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ABSTRACT: This paper deals with the prevailing formal model for knowledge in contempo-

rary economics, namely the state-space model introduced by Robert Aumann in 1976. In par-

ticular, the paper addresses the following question arising in this formalism: in order to state 

that an event is interactively or commonly known among a group of agents, do we need to as-

sume that each of them knows how the information is imparted to the others? Aumann an-

swered in the negative, but his arguments apply only to canonical, i.e., completely specified 

state spaces, while in most applications the state space is not canonical. This paper addresses 

the same question along original lines, demonstrating that the answer is negative for both ca-

nonical and not-canonical state spaces. Further, it shows that this result ensues from two coun-

terintuitive properties held by knowledge in the state-space model, namely Substitutivity and 

Monotonicity. 
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1    INTRODUCTION  

Models of economic theory are peopled by agents who take actions on the basis of their 

knowledge and beliefs about the world, and about each other’s knowledge and beliefs. The 

prevailing formal model for knowledge in contemporary mainstream economics was intro-

duced by Robert Aumann in a seminal paper published in 1976.1 Aumann’s basic idea is that 

an agent knows an event if, in every state of the world the agent considers possible, that event 

occurs. This idea is formalized in a set-theoretic setting where the knowledge of an agent be-

comes an operator K  mapping subsets of the space of the states of the world Ω  into other sub-

sets of Ω . Aumann’s model of knowledge and the generalizations of his model have been 

variously labeled as the event-based approach, possibility correspondence model, semantic 

formalism, knowledge space, Aumann structures, and state-space model of knowledge. The lat-

ter name will be adopted here. 

The state-space model makes it possible not only to represent what each agent knows 

about the world, but also what each agent knows about what other agents know about the 

world. This kind of knowledge – knowledge of what others know – is called interactive knowl-

edge. In strategic environments interactive knowledge has important consequences on the ac-

tions agents take. Consider Ann and Bob, who both observe a certain event E . For instance, E  

may be Ann’s effort in a principal-agent game or Ann’s planned output in a duopoly game. If 

Ann is uncertain whether Bob knows E  she may choose a low effort (“Maybe Bob won’t find 

out”) or a low output (“I don’t know what Bob’s costs are or what he knows about my costs, so 

it’s better to keep my output low”). In contrast, if Ann knows that Bob knows E , she will 

probably choose a high effort (“I’d better work hard, or he’ll fire me”) or a high output (“Well, 

I’m a Stakelberg leader, and Bob will adapt”). 

Given its strategic importance, it is fundamental to understand clearly how interactive 

knowledge works in the state-space model. At an intuitive level, it seems that interactive 

knowledge of an event requires the additional assumption that agents know how information is 

imparted to the others: Ann needs to know how information is imparted to Bob in order to 

know that he knows E , otherwise Ann would have no clue about what Bob knows. In fact, it 

turns out that in the state-space formalism interactive knowledge requires no additional as-

sumption about the knowledge of other agents’ informational structure. The first contribution 

of the present paper is to clarify what are the formal features of the knowledge operator K  

provoking this counterintuitive behavior of interactive knowledge in the state-space model. 

In effect there are multiple levels of interactive knowledge. Level 1 is the one discussed 

above: it is about what each agent knows about what other agents know about the world. Level 

 
1 In philosophy the formal analysis of knowledge dates back to Hintikka (1962). 
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2 is about what each agent knows about what other agents know about her/his knowledge of 

the world. The staircase of levels of interactive knowledge escalates in the predictable way. A 

specific kind of interactive knowledge is common knowledge. An event is said to be common 

knowledge among a group of agents if all know it, all know that all know it, and so on ad infi-

nitum.2 

Besides interactive knowledge of level 1, interactive knowledge of higher levels and 

common knowledge are also of great consequence in strategic environments. For instance, con-

sider interactive knowledge of level 2: if Bob knows that Ann knows that he is able to observe 

her effort, Bob may think that Ann’s commitment to the firm is not sincere, and decide to fire 

her even if she works hard. As regards common knowledge, some elements of the game are 

typically assumed to be commonly known among the players, and this assumption has a key 

role in equilibrium analysis. More precisely, in games of complete information, the set of play-

ers, the set of strategies, and the payoff functions are assumed to be common knowledge 

among the players. In games of incomplete information, players usually have prior probability 

distributions about the unknown variables, and such distributions are typically taken to be 

common knowledge. Furthermore, some important game-theoretic solution concepts require 

that each player is rational, and that the rationality of the players is common knowledge among 

them.3 Finally, common knowledge of posterior probabilities is essential for so-called “agree-

ing to disagree” results, and common knowledge of willingness to trade for no-trade theorems.4 

When higher levels of interactive knowledge or common knowledge are involved, the 

question about the knowledge of other agents’ informational structure comes out again, at 

higher levels. Level 2 of interactive knowledge of an event raises a question about level 1 of 

interactive knowledge: to say that Bob knows that Ann knows that he knows her effort, does 

Bob need to know that Ann knows how the information is imparted to him? More generally, if 

we consider level n  of interactive knowledge, level ( 1)n−  of interactive knowledge of the 

agents’ informational structure seems to be involved, so that when common knowledge is at is-

sue the question becomes: to state that a certain event E  is common knowledge among a group 

of agents, do we need to assume that the way information is imparted to them is itself common 

knowledge? Again, even if the intuitive answer is in the affirmative, it turns out that in the 

state-space model common knowledge of an event requires no additional assumption about the 

 
2 To circumvent the infinitely recursive nature of this definition of common knowledge, a number of alternative 

characterizations of it have been proposed. On them, see Geanakoplos (1992, 1994) as well as Vanderschraaf 

and Sillari (2005). However, these alternative characterizations play no role in the current contribution. 
3 More on this in Brandenburger (1992, 2007); Dekel and Gul (1997); Battigalli and Bonanno (1999). 
4 The seminal paper for “agreeing to disagree” results is, again, Aumann (1976); for no-trade theorems it is Mil-

grom and Stokey (1982). 
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agents’ knowledge of the way information is imparted to them. The second contribution of the 

paper is to show that the counterintuitive behavior of common knowledge in the state-space 

model originates from the same formal features of the knowledge operator K  that provoke the 

counterintuitive behavior of interactive knowledge. 

The puzzles surrounding interactive and common knowledge in the state-space model 

have already been discussed by Aumann, but in a way that does not appear completely satisfac-

tory.5 The main problem with Aumann’s arguments is that they affect only so-called canonical 

state spaces, that is, state spaces that are completely specified. However most applications em-

ploy a reduced state-space that is not canonical, so Aumann’s arguments do not apply. Whereas 

Aumann’s case is based on the notion of state of the world, the present paper addresses the 

topic along different lines. Its basic insight is a methodological distinction between the intui-

tive and philosophical understanding of knowledge on the one hand, and knowledge as mod-

eled in the state-space model through the operator K  on the other. In effect, K  possesses a 

number of properties that are at odds with both commonsense and the philosophical analysis of 

knowledge, and the counterintuitive behavior of interactive and common knowledge in the 

state-space model can be explained by two of these properties, namely Substitutivity and 

Monotonicity. Substitutivity says that, if two events E  and F collect the same states of the 

world, when the agent knows E  she also knows F . Although Substitutivity has attracted little 

attention among economists, it turns out to be not only a demanding property of K  but also 

one that is intrinsic to any set-theoretic knowledge operator, so that it appears difficult to get 

rid of. Monotonicity states that, if event E  is a subset of event F , when the agent knows E  

she also knows F . Monotonicity is stronger than Substitutivity (the former implies the latter), 

and its unrealistic character has been thoroughly examined in the literature. Unlike Substitutiv-

ity, however, Monotonicity can be easily eliminated through minor modifications in the defini-

tion of the operator K . 

The paper shows that, when interactive and common knowledge are at issue, in some 

cases Substitutivity alone suffices to make superfluous any additional assumption about the 

agents’ knowledge of the way information is imparted to other agents. Moreover, whenever 

Substitutivity alone does not suffice, Monotonicity does. These results hold for both canonical 

and non-canonical state spaces, so that the present contribution may be seen as a completion of 

Aumann’s analysis. 

 
5 See in particular Aumann (1976, p. 1237; 1987, p. 9; 1999, pp. 272–3, 276–8; 2005, pp. 92–4). Other contribu-

tions to the discussion are Gilboa (1988); Brandenburger and Dekel (1993); Margalit and Yaari (1996); Hart, 

Heifetz and Samet (1996); Dekel and Gul (1997); Heifetz and Samet (1998); Heifetz (1999); Fagin, Geanakop-

los, Halpern and Vardi (1999); Aumann and Heifetz (2002, Appendix); Cubitt and Sugden (2003, Appendix 

2); Sent (2006). 
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Some final specifications on scope and intended audience of the current contribution are 

in order. First, in the philosophical discussion, one of the characteristics that distinguishes 

knowledge from belief is that knowledge is assumed to be truthful while belief can be false. In 

fact, knowledge is traditionally defined by philosophers as “justified true belief”.6 In the state-

space model, on the contrary, nothing prevents knowledge from being false, so that in fact the 

present paper covers not only knowledge but also belief. 

Second, an important subset of state-space models is partitional models. Since these have 

a number of nice properties (among other things, in them knowledge is always truthful), much 

of the literature focuses on them. Since neither Substitutivity nor Monotonicity depends on the 

conditions that make the state space partitional, the arguments made in the present paper hold 

for both partitional and non-partitional state-space models. 

Third, in the state-space model of knowledge, agents consider possible certain states of 

the world in Ω , and impossible the other states, but they are not endowed with probability dis-

tributions that represent their beliefs about Ω . If we first add to the model a probability distri-

bution for each agent, then introduce a belief operator B  that identifies the probability as-

signed by an agent to any given event, and finally redefine knowledge as “belief with probabil-

ity 1”, we obtain a different model that is variously labeled as probabilistic belief space, prob-

abilistic structure or Harsanyi type space. There are a number of analogies between the state-

space model and the probabilistic belief space, and in particular the issue about interactive and 

common knowledge arising in the former has an analog in the latter. However, the answers to 

the issue diverge in the two formalisms. This is mainly due to the circumstance that in prob-

abilistic belief spaces the probability measures defining the belief operator B  endow it with 

certain continuity properties that the knowledge operator K  fails to have. Now, the present pa-

per deals only with interactive and common knowledge in the state-space model, and does not 

examine the analogous issue in probabilistic belief spaces.7 

Fourth, the state-space model of knowledge employs set-theoretic tools that are familiar 

to economists. There is another model of knowledge, mainly elaborated by logicians and phi-

losophers, that employs the language and tools of logics and has been variously called the 

logic-based approach, the syntactic formalism, Kripke structure or simply epistemic logic.8 The 

parallels between the state-space model and the logic-based approach have been explored by 
 
6 For an introduction to the definition of knowledge as “justified true belief”, and the refinements of this defini-

tion as a consequence of the so-called Gettier problem, see Steup (2006). 
7 On probabilistic belief spaces and their relationships to the state-space model, see Mertens and Zamir (1985); 

Monderer and Samet (1989); Brandenburger and Dekel (1993); Heifetz and Samet (1998, 1999a, 1999b); Bat-

tigalli and Bonanno (1999); Fagin, Geanakoplos, Halpern and Vardi (1999); Meier (2005); Mariotti, Meier and 

Piccione (2005). 
8 For a comprehensive presentation of the logic-based approach see Fagin, Halpern, Moses and Vardi (1995). 
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Michael Bacharach (1985) and Aumann himself (1989, 1999), among others. The logic-based 

formalism proved useful for understanding the properties of the knowledge operator K  and 

has other nice features, but its language remains unfamiliar to many economists. Therefore, the 

focus of the present paper is on the state-space model, and the questions about interactive and 

common knowledge are tackled and answered within this model. 

Finally, the paper is addressed to all scholars dealing with formal models of knowledge 

and interested in the notion of common knowledge. In particular, economists may be glad to be 

reassured that no additional assumption is surreptitiously introduced into their models when an 

event is said to be interactively or commonly known among a group of agents. However, they 

may be surprised that this depends on reasons other than those put forward by the standard 

view moulded by Aumann’s arguments. Furthermore, they may be concerned that assumptions 

about interactive and common knowledge are dispensable thanks to properties of the operator 

K  that neither commonsense nor philosophy judges plausible. As regards philosophers, they 

may consider the state-space model of knowledge and its internal riddles as “an economist 

thing”. However, philosophers in the analytic tradition are familiar with formal models of 

knowledge, and common knowledge has become a major topic of research for them.9 There-

fore, the internal puzzles of the state-space model (especially those involving common knowl-

edge) and the solution to those puzzles suggested here may be of interest for philosophers too. 

The paper is organized as follows. Section 2 reviews the state-space model of knowledge. Sec-

tion 3 illustrates through an example the puzzles surrounding interactive knowledge in the 

state-space model. Section 4 discusses Aumann’s solution to the puzzle. Section 5 examines 

Substitutivity and Monotonicity. Section 6 shows that Substitutivity and Monotonicity are suf-

ficient to clarify the counterintuitive behavior of interactive knowledge in the state-space 

model. Section 7 does the same for common knowledge. Section 8 sums up the paper. 

 

2 THE STATE-SPACE MODEL OF KNOWLEDGE 

Consider a set Ω  whose generic element is ω , and a correspondence { }∅→Ω Ω \2:P  that as-

sociates to each element Ω∈ω  a set )(ωP  of elements of Ω  ( Ω2  is the set of all subsets of 

Ω ). Based on P , define an operator ΩΩ → 22:K  as follows: for every Ω⊆E , 

{ }EPEK ⊆Ω∈= )(:)( ωω .10 

The interpretation of the above set-theoretic structure is the following. Ω  is the set of the 

 
9 For an introduction to the philosophical research on common knowledge see Vanderschraaf and Sillari (2005) 

and the references cited there. 
10 This review of the state-space model of knowledge is based on Osborne and Rubinstein (1994, Chapter 5); 

Dekel and Gul (1997); Battigalli and Bonanno (1999); Samuleson (2004). 
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possible states of the world. A state Ω∈ω  specifies all epistemic and non-epistemic aspects of 

the world that are relevant to the situation. The non-epistemic aspects of the world are those 

that do not involve the agents’ knowledge, that is, aspects such as “it rains” or “agent i  has 

transitive preferences”. In the literature, to indicate the whole of the non-epistemic aspects of 

the world the term nature is often used. The epistemic aspects of the world are those concern-

ing the agents’ knowledge about nature and about each other’s knowledge, e.g., aspects such as 

“agent i  knows that it rains” or “agent j  knows that agent i  knows that it rains”. 

Only one state of the world is the true one, but the agent may be uncertain about which 

one. This uncertainty is modeled by a correspondence P , which associates to each state ω  the 

set of states that the agent regards as possible at ω . This is why P  is called a possibility corre-

spondence.11 The possibility correspondence of an agent expresses formally the way informa-

tion is imparted to her. Notice however that possibility correspondences are just a tool that the 

external, omniscient model-maker employs to encode and represent the agents’ epistemic 

states, not something that they are aware of. 

A subset Ω⊆E  is called an event, and can be thought of as the collection of all states 

that share a certain feature. For instance, the event “it rains” collects all states Ω∈ω  character-

ized by rain. Note that, if EP ⊆)(ω , in all states the agent regards as possible in ω , the event 

E  occurs. The operator K  is interpreted as a knowledge operator: if )(EK∈ω , then at ω  the 

agent knows that the event E  occurs, and this is because in every state the agent regards as 

possible in ω  – that is, in )(ωP  – the event E  occurs. Observe that )(EK  is itself an event, 

the event “the agent knows E ”. As such, )(EK  may become the object of further knowledge 

or uncertainty for another agent. 

As an illustration of the state-space model of knowledge, suppose that Ann is interested 

in a variable v  that can take values from 1 to 6, like a die, and that each state of world is com-

pletely characterized by the value taken in it by v . This means that each state of world is com-

pletely characterized by its non-epistemic, or natural, aspects. Under these assumptions, there 

are six possible states of the world: { }654321 ,,,,, ωωωωωω=Ω . AP , the possibility correspon-

dence of Ann, is as follows: { }2121 ,)()( ωωωω == AA PP , === )()()( 543 ωωω AAA PPP  

{ }543 ,, ωωω , { }66)( ωω =AP . So if 1=v , Ann considers possible both 1=v  and 2=v ; if 3=v , 

Ann is uncertain whether 3=v , 4=v  or 5=v , and so on. 

Let us now consider the event S  “ v  is not greater than 3”. S  occurs at states 1ω , 2ω  and 

 
11 If P  satisfies the following two properties: (i) for every ω ∈ Ω , ( )Pω ω∈  and (ii) if ' ( )Pω ω∈ , 

( ') ( )P Pω ω= , then the state-space model is partitional. In particular, property (i) entails that knowledge is 

truthful. 
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3ω : { }321 ,, ωωω=S . In which states of the world does Ann know S? Since only in 1ω  and 2ω  

( )AP Sω ⊆ , Ann knows S  only in these two states: { }21,)( ωω=SKA . Note that )(SK A  is itself 

an event: the event that Ann knows that 3≤v . 

All this has an intuitive graphical representation. In Figure 1 below, the ovals stand for 

the sets )(ωAP  representing Ann’s knowledge and uncertainty about the true state of the world, 

whereas the rectangles stand for events: 

 

 

For future reference, notice again that if the true state is 1ω  Ann knows S : )(1 SK A∈ω . 

 

3 INTERACTIVE KNOWLEDGE: THE PUZZLE 

The state-space formalism can also be used to model interactive knowledge. The simplest set-

ting with two agents – Ann and Bob – will be considered here since this makes the discussion 

simpler without loss of generality. In this setting, iP  and iK , with { }BAi ,∈ , are the possibility 

correspondence and the knowledge operator of Ann and Bob, respectively. 

Assume that Bob’s possibility correspondence is as follows: { }11)( ωω =BP , =)( 2ωBP  

{ }323 ,)( ωωω =BP , { }5454 ,)()( ωωωω == BB PP , { }66)( ωω =BP . Consider now the event T  

“ 4≤v ” that occurs at states 1ω , 2ω , 3ω  and 4ω : =T  { }4321 ,,, ωωωω . It is easy to show that 

the states of the world where Bob knows that 4≤v  are 1ω , 2ω  and 3ω : { }321 ,,)( ωωω=TKB . 

)(TKB  is itself an event, and in our example it happens that the event S , “ 3≤v ”, and the 

event )(TKB , “Bob knows that 4≤v ”, occur exactly in the same states of the world: 

STK B =)( . This situation is represented in Figure 2: 

 

2ω  6ω  3ω  4ω  5ω  

S 

KA(S) 

1ω  Ann 
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Hence, if the true state is 1ω  Bob knows T : )(1 TKB∈ω . At this point, interactive knowledge 

enters the scene. We can ask whether at 1ω  Ann knows that Bob knows that 4≤v . Since 

)(TKB  is itself an event, in the state-space formalism the question can be restated as follows: 

does ))((1 TKK BA∈ω ? 

From an intuitive viewpoint, the answer is that it depends on what Ann knows about the 

way information is imparted to Bob. If Ann knows that in 1ω  Bob is certain that 1=v , and that 

in 2ω  Bob regards as possible both 2=v  and 3=v , then in 1ω  Ann can reason as follows: “I 

don’t know whether the true state is 1ω  or 2ω , but I’m sure that in both states Bob knows that 

4≤v “. Therefore, Ann does indeed know that Bob knows T . On the contrary, if Ann does not 

know how information is imparted to Bob in 1ω  and 2ω , neither does she know what Bob 

knows in these two states, and so cannot conclude that Bob knows T . In other words, the intui-

tive answer is that we do need to make some additional assumption about Ann’s knowledge of 

Bob’s informational structure to state that at 1ω  she knows that Bob knows T . 

However, consider the following, formalist-oriented objection to this intuitive answer. It 

was established that at 1ω  Ann knows S  (i.e., )(1 SK A∈ω ), and that the set of states where 

Bob knows T  coincides with S  (i.e., STK B =)( ). But if )(1 SK A∈ω  and STK B =)( , it is 

also the case that ))((1 TKK BA∈ω , that is, in fact at 1ω  Ann knows that Bob knows that 4≤v . 

And this is independent of any additional assumption about Ann’s knowledge of the way in-

formation is imparted to Bob. 

Still, from the intuitive viewpoint there is an obvious reply to the formalist objection: if 

Ann does not know how information is imparted to Bob, she is not aware that STK B =)( , so 

that she cannot go from )(SKA  to ))(( TKK BA . In other words, from Ann’s subjective view-

point, S  and )(TKB  are different events. To say that, for Ann, S  is subjectively equivalent to 

)(TKB , the additional assumption that Ann knows how information is imparted to Bob in 1ω  

and 2ω , is indeed necessary. 

2ω  6ω  3ω  4ω  5ω  

KB(T) = S 

1ω  

T 

Bob 
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Which stance is correct, the intuitive or the formalist one? 

 

4 AUMANN’S SOLUTION TO THE PUZZLE 

Since in the state-space model the way information is imparted to agent i  is formally repre-

sented by his possibility correspondence iP , one may think that our Ann-Bob puzzle reduces to 

the question whether at 1ω  Ann knows Bob’s possibility correspondence BP , and that this 

question could be easily answered by checking whether )(1 BA PK∈ω . The problem with this 

idea is that the knowledge operator K  applies to sets, not to possibility correspondences. 

Therefore, the very expression “knowledge of possibility correspondences” has no formal 

counterpart in the state-space model, and the expression )( BA PK  is meaningless in it. This is 

not just a technical issue. At a methodological and more substantial level, the point is that pos-

sibility correspondences exist for the model-maker, not for the agents in the model. As ob-

served in Section 2, possibility correspondences are in fact just a tool that the modeler employs 

to encode and represent the agents’ epistemic states, not something that they are aware of or 

even know. Therefore, the idea of solving the Ann-Bob puzzle by framing it in the terms of 

Ann’s knowledge of Bob’s possibility correspondence risks mixing up the viewpoint of the 

modeler with that of the agents, and hence could be misleading. 

Since 1976 Aumann has proposed a different solution to the puzzle, which is based on 

the very notion of state of the world and goes as follows.12 If the model is well specified, a 

state of the world should be a complete description of every epistemic and non-epistemic as-

pect of the world that is relevant to the situation. Therefore, a state of the world should contain 

also a description of the manner in which information is distributed among the agents when 

this is relevant to the situation. In our Ann-Bob example, assume for instance that at state 1ω  

Ann is uncertain about what Bob may know. Ann could think: “If 1=v , there are two alterna-

tives: either Bob knows that 1=v  or he wrongly believes that 6=v . And I do not know which 

alternative is the true one”. But if this is the case, our Ann-Bob model, where 

{ }654321 ,,,,, ωωωωωω=Ω  and each state of the world is characterized only by non-epistemic 

aspects, is ill-specified. In the correct model, in fact, the state 1ω  should be split into two 

states: '1ω  where 1=v  and Bob is certain that 1=v , and ''1ω  where 1=v  and Bob wrongly 

believes that 6=v . Accordingly, the state space Ω  should be expanded and Ann’s informa-

tional structure should be such that she cannot distinguish between '1ω  and ''1ω . 

More generally, if in a state of the world agent i  is uncertain about the way information 

 
12 See in particular Aumann (1976, p. 1237; 1987, p. 9). 
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is imparted to agent j , then that state should be broken into different states and Ω  should be 

expanded until the point where all uncertainty of agent i  about the informational structure of j  

is eliminated. Therefore, in the correct and complete state space Ω , which is also called ca-

nonical, each agent knows by construction how the information is imparted to the other agents. 

But this knowledge “is not an assumption, but a ‘theorem’, a tautology; it is implicit in the 

model itself” (Aumann, 1987, p. 9), that is, it is the outcome of the way the canonical state-

space model, as an economist’s tool to represent appropriately both the nature and the agents’ 

epistemic states, is built up. 

There are two problems with Aumann’s solution to the Ann-Bob puzzle. The first and 

minor one, already pointed out by Aumann himself and others, is that in some situations the 

construction of the canonical Ω  is precluded because no number of state splits is sufficiently 

large to exhaust all interactive uncertainty of the agents. In particular, this happens when no 

number of sentences is sufficiently large to describe the agents’ interactive uncertainty. How-

ever, these situations appear to be quite peculiar so that they do not affect Aumann’s solution 

to the puzzle in a significant way.13 

The second problem has received little attention in the literature but in my opinion is the 

major one. Aumann’s solution to the Ann-Bob puzzle requires that the interaction among the 

agents is modeled by using the canonical state-space. However most applications employ a re-

duced state-space, in which the states describe only the non-epistemic aspects of the situation 

at issue, and therefore are in fact just states of nature rather than states of the world. Reduced 

models are used because as soon as one attempts to split the states of nature in order to elimi-

nate interactive uncertainty and construct the canonical Ω , the state-space formalism loses its 

simplicity and tractability, and becomes a cumbersome machinery. In effect, also our formal 

representation of the Ann-Bob interaction is a reduced model: the six states 1 6ω ω−  represent 

only the different values the die can take, and the possibility correspondences of Ann and Bob 

express their uncertainty about these values alone, not about the other’s epistemic states. 

If the agents have no kind of interactive uncertainty about the epistemic states of the oth-

ers, then the reduced model is also canonical, and Aumann’s arguments work fine. However, 

when the model is not canonical Aumann’s case does not apply and the puzzle returns: to say 

that at state of nature 1ω  Ann knows that Bob knows that 4≤v , is any additional assumption 

about Ann’s knowledge of the way information is imparted to Bob necessary? The answer put 

forward in the present paper is in the negative: the properties of Substitutivity and Monotonic-

 
13 More on the cases where the construction of the canonical Ω is problematical in Aumann (1989, 1999); Hart, 

Heifetz and Samet (1996); Heifetz and Samet (1998); Heifetz (1999); Fagin, Geanakoplos, Halpern and Vardi 

(1999); Aumann and Heifetz (2002, Appendix). 
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ity that the knowledge operator K  holds by construction in the state-space model, make any 

additional assumption dispensable, and this not only in canonical state-space models, but also 

in reduced ones. This conclusion is in accord with Aumann’s, and the present contribution may 

in fact be seen as a completion of his case when non-canonical state spaces are involved. Let us 

now examine in more detail Substitutivity and Monotonicity. 

 

5 SUBSTITUTIVITY AND MONOTONICITY 

The state-space model of knowledge makes knowledge easy to handle in economic models, 

and captures certain features of the intuitive and philosophical understanding of knowledge. In 

effect, the idea that we know a fact when this fact takes place in any situation we consider pos-

sible sounds sensible. On the other hand, the definition of knowledge through K  implies some 

properties of knowledge that appear too demanding from the intuitive and philosophical view-

point, and have been discussed in the philosophical, economic and artificial intelligence litera-

ture under the banner of the logical omniscience problem. The present paper focuses on two 

properties of K : Monotonicity, which has already attracted considerable attention among 

economists, and Substitutivity, which on the contrary has been rather neglected by the profes-

sion.14 

 
5.1 Substitutivity 

Substitutivity states that, if two events collect exactly the same states of the world, when the 

agent knows one event she also knows the other. Formally: 

 
Substitutivity: if FE = , then )()( FKEK = . 

 
Although Substitutivity may appear a quite natural property of knowledge, a brief aside on the 

philosophical notions of extension and intension will show that it is not.15 

Arguably since Medieval discussions about the status of universals, philosophers have 

recognized that there is a difference between what a linguistic expression designates and what 

it means. What a linguistic expression designates consists of a set of things to which the ex-

pression applies, and has been labeled as denotation by John Stuart Mill (1843), reference by 

Gottlob Frege (1892), and extension by Rudolf Carnap (1947). Carnap’s terminology has be-
 
14 On the logical omniscience problem, see the references cited in note 10, as well as Dekel, Lipman and Rus-

tichini (1998) and Fagin, Halpern, Moses and Vardi (1995, Chapter 9). On Substitutivity in particular, see 

Bacharach (1986) and Vilks (1995, 2007). In the logic-based approach Substitutivity is usually called the 

Equivalence Rule. Lismont and Mongin (1994, 2003), as well as Ferrante (1996), have introduced logical 

models of knowledge that are based on so-called Montague-Scott or neighbourhood semantics, and where, at 

least to a certain extent, Monotonicity is replaced with the weaker Equivalence Rule. 
15 This aside is largely based on Bealer (1998); Christmas (1998); Fitting (2007). 
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come standard in contemporary philosophy and will be adopted here. So, for instance, the ex-

tension of the term “computer” is the set of existing computers. What a linguistic expression 

means is the notion or idea conveyed by the expression, and has been called connotation by 

Mill, sense by Frege, and intension by Carnap. The intension of “computer” is the idea of an 

electronic machine that can store, retrieve, and process data. 

Two expressions can have the same extension but different intensions. Frege proposed 

the example of the morning star, which is the star that can be seen at sunrise, and the evening 

star, the star that appears at sunset. The morning star and the evening star have different inten-

sions but the same extension, since both designate the planet Venus. Other expressions with 

different intensions but equal extension are “51” and “17 × 3”, or “equilateral triangle” and 

“equiangular triangle”. 

In certain contexts, extensional equality is sufficient to apply the so-called principle of 

substitutivity, according to which equals can be substituted by equals in any statement without 

modifying the truth-value of the statement. Contexts where substitution of equals requires only 

extensional equality are called extensional contexts. Classical logic, mathematics and standard 

set theory, that is, Zermelo-Fraenkel set theory, are typical instances of extensional contexts. 

Contexts in which intension also matters, and in which extensional equality alone does not 

warrant the principle of substitutivity, are called intensional contexts. Typical examples of in-

tensional contexts are statements involving verbs of propositional attitude such as “believes”, 

“wants”, “knows”. For instance, even if Ann knows that the morning star is Venus, she may 

not know that the evening star is also Venus. Even if Bob knows that the triangle in front of 

him is equilateral he may not know that it is also equiangular. 

One could think that the failure of the substitutivity principle in these two examples is 

due to the fact that the extensional equality among the expressions involved is only accidental, 

that is, non necessary: equilateral and equiangular triangles coincide in Euclidean geometry but 

may differ in some non-Euclidean system. Similarly, the evening star and the morning star are 

the same in the actual astronomical universe, but may be different in another possible universe. 

In effect, the principle of substitutivity can fail even when extensional equality is necessary, 

that is, holds in every imaginable universe. For instance, even if it is always the case that 17 × 

3 = 51, Carl may know that 17 × 3 is not prime but not know that 51 is not prime. Logical sys-

tems developed for intensional contexts are called intensional logics. Even if a number of in-

tensional logics have been proposed in the last 60 years, none of them has gained general ac-

ceptance.16 

 
16 The main systems of intensional logic are those proposed by Carnap (1947); Church (1951); Montague (1960, 

1970); Gallin (1975); Zalta (1988). 
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Going back to the state-space model, here we do not find linguistic expressions but sub-

sets of Ω  called events. However, we have seen that events are typically interpreted as set-

theoretic images of linguistic expressions like “it rains”, “v  is not greater than 3”, or “Bob 

knows that v  is not greater than 4”. According to this interpretation, the extension of an event 

is the set of states of Ω  constituting the event, whereas its intension is identified with the in-

tension of the linguistic expression represented by the event, e.g., the intension of “it rains”. 

Now, the problem with Substitutivity as a property of the knowledge operator K  is that 

it says that extensional equality ( FE = ) is sufficient to apply the substitutivity principle and 

deduce that )()( FKEK = : if Ann knows that the morning star is Venus, she must also know 

that the evening star is Venus. This means that in the state-space model, the contexts involving 

knowledge are purely extensional, and that the operator K  misses the intensional dimension 

that both philosophy and commonsense recognize in actual knowledge. 

In particular, in contexts involving interactive knowledge the extensional nature of K  

has an even more striking consequence: it entails that an agent may know what an other agent 

knows, even if the former has no clue about the way information is imparted to the latter. In 

fact, if a generic event E  and event ( )iK F  concerning agent i ’s knowledge are extensionally 

equal, Substitutivity applies with no need of additional assumptions, so that if agent j  knows 

E  she also knows that agent i  knows F . We will see this happening in the Ann-Bob puzzle. 

Note that Substitutivity draws from the axioms of Zermelo-Fraenkel set theory and the 

circumstance that K  operates on sets, rather than from the specific way K  is defined in the 

state-space model, that is, as { }EPEK ⊆Ω∈= )(:)( ωω . In fact, as far as K  has sets as its 

domain, and set E  is equal to set F , it must be that )()( FKEK = , and this independently of 

the proposed definition of K .17 Therefore, Substitutivity turns out to be a fundamental prop-

erty of any set-theoretic knowledge operator, that is, a property that cannot be removed by 

modifications of the standard K . This also means that any set-theoretic knowledge operator 

tacitly endows the agent with epistemic capabilities that appear problematic in the economic 

and philosophical interpretations of the state-space model. 

 
5.2 Monotonicity 

Monotonicity states that, if event E  is a subset of event F , when an agent knows E  she also 

knows F . Formally: 

 

 
17 Notice that Substitutivity is also independent of the two properties of P  that make the state-space partitional 

and were mentioned in note 11. 



 14 

Monotonicity: if FE ⊆ , then )()( FKEK ⊆ .18 

 
Clearly, when Monotonicity holds, so does Substitutivity. Monotonicity is usually interpreted 

as stating that the agent knows the implications of what she knows. This means that if the agent 

knows the axioms of a mathematical system, she also knows all the theorems that are valid in 

the system, and this appears at odds with ordinary intuitions about knowledge and the logical 

abilities of human beings. Here a slightly different interpretation of Monotonicity is suggested, 

which proves helpful in clarifying the counterintuitive behavior of interactive and common 

knowledge in the state-space model. 

According to the usual interpretation, Monotonicity seems to deal with the deductive ca-

pacities of the agent, so that it enters the scene only when the agent knows something and re-

mains silent otherwise. If the agent does not know the axioms of the system, Monotonicity has 

nothing to say about what theorems she knows. However, Monotonicity is much more perva-

sive. In fact, at any state ω  the agent knows and cannot avoid knowing the event )(ωP , that is, 

the event collecting all the states she regards as possible at ω . By Monotonicity, she also 

knows and cannot avoid knowing all the events that include )(ωP , i.e., all the events that are 

supersets of )(ωP . Therefore, Monotonicity enters the scene at any ω , and implies that there 

is always a number of events that the agent knows and cannot avoid knowing, namely )(ωP  

and its supersets. In a sense, at ω  )(ωP  and its supersets make themselves manifest to the 

agent. 

In the economic literature, this epiphanic character of K  has been noticed (and exploited 

for a number of results) with reference to a particular class of events called self-evident events 

or truisms.19 An event E  is said to be self-evident if, for every E∈ω , EP ⊆)(ω . Therefore, if 

E  is a self-evident event and E∈ω , then it is also the case that )(EK∈ω , i.e. )(EKE ⊆ . In 

words, whenever a self-evident event occurs the agent knows and cannot avoid knowing it. The 

interpretation of Monotonicity proposed here highlights that the epiphanic character of K  is 

not restricted to self-evident events, since in any state ω  there is a number of events that are 

immediately and necessarily known by the agent, namely )(ωP  and its supersets. 

Note that among the events that make themselves manifest to the agent, there may also 

be events concerning the knowledge of other agents. Since Monotonicity implies Substitutivity, 

 
18 To see why Monotonicity holds when { }( ) : ( )K E P Eω ω= ∈ Ω ⊆ , note that if ( )K Eω ∈  then ( )P Eω ⊆ . If 

E F⊆ , it is also the case that ( )P Fω ⊆ , and hence ( )K Fω ∈ . Notice that Monotonicity, like Substitutivity, 

does not depend on the two properties of P  that make the state-space partitional and were mentioned in note 

11. 
19 See e.g. Milgrom (1981), Geanakoplos (1992, 1994) and Binmore and Brandenburger (1989). 
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under Monotonicity, the epistemic capabilities of the agent already entailed by Substitutivity 

cannot become weaker. In effect, under Monotonicity these capabilities become even stronger: 

agent j  will know that agent i  knows event F  not only when ( )iK E  and ( )iE K F= , but also 

whenever ( )iE K F⊆ . 

From a philosophical viewpoint it can be argued that certain events related to sensations 

(e.g. “I see this object as white”) or thoughts (e.g. the Cartesian “I am thinking” or the analyti-

cal truth “A is A”) are immediately and necessarily known, and that any knowledge ultimately 

relies on this kind of event. However, in most real-world circumstances knowledge refers to 

states of affairs that do not make themselves manifest, and this certainly holds for mental states 

of other individuals. Therefore, even in the interpretation proposed here Monotonicity appears 

an unrealistic property of K . Moreover, to Monotonicity apply all criticisms of the extensional 

nature of K  discussed in relation to Substitutivity. It can be added that Dekel, Lipman and 

Rustichini (1998) have also shown that Monotonicity is incompatible with our intuitions about 

a feature of actual knowledge that is relevant for economic analysis, namely that an agent may 

be unaware of some possible events. 

Unlike Substitutivity, however, Monotonicity can be easily ruled out by slightly modify-

ing the standard definition of the knowledge operator K . Consider for instance a mapping 

2: 2X
Ω

Ω → , that associates to each state ω  a collection of subsets of Ω . X  may be inter-

preted as a “comprehension correspondence” that associates to each ω  the events that the 

agent is able to figure out in ω . ( )K E  may then be defined as follows: 

{ }( ) : ( )  & ( )K E P E E Xω ω ω= ∈Ω ⊆ ∈ , whereby ( )P ω  is the customary possibility corre-

spondence.20 The interpretation of this modified knowledge operator is that knowing an event 

requires not only that the event occurs in every state the agent regards as possible, but also that 

the agent can figure out the event at issue. For instance, if at 1ω  Bob is not able to figure out 

the meaning of “odd number”, although in all states he regards as possible at 1ω  the value of 

the die is odd, Bob does not know that it is. So, if { }1 3 5, ,O ω ω ω=  is the event “v  is an odd 

number”, 1( )BO X ω∉ , so that 1 ( )BK Oω ∉ , although 1( )BP Oω ⊆ . Whereas Substitutivity 

holds also for this modified knowledge operator, Monotonicity does not: FE ⊆  and ( )K E  no 

longer imply ( )K F , since it may be that ( )E X ω∈  but ( )F X ω∉ . 

 

6 INTERACTIVE KNOWLEDGE 

Let us now return to the Ann-Bob puzzle: is any additional assumption about Ann’s knowledge 
 
20 This definition of K  is largely inspired by Fagin, Halpern, Moses and Vardi (1995, Chapter 9). 
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of Bob’s informational structure necessary for Ann to know that Bob knows that 4≤v , i.e., the 

event )(TKB , at 1ω ? The intuitive answer was “Yes”: even if at 1ω  Ann knows S , i.e., that 

3≤v , and STK B =)( , if Ann does not have any clue about the way information is imparted to 

Bob, she is not aware that STK B =)( , so that she cannot go from knowing S  to knowing 

)(TKB . 

The analysis of Substitutivity put forward in Section 5.1 makes clear that this answer is 

erroneous. The error derives from interpreting the operator K  on the basis of the commonsen-

sical and philosophical understanding of knowledge, according to which intension matters. In 

fact, for both commonsense and philosophy even if S  and )(TKB  are extensionally equal, 

their intensional difference (“ 3≤v ” is intensionally different from “Bob knows that 4≤v ”) 

does not allow Ann to jump from )(SK A  to ))(( TKK BA . However, K  is not an exact copy of 

actual knowledge, and in particular K  obliterates the intensional dimension of knowledge. 

Therefore, the extensional equality of S  and )(TKB  is indeed sufficient to apply Substitutivity 

and go from )(SK A  to ))(( TKK BA , and this without any additional assumption about Ann’s 

knowledge of Bob’s informational structure. 

To this line of reasoning one may object that the Ann-Bob puzzle and its solution refer to 

a particular case, namely the one where STKB =)(  and Substitutivity applies. In effect, in gen-

eral Substitutivity does not suffice, and the stronger Monotonicity is needed. For instance, con-

sider event V  “ 5≠v ” that occurs at all states except 5ω : { }64321 ,,,, ωωωωω=V . It is easy to 

show that { }6321 ,,,)( ωωωω=VKB , so that ( )BK V S≠  and Substitutivity is ruled out. This 

situation is represented in Figure 3 below: 

 

Here at 1ω  Bob knows that 5≠v . Moreover, since { } { }1 1 2 1 2 3 6( ) , , , ,AP ω ω ω ω ω ω ω= ⊆ =  

( )BK V , at 1ω  Ann knows that Bob knows that 5≠v : 1 ( ( ))A BK K Vω ∈ . Does this require any 

additional assumption about Ann’s knowledge of the way information is imparted to Bob? If 

2ω  6ω  3ω  4ω  5ω  

 

1ω  

V 

S 

Bob 
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we think of the interpretation of Monotonicity suggested in Section 5.2, we see that this is not 

the case. In effect, since 1( ) ( )A BP K Vω ⊆ , at 1ω  the fact that Bob knows that 5≠v  makes it-

self manifest to Ann: Ann knows and cannot avoid knowing that Bob knows that 5≠v , and 

again this happens without any additional assumption about Ann’s knowledge of Bob’s infor-

mational structure. 

All this holds not only for event V , or the Ann-Bob pair: for any two agents i  and j , if 

at ω  i  knows event E , i.e. ( )iK Eω ∈ , and in all states j  regards as possible at ω  it happens 

that i  knows E , i.e., ( ) ( )j iP K Eω ⊆ , then j  knows that i  knows E : ( ( ))j iK K Eω ∈ . This 

does not require any additional assumption about j ’s knowledge of the way information is 

imparted to i , since by Monotonicity event ( )iK E  makes itself manifest to j . This clarifies 

the counterintuitive behavior of interactive knowledge in the state-space model. 

 

7 COMMON KNOWLEDGE 

As stated in the Introduction, an event is said to be common knowledge among a group of 

agents if all know it, all know that all know it, and so on, ad infinitum. Within the state-space 

model, an event E  is said to be common knowledge between Ann and Bob in the state of the 

world ω  – this is written as )(ECKAB∈ω  – if at ω  Ann knows E  in the sense of the operator 

K , Bob knows E  in the sense of K , Ann knows that Bob knows E  in the sense of K , and so 

on. Formally, )(ECKAB∈ω  if ω  belongs to every set of the infinite sequence )(EKA , 

)(EKB , ))(( EKK BA , ))(( EKK AB , )))((( EKKK ABA , )))((( EKKK BAB ,… 

If we look at this definition of common knowledge with the previous discussion in mind, 

it is natural to ask whether any additional assumption about common knowledge of their in-

formational structures is required to state that event E  is common knowledge between Ann 

and Bob. As in the case of interactive knowledge, the answer is in the negative. More specifi-

cally, sometimes it suffices to bring into play Substitutivity, whereas in general Monotonicity 

is needed. 

To see that sometimes Substitutivity suffices, consider the event W  “ 6=v ”, which oc-

curs only at 6ω : { }6ω=W . At 6ω , both Ann and Bob know W , since 6 6( ) ( )A BP Pω ω= =  

{ }6 Wω ⊆ . Note that 6ω  is also the only state where Ann and Bob know W , so that the events 

“ 6=v ”, “Ann knows that 6=v ”, and “Bob knows that 6=v ” have the same extension: 

WWKWK BA == )()( . Hence Substitutivity applies, so that Ann and Bob reach level 1 of in-

teractive knowledge: at 6ω  Ann (Bob) knows that Bob (Ann) knows that 6=v : 

6 ( ( ))A BK K Wω ∈  and 6 ( ( ))B AK K Wω ∈ . As explained in Section 6, this step does not involve 
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any additional assumption about the knowledge each player has about the informational struc-

ture of the other. 

In effect, since ( )BK W W= , the set where Ann knows that Bob knows that 6=v , is 

again W , and the same holds for Bob: ( ( )) ( ( ))A B B AK K W K K W W= = . Hence, Substitutivity 

applies again, and level 2 of interactive knowledge is reached: at 6ω  Ann (Bob) knows that 

Bob (Ann) knows that she (he) knows that 6=v : 6 ( ( (( )))A B AK K K Wω ∈  and 

6 ( ( (( )))B A BK K K Wω ∈ . This step involves no additional assumptions about level 1 of interac-

tive knowledge of the agents’ informational structure. 

In effect, it is easy to see that for each { },i A B∈  and j i≠ , we have that 

( ( ( ) )i j i iK K K K W W⋅ ⋅ ⋅ ⋅⋅⋅ = , so that by Substitutivity 6 ( ( ( ) )i j i iK K K K Wω ∈ ⋅⋅⋅ ⋅ ⋅⋅ , which 

means that at 6ω  it is common knowledge among Ann and Bob that 6=v . Again, no step up 

this infinite staircase of interactive knowledge of W  involves additional assumptions about 

lower levels of interactive knowledge of the way information is imparted to the agents. We can 

interpret this result in the sense that Substitutivity makes the entire hierarchy of “I know that 

you know that I know… that 6=v ” transparent for both Ann and Bob. 

More generally, if at state ω  event E  is common knowledge between agent i  and agent 

j , by the very definition of common knowledge ( )iP ω  belongs to the infinite sequence E , 

( )jK E , ( ( ))j iK K E , ( ( ( )))j i jK K K E ,… Therefore, by Monotonicity, agent i  knows and can-

not avoid knowing all the events in the sequence. In a sense, E , ( )jK E , ( ( ))j iK K E , 

( ( ( )))j i jK K K E ,… make themselves manifest to i . Similarly, E , ( )iK E , ( ( ))i jK K E , 

( ( ( )))i j iK K K E ,… make themselves manifest to j . Hence, to state that E  is common knowl-

edge between i  and j , no additional assumption about common knowledge of their informa-

tional structure is required. 

 

8 CONCLUSION 

This paper shows that, contrary to intuitive interpretations, in the state-space model interactive 

and common knowledge of an event do not entail additional assumptions about the knowledge 

agents have about the way information is imparted to others. This result is obtained by bringing 

into play Substitutivity, and sometimes the stronger Monotonicity, and holds for both canonical 

and non-canonical state spaces, as well as for partitional and non-partitional ones. When Sub-

stitutivity alone is involved, the result is robust even to modifications in the standard definition 

of K , since any set-theoretic knowledge operator satisfies Substitutivity. 

The result is counterintuitive because neither commonsense nor philosophy regards Sub-
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stitutivity and Monotonicity as plausible properties of actual knowledge. The original insight of 

the present contribution is in fact a methodological distinction between knowledge as under-

stood by philosophy and commonsense on the one hand, and knowledge as modeled in the 

state-space formalism through the operator K  on the other. When we keep in mind this meth-

odological distinction, the counterintuitive behavior of interactive knowledge and common 

knowledge in the state-space model becomes intelligible. 

This conclusion leaves us with the question about the relevance of the state-space model 

of knowledge: if the model necessarily endows the agents with implausible epistemic capabili-

ties like those implied by Substitutivity and Monotonicity, to what extent is it useful for study-

ing interactions among real agents? Or, to put the same question in more fashionable terms: if 

“an interpretation is a mapping which links a formal theory with everyday language” (Rubin-

stein, 1991, p. 909), what interpretations of the state-space model of knowledge are interesting 

and/or useful for economists and philosophers? Although the answer to this question is beyond 

the scope of the current paper, the analysis presented here shows the need for generalizations of 

the standard state-space model that could accommodate more realistic formal treatments of 

knowledge. In effect, a number of such generalizations have already been proposed, especially 

in order to overcome the circumstance that the standard state-space model precludes unaware-

ness.21 The task of examining what happens to Substitutivity and Monotonicity in these gener-

alizations of the standard state-space will be left for future research. 

 

 
21 See, among others, Modica and Rustichini (1999); Halpern (2001); Heifetz, Meier and Schipper (2006); Li 

(2006); Galanis (2007). 
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