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Abstract 
This study provides evidence on income-health causality by employing a large 

micro panel data set with a VAR representation. The findings verify that 

dominant type of causality is bidirectional which cast doubt on the 

performance OLS estimates in the literature. Moreover, one-way causality 

pattern is not similar for different income groups. One-way causality generally 

runs from income to health in low- and middle-income countries whereas the 

reverse holds for high-income countries. 
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1 Introduction 
 
Theoretical literature on health-income relationship suggests that there must be a bi-
directional relationship between health and income. First, by definition, health 
(expenditure) is a function of resources available (income or wealth). Second, a 
reverse causation, income as a function of health (expenditure), has also a theoretical 
basis due to the fact that the latter is a determinant of (i) human capital, and (ii) labor-
supply and productivity. If health (expenditure) can be regarded as an investment in 
human capital (Mushkin, 1962; Fuchs, 1966; Grossman, 1972; van Zon and Muysken, 
2001), and given that human capital is an “engine” of growth (Lucas, 1988), an 
increase in health (expenditure) must ultimately lead to higher income achievements. 
Similarly, rises in health (expenditure) make possible higher labor supply and 
productivity, which eventually must give way to a higher income (e.g., Muysken, 
Yetkiner, and Ziesemer (2003)). 

The relationship between health and economic development has been empirically 
investigated intensely as well. Firstly, several works such as Newhouse (1977), Leu 
(1986), Parkin et al. (1987), Posnett and Hitiris (1992), Pritchett and Summers (1996) 
Hansen and King (1996), and Barros (1998), studying the impact of income on health 
(at rather macro level), consistently found a strong effect of income in explaining 
health differences.1 Secondly, since Barro (1991) and Barro and Sala-i-Martin (1992), 
several studies have investigated the positive effect of health on economic 
development, especially in the context of “conditional convergence”, using health 
proxies for explaining the long-run growth differences across countries (e.g., Knowles 
and Owen, 1995 and 1997). Results suggest a strong and robust effect of health in 
explaining income per capita differences. 

The problem in both strands of literature is that the OLS estimation will produce 
biased and inconsistent estimates of the structural parameters, if what theory suggests 
that there is an endogenous relationship between income and health is true (cf., Rivera 
and Currais (1999) and Devlin and Hansen (2001)). Therefore, it is vitally critical to 
determine in advance what kind of (Granger) causality relationship exists between 
health and income. To our knowledge, there are very few studies in that direction and 
the evidence is mixed. For example, Devlin and Hansen (2001) tested (Granger) 
causality between health expenditure and GDP in order to examine the exogeneity of 
the latter and showed some (mixed) evidence that indeed there might be bi-directional 
(Granger) causality between health (expenditure) and income. Nevertheless, their 
findings could not be considered complete due to the small size of their dataset. In this 
study, we employ a larger data set and consequently a more refined technical analysis 
to verify the direction of (Granger) causality between health and income. We find that 
bi-directional causality is the leading type of causality for our sample of 75 countries, 
though it is not homogenous. We also show that the one-way causality pattern is 
different for different income groups. 

The organization of the paper is as follows. Section 2 presents empirical tests on 
the direction of causality. Section 3 presents our main conclusions. 
 
 

 
1 See Strauss and Thomas (1998) for a general survey of the literature and footnote 1 in Adams 
et al. (2003) for studies associating a link between health and income rather at micro level. 
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2 A Panel Data Approach 
 
2.1 The Methodology 
 
The literature generally does not provide diversified methods for Granger (1969) 
causality tests in panel data models. It is possible to classify mainly two types of 
approaches. The first one is pioneered by Holtz-Eakin et al. (1985), which considers 
estimation and testing vector autoregression (VAR) coefficients in panel data letting 
the autoregregressive coefficients and regression coefficients slopes as variable. A 
more or less similar procedure is applied by Hsiao (1986), Holtz-Eakin et al. (1988), 
Hsiao (1989), Weinhold (1996), Weinhold (1999), Nair-Reichart and Weinhold 
(2001), and Choe (2003). The second approach proposed by Hurlin and Venet (2001), 
Hurlin (2004a), Hurlin (2004b), Hansen and Rand (2004) treats the autoregregressive 
coefficients and regression coefficients slopes as constant. In this study, we employ 
the second approach because of its suitability to our data sets, in which we have 
relatively short time periods whereas large number of cross-section units. Following 
Hurlin and Venet (2001), we consider two covariance stationary variables, denoted by 
x and y, observed on T periods and on N cross-section units. In the context of Granger 
(1969) causality procedure, for each individual i є [1,N], the variable xi,t is causing yi,t 
if we are better able to predict yi,t using all available information than if the 
information apart from xi,t had been used. In practice, it will not usually be possible to 
use completely optimum predictors, so we consider only linear ones. For this reason, 
we are concerned about a time-stationary VAR representation, used for a panel data 
set. For each cross-section unit i and time period t, we estimate the following model: 
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where tiitiu ,, εα += and ti,ε are i.i.d. . It is assumed that the autoregressive 
coefficients β

),0( 2σ
k and the regression coefficients θk’s are constant for k є [1,N]. 

Moreover, it is further assumed that parameters βk are identical for all individuals, 
while the coefficients θk could have an individual dimensions. In other words, the 
model utilized in this study is panel data model with fixed coefficients. Finally, the 
residuals are assumed to satisfy the standard properties. The use of panel data 
dimension has a number of advantages. First, it provides a large number of 
observations. Second, it increases the degrees of freedom. Finally, it reduces the 
collinearity among explanatory variables. In sum, it obviously improves the efficiency 
of Granger causality tests (Hurlin and Venet, 2001). In testing causality with panel 
data, the researcher should pay attention to the question of heterogeneity between 
cross-section units. The first source of heterogeneity is caused by permanent cross 
sectional disparities. A pooled estimation without heterogeneous intercepts leads to a 
bias of the slope estimates and could lead to a fallacious inference in causality tests 
(Hurlin, 2004a). Another basis of heterogeneity caused by heterogeneous regression 
coefficients θk is more problematic than the first one. In sum, the analysis of causality 
for panel data sets should consider the different sources of heterogeneity of the data-
generating process. Therefore, there are different types of causality hypothesis to be 
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tested in a panel data set framework.1 The first test procedure, named as homogenous 
and instantaneous non-causality hypothesis (HINC), is directed towards testing 
whether or not the θk’s of xi,t-k are simultaneously null for all individual i and all lag k. 
The hypotheses to be tested are: 
 

[ ] [ ]pkNiH k ,0,,10:0 ∈∀∈∀=θ       (2) 
),(0:1 kiH k ∃≠θ  

 
For testing Np linear restrictions in (2), the following Wald statistics is calculated: 
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where SSRu stands for the sum of squared residuals for model in (1) and SSRr for the 
restricted sum of squared residuals under Ho. If individual effects, αi, are assumed to 
be fixed, SSRu and SSRr are SSR obtained from the maximum likelihood (ML) 
estimation that corresponds in this case to the fixed effects (FE) estimator.  

If the HINC hypothesis is rejected, there are two possibilities. The first one is the 
homogenous causality hypothesis (HC) and takes place if all the coefficients θk are 
identical for all lag k and are statistically different from zero. In other words, we are 
testing whether or not θk’s in (1) are equal to each other. The following hypotheses are 
tested: 
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In order to test (4), the following statistics is calculated: 
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where ′
rSSR is the restricted sum of squared residuals under Ho. As in the case of 

HINC, if individual effects, αi , are assumed to be fixed, the ML estimator is consistent 
with the FE estimator.  

If the HC hypothesis is also rejected, this means that the process is non-
homogenous and no homogenous causality relationships can be obtained. Nonetheless, 
such a situation need not entail the lack of any causality relationships between two 
variables. It may still be possible that for one or more cross-section units, there exist 
causality relationships. Hence, the variable x causes the variables y only for a 
subgroup of cross-section units. The last step is to test heterogeneous non-causality 
hypothesis (HENC). The hypotheses under this case are: 
 

[ ] [ ]pkNiH k
i ,0,,10:0 ∈∀∈∀=θ       (6) 

                                                      
1 For a detailed discussion of those tests and finite sample properties, see Hurlin and Venet 
(2001). 
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[ ] [ ]pkNiH k
i ,0,,10:1 ∈∀∈∀≠θ  

 
In other word, for each cross-section unit, the nullity of all the coefficients of the 
lagged explanatory variable xi,t-k are tested. For testing (6), the following statistics is 
calculated: 
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where ″
rSSR is sum of squared residuals found in (1) when the nullity of the k 

coefficients associated with the variable xi,t-k only for the cross-section unit i are 
imposed. These N individual tests identify the cross-section unit for which there are no 
causality relationships. If the HENC hypothesis is not rejected, this means that there 
exists a subgroup of cross-section units for which the variable x does not cause the 
variable y. This hypothesis can be analyzed as the consequence of the heterogeneity of 
the data-generating process. The causality relationship is relevant only for a subgroup 
of cross-section units.  

As using micro-panels, where there are large number of cross-section units and 
small number of time series observations, the FE estimator of the coefficients of 
lagged endogenous variables is biased and inconsistent (Nickell, 1981). On the other 
hand, the ML estimators for dynamic fixed effects models remains biased with the 
introduction of exogenous variables when T is small (Hurlin and Venet, 2001). 
Moreover, Kiviet (1995) also provides an analytical expression for this bias. However, 
Nickell (1981) demonstrates a fall in the size of bias on the coefficients of lagged 
endogenous variables with the presence of exogenous regressors. Furthermore, Judson 
and Owen (1999) provide Monte Carlo evidence and show that FE estimator’s bias 
decreases with T. Thus, for our case, we have decided to use FE estimator provided 
that the bias may not be large. Finally, there is one more point to note that Wald test 
statistics do not have a standard distribution under Ho when T is small (Hurlin and 
Venet, 2001). Hurlin (2004a) provides exact critical values for Wald statistics for 
testing causality in micro panels. 
 
 
2.2 The Data and the Model 
 
The data of our study in an attempt to test the bidirectional causality between real per 
capita GDP and real per capita health expenditures in a panel data setting are derived 
from World Bank’s World Development Indicators, 2002. According to their GNI, the 
World Bank classifies countries into four categories, namely low-income, lower 
middle-income, upper middle-income, and high income countries. After eliminating 
the countries with missing observations, we have included 19 low-income (LIC), 22 
lower middle-income (LMIC), 10 upper middle-income (UMIC), and 24 high-income 
countries (HIC) for the period 1990-2000. However, the relatively low number of 
upper middle-income countries forces us to combine lower middle-income and upper 
middle-income as a one group named as middle-income (MIC) group with 32 
countries. Therefore, we have a balanced panel data set for real GDP per capita (GDP) 
and real health expenditures per capita (H) on 75 countries between 1990 and 2000. 
The list of countries included in our data set is presented at appendix A. 

The following two models are estimated for each of three groups: 
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For both variables, we take natural logarithms. We further difference the data in order 
to eliminate possible unit roots. Thus, our variables are, in fact, growth rates. Before 
estimating equations (8) and (9), the number of lags is determined for both variables in 
each country group using Akaike Information Criteria (AIC). However, because of the 
shortness of time series in our data set, we use rather a different methodology in 
selecting lag length. We start with the first lag and continue with the second until we 
reach minimum AIC; yet we stop at the third lag whether we reach minimum AIC or 
not. 

Following the estimation of (8) and (9), we test both homogenous and 
instantaneous non-causality (HINC) and homogenous causality (HC) hypotheses. 
Later, the models for testing heterogeneous non-causality hypothesis (HENC) are 
estimated and HENC hypotheses are tested for each country group. 
 
 
2.3 Bidirectional Causality between Health and Income: Pooled Estimation 
 
As a first step to explore the bidirectional causality between health and income, the lag 
lengths are chosen for both variables. Table 1 presents AIC figures for each country 
group. Consequently, for LIC, we choose three lags for GDP and two lags for H. In 
the case of MIC, two lags for GDP and one lag for H are chosen. Finally, for HIC, the 
corresponding lag lengths are one and three respectively.  
 
Table 1 is about here 
 

After choosing the lag lengths, equations (8) and (9) are estimated for each country 
group in order to test HINC and HC hypothesis. The results of the estimation are 
presented at appendix B. Table 2 demonstrates the values of F statistics given by (3) 
and (5) for testing two types of homogenous causality hypothesis, namely HINC and 
HC. The test results cause us to reject both of the null hypotheses at 1% level of 
significance which means that there is no homogenous causality between GDP and H. 
The hypotheses belonging to HIC are rejected at 5%. In other words, rejecting the null 
hypothesis of HINC means that there exists a causality relation between GDP and H. 
The next question is whether the causality is an overall (homogenous) causality for 
each country group or sourced from causality relations for individual countries 
(heterogeneous). The results verify the existence of a heterogeneous causality as a 
result of testing HC hypothesis.  

 
Table 2 is about here 

 
The next step for an attempt to search for causality is to detect the individual 

countries’ contribution to the existence of causality. For this end, we estimate 
equations (8) and (9) where θk‘s differ among countries in our data set and HENC 
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hypotheses are tested for each individual country. The results of FHENC test given in (7) 
are presented at Table 3 and the detailed F-statistics are shown at appendix C.1 

 
Table 3 is about here 

 
According to Table 3, for 46 countries out of 75 bidirectional causality relation is 

observed meaning that for around 61% of the countries in our data set bidirectional 
causality both from GDP to H and H to GDP is relevant. In the context of country 
groups, the shares of bidirectional causality are observed at 68%, 65%, and 50% for 
LIC, MIC, and HIC, respectively. We have six exceptions of bidirectional causality 
for LIC. Causality relation from GDP to H is detected for Ghana, Mozambique, 
Nigeria, and Togo; and causality from H to GDP is seen only for Burkina Faso while 
no causality relation is observed in either direction for Zimbabwe. In the case of MIC, 
for six countries out 32, namely Botswana, Bulgaria, Costa Rica, Ecuador, Sri Lanka, 
and Thailand, only causality from GDP to H is found. The reverse causality is 
obtained for Brazil and Venezuela. Finally, for Honduras, Romania, and Syria there is 
no causality relationship between GDP and H. Since data collection may not be 
reliable in these countries, especially in Romania and Syria because of their specific 
characteristics, we believe that these three countries are ignorable. For HIC, the 
bidirectional causality is found for 12 out of 24 countries. Moreover, for the one-way 
causality, the pattern is different as compared to LIC and MIC. The causality from H 
to GDP is dominant for HIC, that is to say an increase in growth rate of H causes more 
probably an increase in GDP in HIC. For Belgium, Germany, Japan, New Zealand, 
Spain, and Sweden, the causality runs from H to GDP. Only for Austria and Ireland, 
we observe causality running from GDP to H. Finally, no causality is perceived in 
either direction for Australia, Israel, and Singapore. We argue the finding that a higher 
share of HIC show H to GDP causality may be a signal of structural differences 
between HIC and MIC and LIC. Firstly, advanced economies are more human capital 
dependent than LIC and MIC. In that respect, it is natural to find that health (Granger) 
causes income in HIC. Secondly, given that public share of health expenditures are 
substantially higher in HIC relative to MIC and HIC, a positive externality might exist 
that blurs the impact of income on health. Thirdly, HIC have better public 
infrastructure, another source of externality, which may lower the significance of 
income in explaining health due to the fact that a good infrastructure diminishes the 
risk of epidemics, accidents, cost of catastrophes, etc. Hence, data may not be able to 
show a causality running from income to health.  
 
 
3 Concluding Remarks 
 
We applied Granger causality approach to panel data model with fixed coefficients in 
order to determine the relation between GDP and health expenditures per capita. The 
results of testing HINC hypothesis show us the existence of bidirectional causality for 
our sample. However, this causality is not homogenous which is evident from the tests 
of HC hypotheses. The tests for heterogeneous causality present that the leading type 
of causality is bidirectional. For one-way causality, the pattern of causality is different 
in LIC and MIC as compared to HIC. One-way causality generally runs from GDP to 
H in LIC and MIC whereas the reverse is valid for HIC. Our contribution to the 

 
1 The estimation output for this test can be requested from authors. 
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literature is to show a stronger evidence of bi-directional (Granger) causality running 
between health expenditure and income for a larger set of countries and by more 
refined econometric techniques. A further prospect for this type of study is to repeat 
the tests proposed here with longer time series. This will be possible whenever United 
Nations produces consistent time series data on national financial accounts.  
 
 
References 
 

Adams, P., M.D. Hurd, D. McFadden, A. Merrill, and T. Ribeiro (2003), “Healthy, 
Wealthy, and Wise? Tests for Direct Causal Paths between Health and 
Sociaoeconomic Status”, Journal of Econometrics, 112, 3-56. 

Barro, Robert J. (1991), “Economic Growth in a Cross Section of Countries”, 
Quarterly Journal of Economics, 106, 407-443. 

Barro, Robert J. and Xavier Sala-i-Martin (1992), “Convergence”, Journal of 
Political Economy, 100, 223-251. 

Barros, P.P. (1998) “The Black Box of Health Care Expenditure Determinants”, 
Health Economics, 7, 533-44. 

Choe, J.I. (2003). “Do foreign direct investment and gross domestic investment 
promote economic growth?”, Review of Development Economics, 7, 44-57. 

Devlin, N. and P. Hansen (2001), “Health Care Spending and Economic Output: 
Granger Causality”, Applied Economics Letters, Vol. 8, 561-64. 

Fuchs, V.R. (1966) “The Contribution of Health Services to the American 
Economy”, Milbank Memorial Quarterly, 44, 65-101, reprinted in: V.R. Fuchs, 
(ed)(1972) Essays in the Economics of Health and Medical Care, Columbia 
University Press for National Bureau of Economic Research, New York and London. 

Granger, C.W.J. (1969) “Investigating Causal Relations by Econometric Models 
and Cross-Spectral Methods”, Econometrica, 37, 424-38. 

Grossman, M. (1972) “On the Concept of Health Capital and the Demand for 
Health”, Journal of Political Economy, 80, 223-55. 

Hansen H. and Rand J. (2004) “On the Causal Links between FDI and Growth in 
Developing Countries”, Miméo, Development Economics Research Group (DERG), 
Institute of Economics, University of Copenhagen. 

Hansen, P. and King, A. (1996) “The Determinants of Health Care Expenditure: A 
Cointegration Approach”, Journal of Health Economics, 15, 127-37. 

Holtz-Eakin, D., Newey, W., and Rosen, H. (1985) “Implementing Causality Tests 
with Panel Data, with an Example from Local Public Finance”, NBER Technical 
Paper Series, No. 48. 

Holtz-Eakin, D., Newey, W., and Rosen, H. (1988) “Estimating Vector 
Autoregressions with Panel Data”, Econometrica, 56, 1371-95. 

Hsiao, C. (1986) Analysis of Panel Data, Cambridge University Press:Cambridge. 
Hsiao, C. (1989) “Modeling Ontario Regional Electricity System Demand Using a 

Mixed Fixed and Random Coefficients Approach”, Regional Science and Urban 
Economics, 19, 565-87. 

Hurlin, C. (2004a), “Testing Granger Causality in Heterogeneous Panel Data 
Models with Fixed Coefficients”, Miméo, University Orléans. 

Hurlin, C. (2004b), “A Note on Causality Tests in Panel Data Models with Random 
Coefficients”, Miméo, University Orléans. 

Hurlin, C. and Venet, B. (2001) “Granger Causality Tests in Panel Data Models 
with Fixed Coefficients”, Miméo, University Paris IX. 



 

9 

Judson, R.A. and Owen, A.L. (1999), “Estimating Dynamic Panel Data Models: A 
Guide for Macroeconomists”, Economic Letters, 65, 9-15. 

Kiviet, J.F. (1995) “On Bias, Inconsistency and Efficiency of Various Estimators in 
Dynamic Panel Data Models”, Journal of Econometrics, 68, 53-78. 

Knowles, S. and Owen, D.P. (1995), “Health Capital and Cross-country Variation 
in per Capita in the Mankiw-Romer-Weil Model”, Economics Letters, Vol. 48 (223), 
pp. 99-106. 

Knowles, S. and Owen, D.P. (1997), “Education and Health in an Effective-Labour 
Empirical Growth Model”, The Economic Record, Vol. 73 (223), pp. 314-28. 

Leu, R. (1986) “The Public-Private Mix and International Health Care Cost, in 
Public and Private Health Services: Complementaries and Conflicts, Culyer A.J. and 
Jonsson, B. (eds.), Basil Blackwell: Oxford. 

Lucas, R.E.Jr. (1988), “On the Mechanics of Economic Development”, Journal of 
Monetary Economics, Vol. 22, pp. 3-42. 

Mushkin, S.J. (1962), “Health as an Investment”, Journal of Political Economy, 
Vol. 70, pp. S129-S157. 

Muysken, J., Yetkiner, I.H., and Ziesemer, T. (2003), “Health, Labor Productivity 
and Growth”, in Growth Theory and Growth Policy (Eds. Harald Hagemann and 
Stephan Seiter), Routledge, London. 

Nair-Reichert, U. and Weinhold, D. (2001) “Causality Tests for Cross-Country 
Panels: A New Look at FDI and Economic Growth in Developing Countries”, Oxford 
Bulletin of Economics and Statistics, 63, 153-71. 

Newhouse, J. (1977) “Medical Care Expenditure: A Cross-National Survey”, 
Journal of Human Resources, 12, 115-25. 

Nickell, S. (1981) “Biases in Dynamic Models with Fixed Effects”, Econometrica, 
49, 1399-1416. 

Parkin, D., McGuire, A., and Yule, B. (1987) “Aggregate Health Care 
Expenditures and National Income: Is Health Care a Luxury Good?”, Journal of 
Health Economics, 6, 109-27. 

Posnett, J. and Hitiris, T. (1992) “The Determinants and Effects of Health 
Expenditure in Developed Countries”, Journal of Health Economics, 11, 173-81. 

Pritchett, L. and Summers, L.H. (1996) “Wealthier is Healthier”, Journal of Human 
Resources, 31, 841-68. 

Rivera, B. And Currais, L. (1999) “Economic Growth and Health: Direct Impact or 
Reverse Causation”, Applied Economics Letters, 6, 761-64. 

Strauss, John and Thomas, Duncan (1998), “Health, Nutrition, and Economic 
Development”, Journal of Economic Literature, 36 (2), 766-817. 

Weinhold, D. (1996) “Investment, Growth and Causality Testing in Panels”, 
Economie et Prevision, 126, 163-75. 

Weinhold, D. (1999) “A dynamic ‘Fixed Effects’ Model for Heterogeneous Panel 
Data”, unpublished manuscript, London School of Economics. 

van Zon, Adriaan H. and Joan Muysken (2001), “Health and Endogenous Growth”, 
Journal of Health Economics, 20, 169-85. 
 



 

10 

 
 

Table 1 Number of Lags for GDP and H 
Country 
Group Variable LAG1 LAG2 LAG3 LAG4 

# of 
Lags 

L
IC

 

GDP -3.244 -3.387 -3.657 -3.823 3 

  
H 0.154 0.146 0.184   2 

M
IC

 

GDP -3.171 -3.868 -3.853   2 

  

H 0.802 0.818     1 

H
IC

 

GDP -4.926 -4.865   1 

  H -1.645 -1.679 -1.720 -1.730 3 
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Table 2 Test results for Homogenous Causality Hypotheses 
Country 
Group Test Causality from H to GDP Causality from GDP to H 

L
IC

 
HINC 11.41** 11.97** 

  

HC 15.92** 6.44** 

M
IC

 

HINC 8.99** 133.70** 

  

HC 17.96** 129.59** 

H
IC

 

HINC 15.75** 3.47* 

  HC 63.02** 6.38* 
*Reject H0 at 5% level of significance, **Reject H0  at 1% level of significance. 
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Table 3 Test results for Heterogeneous Causality Hypotheses 
Low Income 
Countries  Direction 

Middle Income 
Countries  Direction 

High  Income 
Countries  Direction 

Bangladesh Bidirectional Argentina Bidirectional Australia No causality 
Burkina Faso H to GDP Bolivia Bidirectional Austria GDP to H 
Burundi Bidirectional Botswana GDP to H Belgium H to GDP 
Cameroon Bidirectional Brazil H to GDP Canada Bidirectional 
Cote d'Ivoire Bidirectional Bulgaria GDP to H Denmark Bidirectional 
Ethiopia Bidirectional Chile Bidirectional Finland Bidirectional 
Ghana GDP to H China Bidirectional France Bidirectional 
Haiti Bidirectional Colombia Bidirectional Germany H to GDP 
Indonesia Bidirectional Costa Rica GDP to H Greece Bidirectional 
Kenya Bidirectional Dominic Bidirectional Ireland GDP to H 
Mali Bidirectional Ecuador GDP to H Israel No causality 
Mozambique GDP to H El Salvador Bidirectional Italy Bidirectional 
Nigeria GDP to H Guatemala Bidirectional Japan H to GDP 
Pakistan Bidirectional Honduras No causality Korea Bidirectional 
P. New Guinea Bidirectional Iran Bidirectional Netherlands Bidirectional 
Senegal Bidirectional Jamaica Bidirectional New Zealand H to GDP 
Tanzania Bidirectional Jordan Bidirectional Norway Bidirectional 
Togo GDP to H Malaysia Bidirectional Portugal Bidirectional 
Zimbabwe No causality Mexico Bidirectional Singapore No causality 
    Namibia Bidirectional Spain H to GDP 
    Panama Bidirectional Sweden H to GDP 
    Paraguay Bidirectional Switzerland Bidirectional 
    Peru Bidirectional United Kingdom H to GDP 
    Philippines Bidirectional United States Bidirectional 

    Poland Bidirectional    

    Romania No causality    

    Sri Lanka GDP to H    

    Syria No causality    

    Thailand GDP to H    

    Turkey Bidirectional    

    Uruguay Bidirectional    
    Venezuela H to GDP     
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Appendix A Countries in the Data Set 
Low Income 
Countries 

Middle Income 
Countries 

High Income 
Countries 

Bangladesh Argentina Australia 
Burkina Faso Bolivia Austria 
Burundi Botswana Belgium 
Cameroon Brazil Canada 
Cote d'Ivoire Bulgaria Denmark 
Ethiopia Chile Finland 
Ghana China France 
Haiti Colombia Germany 
Indonesia Costa Rica Greece 
Kenya Dominic Ireland 
Mali Ecuador Israel 
Mozambique El Salvador Italy 
Nigeria Guatemala Japan 
Pakistan Honduras Korea 
Papua New Guinea Iran Netherlands 
Senegal Jamaica New Zealand 
Tanzania Jordan Norway 
Togo Malaysia Portugal 
Zimbabwe Mexico Singapore 
  Namibia Spain 
  Panama Sweden 
  Paraguay Switzerland 
  Peru United Kingdom 
  Philippines United States 
  Poland   
  Romania   
  Sri Lanka   
  Syria   
  Thailand   
  Turkey   
  Uruguay   
  Venezuela   
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Appendix B1 Estimation Results of VAR Equation from Health to GDP 
LIC MIC HIC

Variable Coefficient HC.Std. Error Variable Coefficient HC.Std. Error Variable Coefficient HC.Std. Error
DLGDP(-1) 0.074633 0.089923 DLGDP(-1) 0.112613 0.051421 DLGDP(-1) 0.279074 0.057285
DLGDP(-2) -0.022048 0.059812 DLGDP(-2) 0.009189 0.027209 DLH 0.01236 0.012223
DLGDP(-3) 0.015959 0.052171 DLH 0.012324 0.00366 DLH(-1) -0.048198 0.0067

DLH 0.037328 0.009528 DLH(-1) -0.013894 0.003809 DLH(-2) 0.009783 0.007261
DLH(-1) 0.007959 0.00632 DLH(-3) -0.018543 0.008608
DLH(-2) -0.003038 0.005312

Fixed Effects Fixed Effects Fixed Effects

BAN--C 0.029093 ARG--C 0.009836 AUS--C 0.019662
BUF--C 0.020386 BOL--C 0.012305 AUT--C 0.017483
BUR--C -0.029904 BWA--C 0.024095 BEL--C 0.020917
CAM--C 0.01367 BRA--C 0.011784 CAN--C 0.021067
COT--C 0.016033 BGR--C 0.005176 DNK--C 0.020205
ETH--C 0.018949 CHL--C 0.034384 FIN--C 0.031906
GHA--C 0.02942 CHN--C 0.071896 FRA--C 0.01672
HAI--C -0.007965 COL--C 0.005506 DEU--C 0.014485
IND--C 0.016001 CRI--C 0.023508 GRC--C 0.021196
KEN--C -0.000368 DOM--C 0.03833 IRL--C 0.062363
MAL--C 0.022049 ECU--C -0.011657 ISR--C 0.016438
MOZ--C 0.047526 SKU--C 0.018775 ITA--C 0.012753
NIG--C 0.00808 GTM--C 0.012162 JPN--C 0.011235
PAK--C 0.013396 HND--C 0.000954 KOR--C 0.037072
PAP--C -0.008925 IRN--C 0.012919 NLD--C 0.020553
SEN--C 0.025177 JAM--C -0.006824 NZL--C 0.014749
TAN--C 0.011621 JOR--C 0.001622 NOR--C 0.021031
TOG--C 0.022001 MYS--C 0.033953 PRT--C 0.026371
ZIM--C 0.015463 MEX--C 0.015402 SGP--C 0.032816

Adj. R2 0.59928 NAM--C 0.01932 ESP--C 0.02139
N 133 PAN--C 0.020487 SWE--C 0.02171

PRY--C -0.003939 CHE--C 0.008797
PER--C 0.024733 GBR--C 0.021911
PHL--C 0.012508 USA--C 0.019935
POL--C 0.043697 Adj. R2 0.632014
ROM--C 0.005245 N 168
LKA--C 0.034762
SYR--C 0.006232
THA--C 0.023263
TUR--C 0.014445
URY--C 0.012252
VEN--C -0.014132

Adj. R2 0.606004
N 256
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Appendix B2 Estimation Results of VAR Equation from GDP to Health 
LIC MIC HIC

Variable Coefficient HC.Std. Error Variable Coefficient HC.Std. Error Variable Coefficient HC.Std. Error
DLGDP 2.38853 0.484575 DLGDP 1.996631 0.100059 DLGDP 1.228487 0.600588

DLGDP(-1) 1.034685 0.308204 DLGDP(-1) -0.430108 0.125467 DLGDP(-1) -0.79543 0.336945
DLGDP(-2) 0.775601 0.243237 DLGDP(-2) 0.23232 0.090711 DLH(-1) 0.122235 0.066191
DLGDP(-3) 0.462639 0.221846 DLH(-1) 0.083723 0.053535 DLH(-2) -0.424346 0.054097

DLH(-1) -0.179822 0.06083 DLH(-3) 0.154675 0.065585
DLH(-2) -0.266 0.048328

Fixed Effects Fixed Effects Fixed Effects

BAN--C -0.121544 ARG--C -0.055814 AUS--C -0.010623
BUF--C -0.265182 BOL--C -0.047332 AUT--C -0.022279
BUR--C -0.152867 BWA--C -0.0608 BEL--C -0.013086
CAM--C -0.07998 BRA--C -0.734191 CAN--C -0.026542
COT--C -0.263662 BGR--C -0.604403 DNK--C -0.022297
ETH--C -0.130041 CHL--C -0.057029 FIN--C -0.03638
GHA--C -0.488578 CHN--C -0.0823 FRA--C -0.027429
HAI--C -0.055034 COL--C -0.048358 DEU--C -0.021674
IND--C -0.259818 CRI--C -0.127625 GRC--C -0.058641
KEN--C -0.069639 DOM--C -0.024235 IRL--C 0.005724
MAL--C -0.094994 ECU--C -0.391045 ISR--C 0.005742
MOZ--C -0.417898 SKU--C 0.029374 ITA--C -0.047774
NIG--C -0.399788 GTM--C -0.018398 JPN--C 0.024342
PAK--C -0.161371 HND--C -0.136336 KOR--C -0.022767
PAP--C -0.199312 IRN--C -0.374248 NLD--C -0.036913
SEN--C -0.222984 JAM--C 0.003035 NZL--C -0.001226
TAN--C -0.134385 JOR--C 0.015092 NOR--C 0.006666
TOG--C -0.174055 MYS--C -0.07399 PRT--C -0.004323
ZIM--C -0.348895 MEX--C -0.153082 SGP--C 0.029774

Adj. R2 0.26659 NAM--C -0.102119 ESP--C -0.029549
N 133 PAN--C -0.0072 SWE--C -0.014853

PRY--C -0.05398 CHE--C 0.002678
PER--C -0.182791 GBR--C 0.02409
PHL--C -0.054217 USA--C 0.006099
POL--C -0.191068 Adj. R2 0.235137
ROM--C -0.556243 N 168
LKA--C -0.089236
SYR--C -0.144785
THA--C -0.135611
TUR--C -0.519393
URY--C -0.129818
VEN--C -0.252939

Adj. R2 0.491771
N 256
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Appendix C1 Test results for Heterogeneous Causality from H to GDP 
LIC   MIC   HIC   
Bangladesh 2.30* Argentina 9.88*** Australia 0.97
Burkina Faso 127.27*** Bolivia 5.38*** Austria 1.61
Burundi 13.38*** Botswana 0.02 Belgium 97.50***
Cameroon 133.27*** Brazil 15.30*** Canada 31.05***
Cote d'Ivoire 4.17*** Bulgaria 2.05 Denmark 5.27***
Ethiopia 10.99*** Chile 15.98*** Finland 3.01**
Ghana 188.33*** China 3.30** France 1309.06***
Haiti 17.26*** Colombia 21.47*** Germany 140.04***
Indonesia 62.60*** Costa Rica 1.42 Greece 1414.12***
Kenya 23.47*** Dominic 6.73*** Ireland 0.08
Mali 6.94*** Ecuador 1.43 Israel 1.29
Mozambique 1.76 El Salvador 0.12 Italy 1213.9***
Nigeria 1.39 Guatemala 261.74*** Japan 1071.1***
Pakistan 363.88*** Honduras 1.49 Korea 56.95***
Papua New Guinea 6.28*** Iran 22.50*** Netherlands 226.86***
Senegal 19.50*** Jamaica 76.13*** New Zealand 1941.22***
Tanzania 2.80** Jordan 11.45*** Norway 17.44***
Togo 1.90 Malaysia 7.14*** Portugal 2.22*
Zimbabwe 0.45 Mexico 277.22*** Singapore 0.31
    Namibia 21.27*** Spain 76.43***
    Panama 4.06** Sweden 86.50***
    Paraguay 9.27*** Switzerland 13.02***
    Peru 12.29*** United Kingdom 406.59***
    Philippines 9.09*** United States 3793.12***

    Poland 5.64***    

    Romania 1.23    

    Sri Lanka 1.35    

    Syria 0.45    

    Thailand 0.56    

    Turkey 14.92***    

    Uruguay 9.27***    
    Venezuela 5.77***     

*Reject H0 at 10% level of significance, **Reject H0 at 5% level of significance, ***Reject H0 at 1% level of 
significance. 
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Appendix C2 Test results for Heterogeneous Causality from GDP to H 
Low Income 
Countries   

Middle Income 
Countries   

High Income 
Countries   

Bangladesh 57.31*** Argentina 4.74*** Australia 0.05
Burkina Faso 1.01 Bolivia 7.83*** Austria 7.97***
Burundi 6.73*** Botswana 31.61*** Belgium 0.45
Cameroon 588.36*** Brazil 0.26 Canada 2.93*
Cote d'Ivoire 450.41*** Bulgaria 6.74*** Denmark 10.96***
Ethiopia 2.66** Chile 40.36*** Finland 4.73**
Ghana 0.28 China 7.50*** France 4.29**
Haiti 1101.2*** Colombia 19.07*** Germany 0.56
Indonesia 468.25*** Costa Rica 32.05*** Greece 145.88***
Kenya 126.99*** Dominic 238.02*** Ireland 14.44***
Mali 717.78*** Ecuador 18.88*** Israel 0.47
Mozambique 372.17*** El Salvador 103.87*** Italy 12.37***
Nigeria 251.05*** Guatemala 4.77*** Japan 1.70
Pakistan 7.81*** Honduras 1.73 Korea 635.67***
Papua New Guinea 2.92** Iran 14.43*** Netherlands 21.23***
Senegal 222.51*** Jamaica 4.66*** New Zealand 1.81
Tanzania 103.17*** Jordan 256.39*** Norway 4.89***
Togo 797.70*** Malaysia 295.71*** Portugal 3.18**
Zimbabwe 1.21 Mexico 13.55*** Singapore 1.10
    Namibia 123.92*** Spain 0.99
    Panama 3.37** Sweden 0.30
    Paraguay 2.72** Switzerland 6.50***
    Peru 2.48* United Kingdom 1.18
    Philippines 425.71*** United States 74.70***

    Poland 125.67***    

    Romania 1.27    

    Sri Lanka 33.50***    

    Syria 0.09    

    Thailand 93.10***    

    Turkey 4.81***    

    Uruguay 2.44*    
    Venezuela 0.63     

*Reject H0 at 10% level of significance, **Reject H0 at 5% level of significance, ***Reject H0 at 1% level of 
significance. 
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