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Abstract 

Global Warming Potentials (GWPs) are evaluated as proxies of the historical 

temperature by applying them to convert historical CH4 and N2O emissions to 

equivalent CO2 emissions. Our GWP analysis is based on the historical Earth system 

evolution obtained from the inverse calculation for the Aggregated Carbon Cycle, 

Atmospheric Cycle, and Climate Model (ACC2). Indices higher than the Kyoto GWPs 

are required to reproduce the historical temperature. The GWP for N2O, in particular, 

does not approximate the historical temperature with any time horizon because the 

GWP definition and calculations assume a background system different from the ACC2 

inversion results. In addition, indices have to be progressively updated upon the 

acquisition of new measurements and/or the change in our understanding on the Earth 

system processes. 
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1. Introduction 

Global climate change during the Anthropocene (Crutzen, 2002) is largely triggered by 

the human-driven changes in the atmospheric composition of various radiative agents. 

These agents have different chemical, thermodynamic, and radiative properties, 

interfering the Earth system distinctively. Due to the complexities and uncertainties in 

the Earth system processes, finding a common ground to compare different GreenHouse 

Gases (GHGs) emissions is a challenging task. As a simple measure, the concept of 

GWPs was introduced. The GWP of a particular GHG is defined as the ratio of the 

integrated radiative forcing of the GHG over a time horizon to that of CO2 after their 

instantaneous releases to the atmosphere in the amounts of 1 kg (IPCC, 2001). GWPs 

are used to convert the emissions of non-CO2 GHGs to ‘equivalent’ CO2 emissions, 

allowing policy-makers to consider and compare multiple options for GHG emission 

reduction. 

However, since the conception of GWPs, they have been a subject of dispute in 

the research community (Fuglestvedt et al., 2003). One fundamental shortcoming in the 

concept of GWPs is the arbitrariness in the length of the time horizon to integrate the 

radiative forcings. Time horizons of 20, 100, and 500 years are representatively used in 

Table 6.7 of IPCC (2001) showing the GWP estimates of various GHGs (Figures 1a-b). 

A time horizon of 100 years is selected for the GWPs implemented in the Kyoto 

Protocol in the absence of rigorous scientific argumentation, a product of a casual 

compromise between 20 years, which stresses the short-term atmospheric chemistry, 

and 500 years, which emphasizes the long-term ocean overturning. Generally, a GHG 

with a lifetime shorter than that of CO2 (nominally 150 years) has a larger GWP with a 

shorter time horizon. Various alternatives to GWPs have been proposed (Fuglestvedt et 
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al., 2003; Shine et al., 2005). However, no general consensus has been reached yet 

among researchers as to which metrics should replace the GWPs in spite of the urgent 

need for the post-Kyoto regime.  

There are natural science-oriented and economics-oriented interpretations to 

GWPs (Fuglestvedt et al., 2003) that lead to different evaluation methodologies 

resulting in different conclusions. From a natural science perspective, one can expect 

GWPs as an instrument designed to weight various GHGs in manners that ensure 

equivalence in climate change (Wigley, 1998; O’Neill, 2000; Smith and Wigley, 2000; 

Smith, 2003; Shine et al., 2005; this study) while, from an economic perspective, one 

can expect GWPs as an instrument to weight GHGs such that particular climatic goals 

are reached in a cost-effective manner  (Reilly et al., 1999; Manne and Richels, 2001; 

Godal and Fuglestvedt, 2002; Johanssou et al., 2006) or, alternatively, as the ratio 

between the marginal damage costs of climate change (Eckaus, 1992; Reilly and 

Richards, 1993; Schmalensee, 1993; Fankhauser, 1995; Kandlikar, 1996; Tol, 1999). 

Note that our study takes the natural science approach without exploring economic 

implications. 

Here we investigate the robustness of the GWP concept as a proxy for the 

historical surface air temperature. Among the cited studies taking the natural science 

perspective, our study is the first study to apply GWPs to historical data. A factor 

hampering the application of GWPs to historical data is the mismatch among the 

estimates of the GHG emissions, their concentrations, and the surface air temperature 

when the associated dynamic relationships are considered. This problem can be solved 

by using the inverse calculation for ACC2 (Tanaka et al., in prep) to provide the 

estimates for the system evolution since 1750. In fact, it is the most novel aspect of the 
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ACC2 development to perform an inversion for the coupled Earth system (carbon cycle, 

atmospheric chemistry, and climate system) albeit at a global-and-annual-mean level. 

Currently inversions for more complex coupled models are not operational because of 

the prohibitively expensive computation requirements. 

The next section summarizes the description for the ACC2 forward and inverse 

calculations. In section 3, the IPCC GWPs including the Kyoto GWPs are evaluated. In 

section 4, the performances of TEMPs as temperature proxies are investigated to gain an 

insight into the limitation in the GWP concept. The conclusions are given in the last 

section. 

 

2. Model Description 

2.1. Forward Calculation 

ACC2 is developed for first-order understanding on the interactions in the coupled 

system processes and uncertainties on a global-and-annual-mean basis. ACC2 calculates 

the concentrations of various GHGs, the respective radiative forcings, the surface air 

temperature as a consequence of the emissions of GHGs and relevant agents. ACC2 

version 2.2 is used in this study. The origins of ACC2 are traced back to the Nonlinear 

Impulse-response representation of the coupled Carbon cycle-Climate System (NICCS) 

(Hooss, 2001; Hooss et al., 2001) and the ICLIPS Climate Model (ICM) (Bruckner et 

al., 2003). 

The functional relationships and physical and biogeochemical constants in 

ACC2 are mostly consistent with IPCC (2001), WMO (2003), and other recent literature. 

The oceanic and terrestrial CO2 uptake is represented by respective impulse response 

functions (Maier-Reimer and Hasselmann, 1987; Hooss, 2001; Joos et al., 1996). The 
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temperature feedback to the ocean CO2 uptake is provided with the thermodynamic 

equilibrium constants for carbonate chemistry defined as functions of temperature 

(Millero, 1995). The temperature feedback to the terrestrial CO2 uptake is parameterized 

by a Q10 factor, by which the rate of terrestrial respiration increases with a temperature 

increase of 10°C. ACC2 incorporates the parameterizations of atmospheric chemistry 

processes involving direct radiative forcing agents (CO2, CH4, N2O, SF6, 28 species of 

halocarbons, tropospheric and stratospheric O3, sulfate and carbonaceous aerosols, and 

stratospheric water vapor) and indirect radiative forcing agents (OH, NOx, CO, and 

VOC) (IPCC, 2001; Joos et al, 2001). The complex radiative forcings due to aerosols 

are reduced to the following three types: the direct effect of sulfate aerosols, the direct 

effect of carbonaceous aerosols (black carbon and organic carbon), and the indirect 

effect of all aerosols (involving cloud processes) (IPCC, 2001; Joos et al., 2001). The 

total radiative forcing is used to calculate the surface air temperature by the Diffusion 

Ocean Energy balance CLIMate model (DOECLIM) (Kriegler, 2005). 

 

2.2. Inverse Calculation 

ACC2 is applied to an inverse calculation to estimate parameters, where various 

geophysical observational databases and functional relationships of the Earth system 

processes are synthesized based on the probabilistic theory (Tarantola, 2005). 

Parameters estimated in the inverse calculation include the CO2, CH4, and N2O 

emissions, the missing radiative forcings, the CO2 fertilization effect, and the climate 

sensitivity (Table 1). The missing radiative forcings account for the uncertainties in the 

total radiative forcing including some types of radiative forcings not represented in 

ACC2. The volcanic and solar radiative forcings adopted in the inversion are Crowley et 
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al. (2003). Data used in the inverse calculation include annual time series of the 

atmospheric CO2, CH4, and N2O concentrations, the anthropogenic oceanic and 

terrestrial CO2 uptake, and the surface air temperature (Table 2). Gaussian distributions 

are assumed for the prior parameter uncertainties and the measurement uncertainties. 

Note that our inversion setup produces particular posterior estimates of the parameters 

and the data corresponding to the minimum of the cost function and does not provide 

associated posterior probability distributions. The cost function is formulated as 
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where m  denotes a column vector of the parameters, consisting of elements pm .  

ppriorm ,  and qmesd ,  are the prior information of a parameter and the measurement of a 

datum, respectively. )(⋅g  is the forward model operator; )(mqg  gives the model 

calculation of a datum qd  on the basis of m . The standard deviations of the prior 

parameter estimates and the measurements are given as pm,σ  and qd ,σ , respectively. 

Note that all of the parameters and the data are treated independently. During the 

inversion process, the values of im  and m  in equation (1) are adjusted such that the 

cost function is minimized. The optimization is performed using CONOPT3 in GAMS 

(Rev 144). 

The inverse calculation results of the anthropogenic CH4 and N2O emissions, the 

CH4 and N2O concentrations, and the surface air temperature are shown in Figures 2a-e. 

The posterior estimates of the CH4 and N2O concentrations turned out to be almost 

identical to the corresponding measurements because of the relatively large 
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uncertainties in the prior estimates in the CH4 and N2O emissions. Note that, if we 

accept all the prior estimates without performing an inversion, the CH4 and N2O 

concentrations and the temperature projections become unrealistically lower than the 

corresponding measurements. The immediate reduction in the CH4 and N2O 

concentrations in the beginning indicates that the prior estimates of their lifetimes and 

natural emissions do not produce steady states in the absence of the anthropogenic 

emissions. All in all, the ACC2 inverse calculation produces a compatible evolution of 

the coupled Earth systems between 1750 and 2000 with reasonable parameter values 

(Table 1). 

 

3. Evaluation of GWPs as Temperature Proxies 

Now we assume that the evolution of the Earth system since 1750 is described by the 

posterior estimates of the parameters and the data obtained from the foregoing inverse 

calculation, which are referred as ‘baseline’ estimates below. We replace the baseline 

anthropogenic CH4 and N2O emissions (separately) with their equivalent CO2 emissions 

using GWPs as conversion coefficients. Then, by fixing all the other parameter values at 

the respective baseline levels, we calculate the surface air temperature and compare 

with the baseline temperature. Although the radiative forcing would be a reference for 

comparison closer to the GWP definition, the temperature is more relevant to the 

climate impact. Adopting the temperature reference can be justified from the finding 

that experiments using the temperature reference produce comparable results to those 

using the radiative forcing reference (not shown). The GWP-based emission 

conversions are applied from 1890 onward when literature estimates of the 

anthropogenic CH4 and N2O emissions are available (van Aardenne et al., 2001). CH4 
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and N2O are distinct GHGs in terms of their lifetimes and feedbacks, with which the 

essence of this paper can be derived. Testing HFCs, which currently dominate the Clean 

Development Mechanism (CDM) market, would be an extension of our study. 

 Figure 3a shows the temperature projections when the CH4 emissions are 

converted to equivalent CO2 emissions based on the IPCC GWPs with the 20-, 100-, 

and 500-year time horizons. In all the three cases, the temperature projection is not well 

reproduced. In particular, the temperature projection using the 100-year CH4 GWP is 

always lower than the baseline temperature projection. A similar result is obtained for 

the corresponding N2O experiment (Figure 3b). That is, the historical data indicate that 

non-CO2 gases should be valued more than they currently are by the 100-year GWPs. 

The deviations are larger in the CH4 experiment than in the N2O experiment because the 

CH4 radiative forcing is larger and because the CH4 GWP is more sensitive to the time 

horizon due to its short lifetime (Figures 1a-b). 

Could it be that the baseline temperature projections are not reproduced because 

we use an arbitrary time horizon for the GWPs? We optimized the time horizon for each 

of CH4 and N2O such that the baseline temperature projection is best explained, by 

minimizing the squared distances between the GWP-based temperature and the baseline 

temperature between 1890 and 2000 (Table 3). The optimal time horizons for CH4 and 

N2O GWPs are about 40 years and 70 years, respectively. However, while in the CH4 

case the temperature projection using the optimal-horizon GWP appears to be a good fit 

to the baseline temperature projection (Figure 3a), in the N2O case the temperature 

projection using the optimal-horizon GWP lies considerably below the baseline 

projection (Figure 3b). 
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The puzzling results above at first sight are related to the fact that, regardless of 

the time horizons chosen, GWP values for CH4 and N2O only cover restricted ranges 

(Figures 1a-b). The CH4 GWP reaches its maximum with an extremely short time 

horizon of approximately 1.5 years and decreases thereafter due to its short lifetime. 

The N2O GWP is maximized with the time horizon of approximately 70 years and falls 

off on both sides. This is not easily explained because the N2O lifetime is close to the 

nominal CO2 lifetime of 150 years, which is actually a composite of several distinct 

lifetimes representing different carbon sinks. The point here is that these GWP ranges 

do not necessarily include the optimal values to reproduce the historical temperature. 

To elaborate the statement above, we use new GHG exchange metrics, TEMPs. 

A TEMP is a non-physical quantity that provides the best fit to the baseline temperature 

projection when it is used to convert non-CO2 GHG emissions to their CO2-equivalents. 

The TEMP for CH4 is approximately 41, equal to the optimal-horizon GWP for CH4. 

On the other hand, the TEMP for N2O is 377 whereas the optimal-horizon GWP for 

N2O is 310, equal to the maximum GWP. The disparity between the TEMP and the 

optimal-horizon GWP for N2O indicates that the range for the N2O GWP does not 

contain the value for the optimal temperature proxy. 

What causes the optimal value to be completely outside of the range in which 

the N2O GWP varies? The reasons lie in the fact that the IPCC GWP calculations 

assume a background system different from the ACC2 inversion results, as explored in 

the next section. 
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4. Metrics Sensitivities to Background System 

4.1. Optimization Period 

We repeat the same exercise for different optimization periods. The values of optimal-

horizon GWPs and TEMPs are progressively calculated every 10 years from the year 

1890 by including GHG emission estimates, temperature estimates, and so on for the 

added period. At the end of the exercise, the optimization length is completely expanded 

to 1890 – 2000, equivalent to the experimental setting discussed earlier. 

The disparity between the TEMPs and the optimal-horizon GWPs occurs for 

both CH4 and N2O but in different optimization lengths (Figures 4a-b). In particular, the 

N2O TEMPs exceed the maximum GWP in most of the cases, indicating that N2O 

GWPs do not approximate the temperature evolution. While the decreasing trend in the 

CH4 TEMPs can be easily explained by its short lifetime, the reason for the increasing 

trend in the N2O TEMPs is less explicit because the N2O lifetime is close to the nominal 

CO2 lifetime, which is actually a composite of several distinct lifetimes representing 

different carbon sinks. Importantly, the changing estimates for TEMPs over time justify 

the concept that a TEMP needs to be updated progressively with the acquisition of new 

observations. Although such time-dependency of a metric could be anticipated from the 

work of Wigley (1998), it is demonstrated here by using past data. 

 

4.2. CO2 Fertilization 

The dynamics of the carbon cycle assumed in the IPCC GWP calculations are 

substantially different from those obtained from the ACC2 inverse calculation. An 

important characterization of the carbon cycle is the CO2 fertilization effect, which is 

defined as the extent to which the net primary production of the terrestrial biosphere 
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increases with an increase in the atmospheric CO2 concentration, thus controlling the 

terrestrial carbon storage. The CO2 fertilization effect is a major uncertainty in the Earth 

system processes. When the uncertainty in the CO2 fertilization effect is constrained by 

a carbon budgetary approach, it is interdependent with the uncertainties in the CO2 

emissions due to land use change (Houghton, 2003) and unaccounted processes such as 

soil erosion (Lal, 2005). The CO2 fertilization effect is commonly parameterized 

logarithmically with a scaling constant called ‘beta factor.’ When the beta factor is 0.4, 

doubling the atmospheric CO2 concentration leads to an approximately 28% increase in 

the net primary production. The literature estimates of the beta factor vary substantially 

as follows: 0.287 (Kicklighter et al., 1999; Meyer et al., 1999), 0.4 (Gitz and Ciais, 

2003), 0.45 (Brovkin et al., 1997), and 0.15 to 0.6 (Kohlmaier et al., 1987). The baseline 

estimate of the beta factor is 0.59 (Table 1). 

Now we fix the beta factor at a very low level (= 0.2) and a low level (= 0.4) and 

perform inverse calculations for the respective cases. On the basis of these inversion 

results, same TEMP updating exercises are done. Figures 5a-b indicate that the weaker 

the CO2 fertilization, the lower the TEMPs. A low CO2 fertilization means less carbon 

storage in the terrestrial biosphere, implying a longer CO2 lifetime in the atmosphere. 

As a result, the influence of the CO2 emissions to the temperature is enhanced, lowering 

the TEMP for CH4 and N2O. In the case of very low CO2 fertilization, the N2O TEMP is 

always smaller than the maximum GWP, indicating that the N2O TEMP would be equal 

to the optimal-horizon GWP. This result indicates that the IPCC GWP calculations 

preassume a weaker carbon sink than our baseline. It should be noted that assuming the 

very low CO2 fertilization is not realistic because the associated inverse calculation 
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results show that the CO2 emissions have to be unacceptably low to counteract the 

atmospheric CO2 build-up owing to the very low CO2 fertilization. 

 

4.3. CH4 and N2O Lifetimes 

A lifetime of a gas here means the average period when a gas molecule stays in the 

troposphere. In the IPCC GWP calculations, the CH4 and N2O lifetimes adopt the 

estimates of IPCC (2001) (insert in Figures 1a-b) whereas, in the TEMP calculations, 

the CH4 and N2O lifetimes use the baseline estimates (Table 1). In the ACC2 inverse 

calculation, the uncertainties in the CH4 and N2O lifetimes are linked to the 

uncertainties in the natural CH4 and N2O emissions and the atmospheric CH4 and N2O 

concentrations. The estimate of the CH4 emission from wetlands is not well-established 

mostly because of the poor knowledge in the global wetland distribution. The estimate 

of the agricultural N2O emission due to fertilizer application involves a relatively large 

uncertainty. 

Here, we perform three hypothetical inversions for low, middle, and high CH4 

and N2O lifetimes and then calculate the TEMP values. Figures 5c-d indicate that a 

longer lifetime of CH4 or N2O leads to a higher TEMP. This is due to the fact that an 

increase in the CH4 or N2O lifetime enhances the influence of the CH4 or N2O emissions 

to the temperature, resulting in a higher TEMP. 

 

4.4. Climate Sensitivity 

The climate sensitivity is defined as the equilibrium surface air temperature change after 

doubling the CO2 concentration from the preindustrial level. The uncertainty in the 

climate sensitivity has been a major problem in climate projections. The state-of-the-art 
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General Circulation Models (GCMs) indicate the climate sensitivity estimates in the 

range from 2.5 to 4.0°C (IPCC Working Group I, 2004). When the uncertainty in the 

climate sensitivity is constrained by observations, it is linked to the uncertainties in the 

aerosol forcing and the vertical ocean diffusivity. The maximum likelihood estimates 

obtained from such inversion approaches range between 2°C and 3.5°C (Forest et al., 

2002; Gregory et al., 2002; Knutti et al., 2003; Murphy et al., 2004; Kriegler, 2005; 

Stainforth et al., 2005; Hegerl et al., 2006). However, probability distributions obtained 

from inversion approaches cover widely from less than 1°C to more than 6°C (Hegerl et 

al., 2006). Ensemble runs of state-of-the-art models produce an even longer tail 

(Stainforth et al., 2005). 

We perform two inverse calculations by assuming high (= 5.0°C) and low (= 

2.5°C) climate sensitivities and calculate TEMPs for respective cases. The baseline 

estimate of the climate sensitivity is 3.75°C (Table 1). Figures 5e-f indicate that TEMPs 

vary only weakly with the climate sensitivity although TEMPs are positively correlate 

with the climate sensitivity. When the climate sensitivity is small, the inverse 

calculation produces a larger CO2 doubling forcing estimate than the baseline estimate, 

which dwarfs the radiative forcings of the agents other than CO2. This enhances the CO2 

influence to the temperature, lowering the CH4 and N2O TEMPs. 

 

4.5. Dynamic Equations 

There is a positive feedback for the CH4 concentration to its own concentration due to 

coupling of various chemical processes involving tropospheric OH. In contrast, a 

smaller negative feedback for the N2O concentration to its own concentration exists due 

to chemical processes in the N2O-NOy-O3 system (Prather, 1998). These nonlinearities 
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are included in the ACC2 inverse calculation but not in the IPCC GWP calculations. 

Thus, we perform a new inverse calculation by removing both of the CH4 and N2O 

feedbacks hypothetically. 

There are negative feedbacks for the radiative forcings for abundant GHGs to 

their own radiative forcings because of the saturation effects of the associated long-

wave absorption bands. In ACC2, the CO2 radiative forcing is parameterized 

logarithmically with the CO2 concentration (IPCC, 2001, Table 6.2). Each of the CH4 

and N2O radiative forcings is defined as a square root function of its concentration 

(IPCC, 2001, Table 6.2). In addition, the overlap effects of the long-wave absorption 

bands between the CH4 and N2O (IPCC, 2001, Table 6.2) are parameterized in ACC2. 

However, these nonlinearities stemming from the saturations and overlaps of the 

absorption bands are not accounted for in the IPCC GWP calculations. Thus, we 

perform another inverse calculation by replacing such nonlinear concentration-forcing 

relationships with hypothetical linear relationships using associated radiative 

efficiencies (IPCC, 2001, Table 6.7). 

The results of the two experiments are shown in Figures 5g-h, showing that the 

differences in the functional forms of the concentration-forcing relationships go some 

way in explaining the disparity between TEMPs and GWPs. Thus, it can be concluded 

that the linear assumptions in the concentration-forcing functional relationships in the 

IPCC GWP calculations is a factor explaining the limitation in GWPs as temperature 

proxies. 
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5. Conclusions 

The use of a single constant index such as the TEMP for CH4 or N2O can reproduce 

well the historical temperature record. The value of this index for CH4 corresponds to a 

GWP with a time horizon shorter than that used in current climate policy. However, the 

value for N2O lies entirely outside the range of GWP values associated with any time 

horizon. Such a disparity is caused by the fact that the GWP calculations assume 

background system states and dynamics different from the ACC2 inversion results. 

GWPs would be a better approximation for historical temperature if the CO2 

fertilization is weaker, if the CH4 and N2O lifetimes are shorter, if the climate sensitivity 

is lower, if the CH4 and N2O feedbacks to their own concentrations could be negligible, 

and if the concentration-forcing functional relationships were linear. However, most of 

these conditions would not be satisfied, reinforcing the earlier finding that GWPs do not 

properly serve as temperature proxies by construction and supporting the conclusion 

that indices higher than the Kyoto GWPs are needed to reproduce the historical 

temperature. 

This paper demonstrates a way of calculating an index that can reproduce well a 

particular scenario of emissions and temperature change outcomes – i.e., the observed 

historical scenario. Further work is necessary to examine how the value of such an 

index changes in the future under different emission scenarios and if a set of such 

indices is an effective policy instrument to control the non-CO2 GHG emissions to 

achieve certain climatic goals. 
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Figures 1a-b. GWPs of CH4 and N2O with the change in time horizon. The estimates of 

the lifetimes and IPCC GWPs are taken from Table 6.7 of IPCC (2001). The GWP 

curves are calculated based on Table 3. 
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Figures 2a-e. ACC2 inverse calculation results. In the ‘inversion’ case, all the parameter 

values are estimated by the inverse calculation while, in the ‘no inversion’ case, they are 

fixed at the respective prior values. 
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Figures 3a-b. Temperature projections with CH4 and N2O emissions converted based on 

GWPs and TEMPs. Note that the temperature projection with the CH4 emissions 
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converted based on the TEMP is identical with that based on the optimal-horizon GWP 

(see text). 
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Figures 4a-b. Optimal-horizon GWPs and TEMPs with sequential acquisitions of 

measurements. GWPs and TEMPs are updated every 10 years from 1890 till 2000. 



Tanaka et al.: GWPs as Historical Temperature Proxies 
Working Paper FNU-118 (September 27, 2006) 

 33 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP (Beta = 0.2)

TEMP (Beta = 0.4)

TEMP (Beta = 0.59) *baseline

a) CH4

Maximum GWP

100-year GWP

 

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP (Beta = 0.2)

TEMP (Beta = 0.4)

TEMP (Beta = 0.59) *baseline

b) N2O

100-year GWP

Maximum GWP

 



Tanaka et al.: GWPs as Historical Temperature Proxies 
Working Paper FNU-118 (September 27, 2006) 

 34 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP (CH4 lifetime = 13.8 years)

TEMP (CH4 lifetime = 9.6 years) *IPCC

TEMP (CH4 lifetime = 8.5 years) *baseline

TEMP (CH4 lifetime = 6.5 years)

c) CH4

100-year GWP

Maximum GWP

 

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP (N2O lifetime = 137 years)

TEMP (N2O lifetime = 110 years) *IPCC

TEMP (N2O lifetime = 114 years) *baseline

TEMP (N2O lifetime = 97 years)

d) N2O

Maximum GWP

100-year GWP

 



Tanaka et al.: GWPs as Historical Temperature Proxies 
Working Paper FNU-118 (September 27, 2006) 

 35 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP (Climate sensitivity = 2.5°C)

TEMP (Climate sensitivity = 3.75°C) *baseline

TEMP (Climate sensitivity = 5.0°C)

e) CH4

100-year GWP

Maximum GWP

 

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP (Climate sensitivity = 2.5°C)

TEMP (Climate sensitivity = 3.75°C) *baseline

TEMP (Climate sensitivity = 5.0°C)

f) N2O

Maximum GWP

100-year GWP

 



Tanaka et al.: GWPs as Historical Temperature Proxies 
Working Paper FNU-118 (September 27, 2006) 

 36 

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP *baseline

TEMP (No CH4 and N2O concentration feedbacks)

TEMP (No absorption bands saturation and overlap)

g) CH4

100-year GWP

Maximum GWP

 

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100 110

Optimization length from 1890 (year)

T
E
M
P
 o
r 
G
W
P
 (
1
)

TEMP *baseline

TEMP (No CH4 and N2O concentration feedbacks)

TEMP (No absorption bands saturation and overlap)

h) N2O

Maximum GWP

100-year GWP

 

Figures 5a-h. Sensitivities of TEMPs to the baseline system states and dynamics: a,b) 

CO2 fertilization; c,d) CH4 and N2O lifetimes; e,f) climate sensitivity, and g,h) dynamic 

equations. 
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Table 1. Parameters defined in the ACC2 inverse calculation 
 

Names Prior mean 2σ prior uncertainties Posterior estimates 
Anthropogenic CO2 emissions due to fossil fuel 
combustion (time series) 

Marland et al. (2003) between 1750 and 2000 
 

±8% of the prior mean 
(Marland et al., 2003) 

Tanaka et al. (in prep) 

Anthropogenic CO2 emissions due to land use 
change (time series) 

Houghton (2003) between 1850 and 2000 
Linear extrapolation between 1750 and 1849 
Zero emission assumed in 1750 

±100% of the prior mean 
(±50% in Houghton (2003)) 

Tanaka et al. (in prep) 

Anthropogenic CH4 emissions (time series) van Aardenne et al. (2001) between 1890 and 2000 
Nonlinear extrapolation between 1750 and 1890 
Zero emission assumed in 1750 

±50% in 2000, ±100% in 1970 
±150% between 1890 and 1950 
Linear interpolation between the periods 
Absolute uncertainty ranges assumed constant before 1890 
(van Aardenne et al., personal communication) 

Figure 1a 

Anthropogenic N2O emissions (time series) van Aardenne et al. (2001) between 1890 and 2000 
Linear extrapolation between 1750 and 1890 
Zero emission assumed in 1750 

±50% in 2000, ±100% in 1970 
±150% between 1890 and 1950 
Linear interpolation between the periods 
Absolute uncertain ranges assumed constant before 1890 
(van Aardenne et al., personal communication)  

Figure 1b 

Missing radiative forcing (time series) Zero forcings assumed between 1750 and 2000 *1.0 W/m2 between 1750 and 1950 
*0.5 W/m2 between 1951 and 2000 

Tanaka et al. (in prep) 

Natural oceanic CO2 degassing (constant) 0.24 GtC/year 
(0.48 GtC/year (Mackenzie and Lerman, 2006)) 

±0.24 GtC/year (see left) 0.29 GtC/year 

Natural terrestrial CO2 uptake (constant) 0.30 GtC/year 
(0.36 - 0.6 (Mackenzie and Lerman, 2006)) 

±0.15 GtC/year (see left) 0.22 GtC/year 

Beta factor to parameterize CO2 fertilization 0.4 (references in text) Between 0.1 and 0.7 (references in text) 0.59 
Ocean mixed layer temperature in 1750 17°C Between 12 and 22°C 22.7°C 
Amplification factor from air temperature 
change to ocean temperature change 

1.0 Between 0.5 and 1.5 0.29 

Q10 for terrestrial respiration 2.0 Between 1.5 and 2.5 1.92 
Natural CH4 emissions (constant) 210 MtCH4/year (IPCC, 2001, Table 4.2) Between -30 and 450 MtCH4/year (IPCC, 2001, Table 4.2) 320 MtCH4/year 
Natural N2O emissions (constant) 10.2 MtN/year (IPCC, 2001, Table 4.4) Between 7.8 and 12.6 MtN/year (IPCC, 2001, Table 4.4) 11.3 MtN/year 
CH4 lifetime with respect to OH depletion 9.6 year (IPCC, 2001, Table 4.3) Between 5.4 and 13.8 year (IPCC, 2001, Table 4.3) 8.5 year 
N2O lifetime 110 year (IPCC, 2001, Table 4.5) Between 83 and 137 year (IPCC, 2001, Table 4.5) 114 year 
Doubling CO2 forcing 3.7 W/m2 (IPCC, 2001, pp356-357) Between 3.3 and 4.1 W/m2 (IPCC, 2001, pp356-567) 3.57 W/m2 
Climate sensitivity 3.5°C (references in text) Between 0.5 and 6.5°C (references in text) 3.75°C 
* A three-times larger uncertainty range is assumed when the absolute magnitude of the volcanic radiative forcing is larger than 0.5 W/m2. 
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Table 2. Data defined in the ACC2 inverse calculation 
 

Names Periods Measurement types Temporal resolutions 2σ measurement uncertainties Data sources 
1750-1968 Ice core sampling 

(Law Domes, Antarctica) 
75-year cutoff spline fit with 5-year 
intervals (1750-1830) 
25-year cutoff spline fit with 1-year 
intervals (1832-1968) 
Linear interpolations between the 
data points 

*1.2 ppm Etheridge et al. (1996) Atmospheric CO2 concentration 

1969-2000 Station measurements 
(Mauna Loa, Hawaii) 

Annual fit *0.8 ppm 
(0.2 ppm in the literature) 

Keeling et al. (2005) 

1750-1850 Etheridge et al. (1998) 
1851-1983 

Ice core sampling 
(Law Domes, Antarctica; 
Summit, Greenland) 

75-year cutoff spline fit with 10-year 
intervals (1750-1900) 
12.5-year cutoff spline fit with 2-
year intervals (1900-1984) 

*5 ppb 
Etheridge et al. (1998) compiled by 
Hansen and Sato (2004) 

Atmospheric CH4 concentration 

1984-2000 Station measurements 
(CMDL global air sampling 
network) 

Annual fit *3 ppb NOAA CMDL (Dlugokencky, personal 
communication) compiled by Hansen 
and Sato (2004) 
Masarie et al. (2001) Table 1 

1750-1961 Ice core sampling 
(Summit, Greenland) 

300-year cutoff spline fit with 1-year 
intervals 

*Time variant Flückiger et al. (1999); Flückiger 
(personal communication) 

1962-1977 Ice core sampling 
(H15, Antarctica) 

50-year cutoff spline fit with 1-year 
intervals 

*Interpolation Machida et al. (1995) compiled by 
Hansen and Sato (2004) 

Atmospheric N2O concentration 

1978-2000 Station measurements 
(CMDL global air sampling 
network) 

Annual fit *0.5 ppb NOAA CMDL Flask Data compiled by 
Hansen and Sato (2004) 
Masarie et al. (2001) Table 1 

1750-1860 (Assumption) Linear extrapolation to the origin 
from 1860 to 1750 

Average uncertainties between 
1865 and 2000 

N/A Anthropogenic oceanic CO2 uptake 

1861-2000 C4MIP GCMs 10-year moving average Maximums and minimums of 
GCMs runs (=1σ) 

Friedlingstein et al. (2006) 

1750-1860 (Assumption) Linear extrapolation to the origin 
from 1860 to 1750 

Average uncertainties between 
1865 and 2000 

N/A Anthropogenic terrestrial CO2 uptake 

1861-2000 C4MIP GCMs 10-year moving average Maximums and minimums of 
GCMs runs (=1σ) 

Friedlingstein et al. (2006) 

1750-1855 Multi-proxy 1-year intervals *0.36°C 
 

Jones et al. (1998) for mean 
Mann and Jones (2003) for uncertainties 

Surface air temperature 

1856-2000 Instrumental Annual fit *0.20°C (1856-1860) 
*0.05°C (2000) 
*Linear interpolation between 
the periods 

Jones et al. (2006) 

* A three-times larger uncertainty range is assumed when the absolute magnitude of the volcanic radiative forcing is larger than 0.5 W/m2. 
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Table 3. Information used for GWP calculations. The estimates of the lifetimes and radiative efficiencies are taken from Table 6.7 of IPCC 

(2001). The CO2 lifetime is merely nominal; the complex removal processes of CO2 from the atmosphere cannot be represented by a single 

lifetime. In the GWP calculations, the CO2 uptake is described by the impulse response function )(TR  (equation 10-6 of WMO (1999)) as 

follows: 
32

2

3367107000279400

4.73072240279400
)(

TTT

TT
TR

+++

++
= , where T  denotes the time in years. The estimates of the conversion units are taken 

from Table 2 of Fuglestvedt and Berntsen (1999). They are linearly correlated with the associated molecular weights. Our calculation that 

originally attempted to compute only the direct CH4 GWPs consistently underestimates the corresponding IPCC estimates by 

approximately 20%. Thus, we make an upward correction on our CH4 GWP estimates by 25% as the indirect contribution. 

* The denominator is ppm in the case of CO2. 

 
 

Molecular Weights Conversion Units Lifetimes Radiative Efficiencies 
Names of GHGs 

 *(kg/ppb) (year) *(W/m2/ppb) 

CO2 44 1210471.0 ×  (150) 0.01548 
CH4 16 91075.2 ×  12 0.00037 
N2O 44 91080.4 ×  114 0.0031 
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