalized in 

such a way that the decline of all incumbent firms together is equivalent to the growth 
of all incumbent firms plus the growth due to new firms. 
Rearranging the steady state condition gives the following relationship between f(s) and 

f(s-1): 
 

ds
gssfsf

+
+−=− 1)1(/)( λ  
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where the auxiliary parameter λ is defined as:  
 

gEs
dEsp

+
+−≡ )1(λ  

 
It follows that the steady state density can be expressed as: 
 

s

s

s
d
gAsf λδγλ

)1(
)1(

),,()( 1
+

+
= −  

 
where A is a normalizing constant, of which the value can be found as a function of the 
parameters λ, g, and d by normalizing the density function to unity. 

The steady-state condition for firms of size 1 boils down to: 
 

)1(1 f
dEs
dp

+
+=  

 
where we have used that the term on the left “inflow because of growth from size 0 to 

size 1” should be equal to the fraction of growth due to new firms: p. We can use this 
expression to get an expression for the auxiliary parameter λ in terms of the original pa-
rameters p, d, and g, and the normalization constant A: 

 








 −+−=
A
dgp 11λ  

 

Appendix 2. Explanation of symbols 
 
Symbols denoting parameters of firm dynamics models (Roman characters): 
c ratio between minimum and average firm size 

d decline parameter 
e entry rate of new firms 
f growth rate of incumbent firms 

g growth parameter 
g(s) growth function, also function in generalization of Waring distribution 
n distribution parameter of new firms 

N number of firms 
p fraction of growth due to new firms 
x exit parameter 

 
Symbols denoting parameters of derived distributions (Greek characters): 
γ parameter of (generalization of) Waring, particular generalized hyper-

geometric, generalization of logarithmic, negative binomial, extended 
Katz 

δ parameter of extended Katz 

ζ parameter of lognormal 
λ parameter of geometric, Poisson, (generalization of) logarithmic, negative 

binomial, extended Katz 

ρ parameter of Pareto, Yule, (generalization of) Waring, particular general-
ized hypergeometric 

σ parameter of lognormal 

χ parameter of particular generalized hypergeometric 
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Table 1. Characteristics of typical models 

paper stability device steady-state concept approach 

Gibrat (1931) no no steady state continuous 

Kalecki (1945) impeded growth 
only shape of distribution is stable in steady 

state (mean of distribution may change) 
continuous 

Simon (1955) small new firms 
distribution is stable in steady state; 

number of firms grows 
discrete 

Simon (1955, alternative) small new firms 
distribution is stable in steady state; 
fixed number of firms 

discrete 

Simon (1960) small new firms 
distribution is stable in steady state; 
fixed number of firms 

discrete 

Steindl (1965) small new firms 
distribution is stable in steady state; 
number of firms grows 

discrete 

Levy and Solomon (1996) minimum firm size 
only shape of distribution is stable in steady 
state (mean of distribution may change) 

continuous 
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Table 2a. Steady-state distributions for a fixed number of firms. 

Growth type Distribution 

c ∈ (0,1) continuous Paretob (ρ);  ρ >0 

c = 0 (the Gibrat assumption) 

no real steady state: 

lognormal (ζ, σ);  ζ, σ → ∞ 

= continuous Pareto (ρ);  ρ → 0 

c smallc continuous Pareto (ρ); ρ≈1 

distribution of 

growth rate inde-

pendent of size; 

however, firms do 

not decline below 

some minimum firm 

sizea: smin = c sav 

c smallc; 

average growth and/or variance in 

growth is larger in some size domain 

in size domain: 

continuous Pareto (ρ);  ρ<1 

average growth rate ~ s−g lognormal (ζ, σ) 

a. sav denotes average firm size. 

b. Parameter ρ implicitly defined by: 












−
−−=

)/()/(
1)/(1
NcNc

NcN ρ

ρ

ρ
ρ

, where N denotes the number of firms. 

c. From the expression in note b it follows that in order to get ρ approximately equal to 1 – say in the 

interval  (0.8, 1.2) - parameter c should be in the interval (0.04, 0.20) for N=1000 or c ∈ (0.01, 0.18) for 

N=100.000. Hence, c should be small but not too small (especially for smaller values of N). 
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Table 2b. Steady-state distributions for a fixed number of firms; entries/exits at minimum size.a 

Growth type Distribution 

decline rate ~ 1+d/s 

with )
1
1,0(
p
gd

−
+∈  growth rate ~ 1+g/s with g>0 

extended Katzb (λ, γ, δ) 








 −+−=
A
dgp 11λ ∈(0,1) 

γ = g >0 

)
1
1,0(
p
gd

−
+∈=δ  

growth rate ~ 1+g/s with g>0 

negative binomial (λ, γ) 

)1,0(1 1
1

∈−= +gpλ  

γ = g >0 

growth rate ~ 1+1/s 
geometric (λ) 

λ = 1−√p ∈(0,1) 

growth rate ~ 1/s 
Poisson (λ) 

λ = − ln(p) >0 

decline rate 

independent of size 

growth rate independent of size 

(the Gibrat assumption) 

logarithmic (λ) 

λ = 1−p ∈(0,1) 

decline rate ~ 1+g/s 

with g>0 
growth rate ~ 1+g/s with g>0 

generalization of logarithmic (λ, γ) 

λ = 1-p ∈(0,1) 

γ = g >0 

decline rate ~ 
sp

g 1
)1(
)1(1

−
++  growth rate ~ 1+g/s with g>0 

Waring (ρ, γ) 

1
1
1 >

−
+=
p
gpρ  

γ = g >0 

decline rate ~ 
sp)1(

11
−

+  growth rate independent of size 

Yule (ρ) 

1
1

1 >
−

=
p

ρ  

a. The fraction of growth due to new firms is labelled p ∈(0,1). 

b. The expression for λ is only implicit. For, the normalization constant A of the extended Katz distribution is 

dependent on its parameters: λ, γ, δ. Because A is not known in analytic form, the shown expression is the best we 

can offer.
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Table 2c. Steady-state distributions for a growing number of firms.a  b 

entry at minimum size 
horizontal axis: 

different entry/exit types: 

 

 

vertical axis: 

different growth types: 

no exits or size-

independent exits 

exits  at minimum 

size: net entry rate e 

exits proportional to 

1+x/s  with x>0 

entry size geometri-

cally distributed with 

parameter n ∈(0,1); 

no exits or size-

independent exits 

growth rate ~ g(s) 

 

generalization 

of Waringc (ρ, g(s)) 

))((
1

ssgE
p
p
−

=ρ  

g(s) = g(s) 

   

growth rate ~ 1+g/s 

with g>0 

 

Waring (ρ, γ) 

1
1
1 >

−
+=
p
gpρ  

γ = g >0 

 

particular generalized 

hypergeometricd (ρ, γ, χ) 

))1(1(

))((
1

s
xE

sEg
p
p

+

+
−

=ρ  

γ = g >0 

χ = x >0 

 

growth rate ~ 1/s 
geometric (λ) 

λ = 1-p ∈(0,1) 
   

growth rate independent of size 

(the Gibrat assumption) 

 

Yule (ρ) 

1
1

1 >
−

=
p

ρ  

tail: 

Paretoe (ρ) 

ρ = e/f  > 0 

 

Waring (ρ, γ) 

1
1

1 >
−

=
p

ρ  

0
)1()1(

1 >
−−

=
n
n

p
γ  

a. The cells give the steady-state distribution resulting from the combined assumptions on the horizontal and vertical axes. A blank cell 

means that the steady-state distribution has not been calculated in the literature. 

b. The fraction of growth due to new firms is labelled p ∈(0,1). 

c. The expression for ρ is only implicit. For, E(sg(s)) – the expectation of sg(s) - will be dependent on the characteristics of the 

generalization of the Waring distribution: parameter ρ and function g(s). Because E(sg(s)) can only be calculated once the function g(s) 

has been specified, the shown expression is the best we can offer. 

d. See - mutatis mutandis - note c. 

e. Parameter f (>0) denotes the average growth rate of incumbent firms. If f<0 we get: ρ =1−e/f  > 1. If f=0 no Pareto distribution 

occurs. 
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 Table 3. Characteristics of distributions 

name and parametersa probability density function f(s)b, c meand, e 
tail behaviour on 

log-log scale of pdf 

additional 

informationf 

lognormal (ζ, σ), continuous 
[ ]










 −−−
− 2

2)1ln(
2
1exp

2)1(
1

σ
ζ

σπ
s

s
 )exp(1 2

2
1 σζ ++  parabolic downwards 

Jo94 (207-209, 

211-212) 

continuous Pareto (ρ) )1( ρρ +−s  1−ρ
ρ

 straight line 

with slope −(1+ρ) 
Jo94 (574) 

discrete Paretog (ρ) ρρ −− +− )1(ss  ζ(ρ) 
straight line 

with slope −(1+ρ) 
IS77 (75-76) 

generalization of 

Waring (ρ, g(s)) ∏

∏

=

−

=

+
s

t

s

t

ttg

ttg

1

1

1

))((

)(

ρ
ρ  -h 

dependent on 

specification of g(s) 
 

Waring 

(ρ, γ) s

s
)1(

)1( 1
ργ

γρ
++

+ −  
1−

+
ρ

γρ
 straight line 

with slope −(1+ρ) 
Jo92 (278-279) 

Yule (ρ) 
s

s
)1(
)!1(

ρ
ρ

+
−

 
1−ρ

ρ
 straight line 

with slope −(1+ρ) 
Jo92 (275) 

particular generalized 

hypergeometric 

(ρ, γ, χ) 
[ ]∏

=

−

+++

+
s

t

s

tt
A

1

1

)/1(

)1(
),,(

χργ

γχγρ  
 

straight line 

with slope −(1+ρ) 
Jo92 (84-91) 

extended Katz 

(λ, γ, δ) 

s

s

sA λ
δ

γδγλ
)1(

)1(
),,( 1

+
+ −   

dependent on 

value of parameters 
Jo92 (79-80) 

negative binomial (λ, γ) 
ss

s
λγ

λ γ !
)(

1)1(
1

−− −  
)]1[1)(1( γλλ

λγ
−−−

 exponentially 

decreasing 
Jo92 (225) 

generalization of 

logarithmic (λ, γ) γ
λγλ
+s

A
s

),(   
exponentially 

decreasing 
 

logarithmic (λ) s

sλ
λ)1ln(

1
−−

 λ
λ

λ −−− 1)1ln(
1

 exponentially 

decreasing 
Jo92 (285) 

geometric (λ) 1)1( −− sλλ  λ−1
1

 exponentially 

decreasing 
Jo92 (201) 

Poisson (λ) !)1)(exp(
1

s

sλ
λ −

 
)exp(1 λ

λ
−−

 decreases faster than 

exponentially 
Jo92 (181-182) 

a. All distributions are discrete (s=1,2,3 …) except for the first two distributions, which are continuous. 

b. To keep expressions simple and comparable all density functions are defined (and normalized) on the interval  (1,∞). This means that in 

some cases density functions are truncated with respect to the familiar form in the literature. Generalization to intervals with an arbitrary 

minimum value is straightforward. 

c.  (x)s denotes an ascending factorial. It is defined by: (x)s  = x (x+1) (x+2) … (x+s-1) for s= 1, 2, … and (x)0=1. Hence, (1)s = s!.  

d. Means are calculated with the presented density functions, defined on the interval (1,∞). If the cell is blank the mean is (to the best of 

our knowledge) not known. 

e. ζ() denotes the Riemann zeta function. It is defined by: ∑
∞

=

−=
1

)(
s
s ρρζ . See Johnson et al. (1992, pp. 29-30). 

f. Jo92 refers to Johnson et al. (1992); Jo94 refers to Johnson et al. (1994); IS77 refers to Ijiri and Simon (1977). To make distributions in 

this paper comparable to each other, parametrization in this paper may differ somewhat from parametrization in these standard works. If 

the cell is blank we have not found additional information about the distribution in the literature. 

g. There is another variant of a discrete Pareto distribution with slightly different properties. See Johnson et al. (1992, pp. 465-471). 

h. Although we do not know the mean of the distribution in terms of ρ and g(s), we do know it in terms of the underlying firm dynamics 

parameters. For, as was shown in the main text, average firm size is equal to smin/p, so that (when setting smin=1) the mean of the 

distribution must be equal to 1/p.
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Figure 1. Tree of discrete distributions 

particular generalized

hypergeometric 
 (ρ, γ, χ) 

Waring 
(ρ, γ) 

Yule 
(ρ) 

extended Katz

(λ, γ, δ) 

generalization of
logarithmic 

(λ, γ) 

negative 
binomial 

(λ, γ) 

logarithmic
(λ)

geometric 
(λ) 

Poisson 

(λ)

δ=0 
δ=γ 

λ=1 
δ=γ+ρ 

γ=0 ρ=(1/λ-1) γ 

γ→∞ 

γ→0γ=0 
λnb=1-exp(-λP/γ) 

γ→∞ γ=1 

3 parameters 

2 parameters 

1 parameter 

χ=0 

generalization 

of Waring 
 (ρ, g(s)) 

g(s) = 1+γ/s 


