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Abstract: This paper constructs the probability space underlying the 
random variable of any time dependent econometric specification.  The 
construction links concrete economic activity, both perceived and 
recorded, and econometric formulations.  Furthermore, it is argued that the 
probability events belonging to this space are forms of understanding 
economic activity held by each agent.  The model establishes two aspects 
of any econometric formulation.  Mainly, that learning must be unique 
between any two ticks of the clock and that not all forms of understandings 
can indeed become events in the random variable’s probability space.  
Finally, a model of the dependencies based on agent-based understandings, 
and evolution thereof, is presented as well.   
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Introduction 
The aim of this paper is two fold.  First, it describes and develops a mathematical 
model of the formation, constitution and evolution of the probability space associated 
to the individual disturbance factor λt

i of any time dependent statistical system.  
Second, it describes the consequences that history bears upon it, i.e. its evolution.  To 
do so, a detailed exploration into the nature and constitution of learning, as defined in 
here, is done.  This requires some basic definitions on the nature of knowledge to be 
employed in here.  The role of recorded information is highlighted as a conditioning 
factor of learning.  Moreover, a difference is made between what is termed as 
biological and conventional time1 in order to fully examine mutual influences 
amongst agents.   

Knowledge and intuitions is characterised as abstract mathematical entities, just as 
other approaches have2.  Our approach, however, is based on elementary set theory 
and topology.  Individual understandings are linked to concrete records of economic 
activity through formal operators, i.e. dialectics, learning and probabilities.  In order to 
technically construct the agent’s probability measure, certain assumptions, to be 
spelled later on, are made in order to invoke the Riesz Representation Theorem 
(RRT).  This approach, which can be found in all its details in the appendix, is only 
one of possibly many constructions.  We purposely chose it in order to highlight the 
core aspects of the dynamics of understandings.  That is, to bring history to the front 
of knowledge, and intuition generation within a concrete model.  The assumptions 
brought into play will concern the events of understandings disposable to the agent at 
every moment, which will reflect, by construction, their “spot on” cognitive relation 
with the environment.  Perhaps, the most striking outcome of the entire description is 
that not all forms of understandings can in fact become probable forms of 
understandings and learning cannot be arbitrary either.  The entire description will be 
done for one random individual agent.  The aggregate pool of agents follows directly 
as the mathematical “product” of each individual agent’s behaviour.  In this respect 
the evolution of the agents’ collected understandings, as well as mutual dependencies, 
are represented using elementary homotopy theory.  

 The paper begins with a set of basic definitions, i.e. knowledge, intuitions and 
understandings.  Then a result from logic on the limits to, what we have termed, 
dialectical understandings is stated. The next section describes the basic constituents 
of the dynamic process of understandings generation and their mathematical 
formulation.  Furthermore, it establishes the basic abstract spaces and the 
corresponding operators that link them.  We also present general results that provide 
additional characterisations of these spaces.  The next section is entirely devoted to a 
detailed account of the nature of learning, as defined here, and the construction of the 
probability measure associated to the disturbance term of any time series statistical 
system.  Next, specific use of homotopies is made to model and study the evolution of 
the probability space previously described. Finally, conclusions are drawn in the last 
section.  

                                                          
1  Biological time is a notion of time that arises out of the periodicity of nature.  Conventional 
time, as the name suggests, is a convention previously agreed upon for a specific purpose and use in 
measurements of events that “pass”.
2  For example, the mathematical psychology and game theory literatures. 
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I Knowledge, intuitions and understandings 
In any capitalist market with at least two interacting economic agents, individual 
beliefs are always based on forms of understandings at least partially dependent on the 
others’ understandings, beliefs and expected behaviour.  In the economics literature of 
knowledge this can be traced back to at least Von Hayek (1937).  Game theory, 
particularly evolutionary game theory, relies heavily on this feature of individual 
behaviour, e.g. Weibull (1995), Mailath (1998).  Furthermore, those expressions of 
understandings relevant to the agents are acquired through particular idiosyncratic 
processes, i.e. learning, in each case unique to the agent, e.g. Loasby (1999), 
Slembeck (1999).  Learning, in this sense, allows individual economic agents to 
apprehend economic history.  Whence, this begs the question of what knowledge is.  
Although many different definitions and approaches can be invoked, the following 
will be used for the purposes of the present paper: 

Knowledge.  We assume the perspective of the materialistic theory of knowledge.  
Knowledge is the understood (or apprehended) portion of the synthesis of a materially 
based dialectical contradiction. 

Intuitions.  These are forms of knowledge as well.  They are non-dialectical and 
originate from reality itself.  Formally, a direct relation between the mind and 
something abstract, therefore, not accessible through the senses (Oxford Companion 
of Philosophy). 

Understandings.  These can be either knowledge or intuitions. 

 Our definitions allow us to highlight the totally subjective nature of the economic 
agents’ understandings.  In this sense, the approach to be followed in the paper is 
based on the idea of events of understandings rather than problem-solving abilities.  It 
is more or less in the spirit of Hintikka (1962)3 but different in that the main emphasis 
is placed on the inner structure of the understanding spaces rather than in the 
construction of systems of understandings through logical operators.   

As time develops, whatever its meaning and notion of, economic history unravels and 
agents (at least attempt to) understand it.  Time, history and understandings are indeed 
unavoidably inseparable.  If time were already eternal, history would cease to exist 
and there would be nothing further to discover and understand, Metcalfe (1998).  
Moreover, if there were no time, not only would economic agents not grasp the 
entirety of their surrounding reality (because human learning is not enough to discover 
all of the forces that drive economic activity) but also they would have no possibility 
to expand their horizon of understanding.  Only Shacklian time would continue to 
exist as a reflection of individual “silent contemplation”.  In such a situation, 
understandings would reduce themselves to a set of rules and recipes upon which 
routines can follow into perpetuity.  A time-independent attractor will have been 
reached in which economic activity will have been reduced to timeless, unchanging, 
economic patterns.  Without change in time there cannot be change in the facts of 
history beyond the equilibrated activity of historical attractors; understandings would 
also remain in the same resilient state of affairs.  Whence, change (beyond that of 
stable equilibrium) in any one of the three variables, i.e. time, history and 
                                                          
3  The full description of Hintikka’s approach can be found in Rubinstein (1998)’s Modelling 
Bounded Rationality. 
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understandings, necessarily implies change in the other two.  In this sense, only past 
dependent processes can induce new forms of understandings, Metcalfe (1998).   

 Human limitations, e.g. of storage, learning, searching and processing 
capacities, etc., allow the possibility of further knowledge to be pursued at all time, 
Loasby (1999).  In particular, if self-consistent propositional systems are constructed 
to generate knowledge, it can be proven that such systems are always incomplete4 and 
hence the knowledge derived thereof is incomplete as well.  The consequences of this 
theorem, rightly called Gödel’s theorem, are immensely profound and are certainly 
beyond the scope of this work.  However, one corollary (of this theorem) does have 
direct bearings on this work.  Science is all one gigantic set of (sometimes different) 
systems of self-consistent propositions.  In particular, economics is, as a matter of 
practice, a very elaborate system of propositions based on the axioms of formal 
mathematics and additional assumptions about the real world.  Now, if the systems of 
propositions constructed through binary logic are always incomplete then knowledge 
is always potentially expandable although in a limited boundedly rational fashion, e.g. 
Morgenstern (1935), Koppl and Rosser (2000)5.  That is, there is always the 
possibility that additional yet-undiscovered knowledge and intuitions can influence 
recorded economic activity as a matter of empirical evidence.  Thus, the very own 
non-quantifiable nature of knowledge and intuitions implies that, at any point in time, 

t
i, of any time dependent econometric formulation such 

as 
t
i

1t
i

1t
i

t
i zhfh += −− ),(

the only measurable channel of influences and dependencies based on understandings.  
If the agent did know it all then he/she could specify each and every influence that 
affected him/her (through ht-1 or zt-1).  Whence, there would be no need for a 
disturbance term in the specification of his data generating mechanism.  In this sense, 

                                                          
4    This most remarkable result is what is known as the Theorem On The Incompleteness of 
Propositional System.  It is considered to be, perhaps, the most important theorem of all of 
mathematics.  The main idea is this: given n axioms, i.e. absolute truths or assumptions, upon which a 
system of self-consistent propositions can be constructed exclusively through the systematic 
applications of logical operators, one can always construct a proposition that is unprovable given the n 
axioms and subsequent systems developed thereafter (in fact, the construction of such a proposition is
the proof of the theorem).  Hence, in order to complete the system the unprovable proposition must be 
added as an additional axiom thus raising the number of axioms to n + 1.  However, the same argument 
repeats itself.  Another unprovable proposition can be constructed given the new system of propositions 
and its n + 1 axioms.  Therefore, the new unprovable proposition has to be assumed as a new axiom 
again in order to complete the system thus raising the total to n + 2.  Again the same argument repeats 
in this new system of n + 2 axioms and so on for any number of axioms.  It is an inductive argument.  
Hence, no propositional system can ever be complete.  One corollary is immediate: any knowledge 
constructed thereof as a self-consistent system through the application of formal logic given any number 
of axioms (assumptions) is thus proven to be incomplete, i.e. limited.  This great result is due to the 
Czech logician Kurt Gödel.
5  Some very interesting research has been done in this respect in related areas.  For example, 
Wolpert (1996) presents a theorem on the impossibility of building a machine capable of calculating 
future specifications of a physical system.  Hut, Ruelle and Traub (1998) study the limits to knowledge 
in physics and biology.  Minkler (1993) argues on the limits that dispersed knowledge creates for 
modelling and managerial purposes; he proposes a core capability approach in stead.  Langlois (2001) 
reviews the main concepts of rationality theory and suggests that institutions shape the emergence of 
rules and routines undertaken by agents.  Although not stated in his paper, this is a clear statement on 
the limitations of human searching mechanisms through which institutions constrain as much as they 
stimulate further knowledge.  Loasby (2000) argues the same point on the role of institutions in the 
question of preference formation in demand in an evolving market. 
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the consequences of the agents’ cognitive limitations (and the modeller’s as well) 
justify the existence of the random variable in the specification above.  The coming 
sections will in fact examine, construct and model the evolution of the underlying 
probability space associated to the disturbance term, the key to modelling the 
dependencies.  

There already exists a huge literature in rational choice theory and mathematical 
psychology on the construction of understandings spaces.  The traditional 
mathematical psychology literature conceptualises understandings spaces in relation to 
problem solving schema.  This general conception of understandings is not really 
concerned with knowledge’s (nor intuitions’) origin.  This view faces further 
additional difficulties in that it does not take a deep concern as to the effects of 
individual search for knowledge.  In all fairness, though, this approach, which is based 
on behaviourist psychology, is not aimed at studying knowledge in itself but rather 
how it is handled and dealt with.  Hence, the difference in the type of agents, e.g. 
atomistic unintended neoclassical agents, Schumpeterian individual entrepreneurs or 
Penrosian conglomerates of peoples gathered in firms, is not in question.  
Coordination is not generally an issue either.  However, in as far as understandings are 
concerned this is not a trivial matter for clearly, problem solving abilities differ from 
individuals to uncoordinated groups of people to coordinated groups of people.  In any 
case, this literature defines the set of all understandings states as the agent’s
knowledge structure for the particular set of questions.  If this understandings 
structure is closed under arbitrary unions then it is called the agent’s knowledge space 
for the set of questions6.  Further structures of order can be considered if it is also 
closed under intersections.  A thorough exposition of this approach can be found in 
Albert, Schrepp and Held (1994) and Doignon and Falmagne (1998).  In particular, 
Suck (1999) provides an interesting metric for discrete knowledge spaces which, in 
principle, allows the definition of distance of understandings among agents.  This 
distance is constructed on a “lattice of understandings”.  That is, given certain tasks 
there will exist certain answers, however good or bad.  Hence, these answers can be 
mapped onto an ordered set of points in a vector space, i.e. a lattice.  Through this 
measure, the differences, i.e. the distances, in the possibilities of knowledge between 
two spaces based on recorded know-how can be estimated.  Therefore, the 
consequences of the differences in problem solving abilities may be estimated. 

As previously mentioned, once the nature and composition of understanding spaces 
has been established, the agents’ understanding spaces’ evolution, through time, is 
studied.  This resembles, although unrelated in spirit, Schrepp (1997) where he studies 
“degrees of correctness” as a measure of the agent’s evolving understanding of the 
problem domain.  In our case, the core idea invoked to study changes in the agents’
understandings structure is the notion of deformations of the agent’s understanding 
space through time, rather than the expansion of the agent’s understandings.  By 
conceptualising the understanding space as being deformed and not just as expanding 
(or contracting) the core emphasis is placed on the notion of change in the inner 
composition of the space and the effects of history as channelled through learning.  
Hence, these deformations reflect the inherent mechanisms of adaptation to the 
evolving material conditions in the industry, i.e. the evolving context within which 

                                                          
6    This is our understanding space. 



5

understandings arise, similar in spirit to Nonaka, Toyama and Konno (2000)7.  The 
following construction is general and applies to any agent.   

II The Dynamics of Understandings Formation 
When the agent is considered at time t he/she, in reality, faces, as a constituting 
member of the industry, a given history of relevant facts in the industry, a sort of 
factography of the industry.  This factography is objective in nature as is encapsulated 
information, e.g. letters, numbers, equations, combinations thereof, etc.  Therefore, 
factographic phenomena, i.e. data, are in principle common to all agents although not 
necessarily true8.  In fact, at t, the agent has more than just a given accumulated 
history of data; he also inherits accumulated, concentrated and clustered expressions 
of past reconstructable understandings related to information up to t.  With the sole 
purpose of enhancing his/her position in the market he/she will necessarily strive for 
further understanding9.  Possible future economic activity pulls (past) history to the 
front, very much, as Von Hayek (1937), Loasby (1999) imply it and Marx (1867) and 
Morgenstern (1935) clearly state it. 

 From an ontological stance, at least three features define an economic agent 
that participates in market activity and interacts with other agents; these are: history, 
facts thereof and understandings.    Consider an interval of time during which 
economic activity develops.  History’s own changing constitution will induce changes 
upon the available recorded facts of history.  Simultaneously, changes in economic 
activity, determined by the forces of history, will induce changes upon the systems of 
dialectical contradictions that so reflect economic activity as well.  Hence, what is at 
the agents’ disposal, as a reservoir of understandings, will change as a consequence of 
the existence of history.  In other words, the domain of the entities to be learnt, i.e. 
syntheses, will change due to the forces of history.  Furthermore, reality, whatever it 
entails for each agent, is a much deeper, extensive and complex universe of 
investigation.  It is infinitely dense, i.e. it is a continuum, and carries with it all 
possible notions of human existence.  In any case, the origin of knowledge will evolve 
(as history unscrambles forward in time) as a consequence of the fact that the space 
upon which dialectical materialism operates, i.e. economic activity, changes.  Distinct 
instants of time have different systems of dialectical contradictions10 associated to 
them and hence different dialectical realities emerge; ultimately, due to history never 
repeating itself.  This idea of non-repetition can traced back to at least V century B.C, 
to Anaxagoras’, the ancient Greek philosopher, concept of continuity in reality.  
Conceptually, in our context, dialectical materialism is a dynamic operator defined 
over material economic reality.  This will be defined later on. 
                                                          
7  In their paper, the context within which understandings arise is given a specific name: Ba,
which is the name assigned to the idea of “surroundings” in traditional Japanese philosophy.   
8   This is the issue of asymmetric information.  Although not explicitly dealt with here it certainly 
constitutes an important part of the dynamics described here.  Essentially, available information partly 
determines individual learning.  For an introduction to problems of asymmetric information in 
economics see Hillier (1997) and of course Stigler (1961).
9 The aggregated outcomes of the individual intent in the search for understanding will be the 
unintended resulting economic activity, as observed by Adam Smith (1776).  That is, the invisible 
coordinating hand.   
10   A system of dialectical contradictions at any moment in time should be understood as being 
composed of two categories of contradictions: a principal contradiction and peripheral contradictions.  
The principal contradiction is the contradiction that allows for the existence of the phenomenon in 
question.  Peripheral, or secondary, contradictions define the particular expression of the phenomenon. 
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Since agents attempt to understand from history, then it is only historical records that 
solely matter to the agent.   Partly through them, history presents itself to the agents 
and hence (partly) determines how the agents can learn from the systems of dialectical 
contradictions.  In this sense, as it was mentioned above, dialectical materialism is a 
mechanism, which operates over material reality, i.e. economic history.  The role of 
data banks is that of helping and aiding learning.  The more information held, the 
more aid data banks provide and more extensive individual learning becomes.  In 
practice, the data banks are distributed asymmetrically and hence, just based on this 
point, learning is asymmetrical, i.e. heterogeneous.  As mentioned in footnote 8, the 
case for asymmetric information and hence heterogeneous behaviour purely based on 
this, is not really an issue in this work, although it is certainly acknowledged.  The 
reason for this is that heterogeneity is embedded in learning as the defining 
constituting components of learning deliver the heterogeneity from an understandings 
perspective.  That is, heterogeneous life experiences, talents, intuitions, etc. all 
determine the composition of learning.  Asymmetric information delivers further 
heterogeneity to the process.  In any case information is assumed to be asymmetric 
although it is not relevant for the entire argument since any asymmetry in information 
is always reflected in learning.   

As history develops itself, new potential forms of understandings emerge, which, with 
the aid of information, amongst other things, are apprehended through learning.  Once 
learning has taken place, the agents hold forms of understandings, whether knowledge 
or intuitions, related to their surrounding economic activity.  These present forms of 
understandings influence and partly determine existing beliefs and decisions about the 
future.  The consequences of these decisions will be later recorded as information.  
The point to emphasise is that presently held forms of understandings are in fact 
probable future influences of understandings.  Moreover, under certain conditions to 
be spelled in a moment, they constitute a probability space; the probability space 
associated to the disturbance term λt

i.  As it will be seen later, technical requirements 
in the construction of the operators restrict the possible events of understanding to be 
considered.  This generates a natural filter on understandings.  There are also some 
requirements on formal learning, which will be presented later on as well.  Certain 
inherent constraints in the agents’ core capabilities do not allow them to use all 
possible forms of understandings to make them probable understandings.  These 
requirements, which in this setting have sprouted entirely from the internal logic of 
the problem, generate differences across firms and constitute uneven core capabilities 
in the market as in Nelson (1991).  

To summarise: at any moment in time, learning takes place formally from systems of 
dialectical contradictions and delivers knowledge.  Informal learning operates over 
reality itself and delivers intuitions.  Data banks partially influence both forms of 
learning in a positively correlated manner.  At any moment in time, if learning is 
unique (between two “ticks” of the conventional clock) a probability distribution for 
the disturbance term of (any) the time dependent econometric formulation can be 
constructed (this will be proven later on).  The next recorded facts of history will carry 
the influences of present understandings, channelled through learning and the 
probability distribution.  These data will constitute (a very small) part of the recorded 
economic activity in the future.  Future economic activity will have fed on itself and 
the spiral of history will have induced a self-feeding loop of cognition in the agents.   
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III  The Role of Learning 
Learning plays a fundamental role in any evolving and adapting process of interacting 
heterogeneous agents, Von Hayek (1937), Metcalfe (1998), Loasby (1999).  It is not 
only a process of observation, experience, internalisation and ultimate adaptation.  It is 
also a process of discovery (in the Austrian sense, see Kirzner (1994, 1997)) and 
reconnaissance, or as Shackle (1961) calls it, silent observation.  This is so since, 
through time (whether conventional or otherwise) the agents, amongst other things, in 
fact recognise, classify and categorise their surroundings.  They gather and associate 
relevant phenomena around them.  As Loasby (1999, 2000, 2001) has repeatedly 
emphasised, agents relate perceived economic phenomena through different mental 
processes.  Furthermore, through this process of reconnaissance they can indistinctly 
and inductively further discover the forces that drive economic activity.  In the context 
of the previous section, it means that they can force ν to become smaller.  In this 
respect, discovering new dimensions of reality, just like discovering new emergent 
markets, inevitably induces some sort of adaptation of the means by which learning 
takes place.   

Two issues arise in this respect.  The first one is that learning is an evolving adapting 
process itself.  It responds to an evolving track record on the competence with which 
the agent learns and incorporates new experiences of cognition.  In other words, 
changes in learning are a reflection on the past success of the agent’s mechanisms and 
procedures used, in the past, to enhance his/her understandings about the industry.  
That is, a reflection on how far he/she has fulfilled his/her cognitive potential.  In this 
sense agents learn to learn over time.  This is what the management literature calls 
“double learning” or “double loop”.  The reasons for the changes in the manner in 
which agents learn, and this is the second issue, imply that learning need not be 
unique at all.  In other words, an agent could possibly learn through more than one 
methodology at the same time11 if so desired.  Whence, in principle, learning is not a
sole unique time-dependent process and each of its multifaceted forms evolves and 
adapts through time.  This view is concomitant with the tradition, which 
conceptualises learning as a dynamic process, many times a repeated process, found in 
dynamic and evolutionary game theory; see Slembeck (1999) and Weibull (1995).  In 
other words, the passage from history to understanding spaces is, in principle, as n-
fold as the n procedures by which the agent formally learns.  

To further blur the distinctive features of individual learning, intuitions only reinforce 
the idiosyncraticity of understandings.  Indeed, in our context, intuitions have only one 
recognisable characteristic: they always represent forms of understanding.  An 
experience of intuition is always an experience of cognition.  They help, aim and 
ultimately influence belief formation and decisions concerning the individual and 
collective cognitive characteristics of economic phenomena.  However, the origins of 
intuitions have been debated and assumed by philosophers of all ages (see the Oxford 

                                                          
11  For example, the agent can repeat his/her previous procedure or he/she can innovate and incur 
in new knowledge acquiring techniques or imitate what is perceived as successful, etc.  All three 
situations differ from the previous attempt to learn and represent at least three different methods to 
learn from the past.  Other methods of learning have indeed been identified in the literature, for details 
see Slembeck (1999). 
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Companion to Philosophy (1995)).  More importantly, the very nature of intuitions 
does not permit for a specification on the mechanism through which they emerge. 

Dialectics defines syntheses from which understandings sprout by identifying 
opposing forces.  If all of the forces were identified then the continuum of forces 
would be known.  Hence, reality would, in this situation, be a continuum of 
knowledge.   Nevertheless, as Penrose (1959), Lachmann (1976) and Polanyi (1946) 
hint and Von Mises (1957) and Popper (1950, 1956) clearly state, economic agents are 
limited in their search to know the world.  They are constrained because of limited 
abilities to know the world (Penrose (1959)) and because the world is largely 
unknowable, Lachmann (1976), Polanyi (1946), Von Mises (1957)12, Popper (1950, 
1956).  In this sense, as far as economic agents are concerned, knowledge is never 
complete since we cannot know it all.  It is rather, as far as an experience of cognition 
is concerned, always bounded.  Economic agents cannot learn beyond a certain 
(human) limit, i.e. they never reach the limit of the asymptote.  Intuitions, however, 
are different.  Basically, intuitions are intuitions as long as they are not dialectical in 
nature.  Without any pretension whatsoever to enter a rather philosophical debate on 
the possible origin of intuitions, we will only take up issue as far as learning is 
concerned.   

In reality, if the mechanisms by which intuitions are apprehended were known, then 
their emergence could be framed in terms of formal learning.  This is the reason for 
our definition of intuitions at the beginning13.  In order to retain consistency with our 
entire exposition and also our belief on the complete inadequacy of idealistic 
understandings, we are restricting ourselves to intuitions emanated only from material 
economic activity.  That is, It

i[History] = Ωin
i.  The operator It

i is some abstract 
operator, unique to each individual agent, which delivers intuitions originated in 
(economic) history, about economic phenomena.  Its composition, by construction, is 
unknown. 

Since intuitions, because of their very nature, cannot be constructed as self-consistent 
systems of propositions, Gödel’s theorem does not induce any limitation to their 
scope.  Indeed, in principle, there is no limit to intuitions although they are bounded.  
That is, in principle, they are infinite even though they are constrained by human 
senses.  Furthermore, limitation on intuitions would require restrictions (of logic or 
ontology) that do not exist in the agent’s mental intuitive processes.  They are not a 
subject of matter simply because if the questions of logic or ontology ever became an 
issue then intuitions would not be intuitions any more.  For logic or ontology to 
become issues, intuitions must be conceptualised as dialectical phenomena, that is, (in 

                                                          
12  Von Mises (1957), pp. 8-9, develops a further argument on the limitations to human 
knowledge.  In it, he expands on the idea that what we can know is limited by the universe in which our 
senses operate.  That is, we can only know the universe of which our senses tell us that we are a part of.  
It is intrinsically Kant’s argument on the limited use of pure-reason.  In his own words: “Human 
knowledge is conditioned by the power of the human mind and the extent of the sphere in which objects 
evoke human sensations…There may also exist outside of the orbit we call the universe other systems 
of things about which we cannot learn anything because, for the time being, no traces of their existence 
penetrate into our sphere in a way that can modify our sensations”.   In other words, there may be 
universes that we have not yet discovered and hence do not know of. 

13  That is, intuitions are the outcome of yet-to-be discovered protocols of learning; protocols that 
we have called informal learning in this paper. 
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our present scheme) as knowledge.  The moment an intuition is framed into dialectics 
then all previously mentioned issues on the limits of dialectics repeat themselves.  
Whence, if intuitions are boundless, because of their non-dialectical nature, then they 
can, in principle, converge to the limit of possible understandings of economic 
activity, i.e. the continuum of cognition.  In this sense it is that intuitions may be 
infinite (not in that there may be an infinite amount of them).  In as far as economic 
agents, only intuitions can hence guarantee the possibility of understanding infinitely 
dense dimensions of economic reality.  In this sense as well, if an economic agent ever 
desired to further know economic activity, intuition presents itself as a guiding 
mechanism, a compass of cognition of sorts, in the search for further knowledge.  For 
our descriptive purposes, it represents one of the components of the two-fold process 
of individual learning.         

IV   The Model 
In order to formalise mathematically some of the notions of the dynamics of 
understandings presented above, it will be necessary to assume certain aspects of the 
same; in particular, with respect to history and systems of dialectical contradictions. 
However, none of the assumptions concerning their mathematical representation 
undermine the description.  Nor is the essence of the argument compromised.  They 
are all, basically, requirements of formalisation.  Each one of these will be carefully 
explained whenever necessary.   

History and “Factography”
From now, unless otherwise stated, time is to be considered as a convention.  
Furthermore, assume that this convention is such that time is discrete (and hence 
countable) and that measurements of economic activity take place in this frame.  
Assume that history is a continuous space irrespective of the measurements of time 
associated to it. Call this space of history Ht where the subscript t merely signifies that 
it is history considered up to time t.

Associated to the passage of history, records of it arise.  Indeed, assume that all facts 
of history can be stored and arrayed in some manner so that these recorded facts, i.e. 
factography, can be grouped as   

Ft = {fj : fj is a recorded fact of history at time j ≤ t} 
Furthermore, assume that Ft is countable and that the cardinality of Ft is less than or 
equal than the first infinite countable cardinal, i.e. ℵ0, for any t, i.e. C (Ft) ≤ ℵ0.  This 
set varies with time, as new facts of history are included with the passage of time.  It 
may or may not be connected (in the topological sense) depending on the manner in 
which data is stored and arrayed.  Operations amongst the elements of Ft, i.e. 
essentially unions and intersections, are always well defined provided that there exists 
a well-defined form of storage of information, e.g. bits, symbols, numbers, functions, 
etc.  Once coherence in the storage of records has been achieved handling the data is a 
matter of practical concern only.  For the argument’s sake, if need be, simply assume 
that there exists a well-defined self-consistent storage mechanism that allows data to 
be handled.      

Systems Of Dialectical Contradictions
Dialectical contradictions are, in essence, abstractions, that reflect opposing forces 
present in concrete economic activity, i.e. unities of opposing forces.  When these 
unities of opposites are concatenated they form a system.  Thus, let                                                    
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Kt = {k : k is a dialectical contradiction and k ↔ (a,b) where a and b are the two              
[2.a] 
            opposing forces within concrete material economic activity that define k} 

In other words, each element of Kt is an abstract point defined by two opposing forces 
within concrete economic activity.  The definition above in no way should be 
understood to mean that these are vectors or 2-ples14.  They are not vectors.  The 
symbols used were purposely chosen to emphasise that the unit, i.e. k, the 
contradiction, depends on two opposing material forces, i.e. a and b.  An alternative 
description could be constructed in which k is actually an interval of the real line.  
That is,  

Kt = {k : k is a dialectical contradiction and k = [xα  yβ] where the specific interval         
[2.b] 

   itself depends on the forces a and b that define k}   

where xα and yβ depend on t.  This alternative construction has the advantage (as it 
will be seen shortly) that the notion of connectivity in the system of dialectical 
contradictions can be made very precise and intuitive.  It carries, however, the 
limitation that it forces a particular context onto the emergent system of dialectical 
contradictions, i.e. ℜ2 (and all other isomorphic spaces) that may not be appropriate in 
each case.  The point to emphasise, though, is the concatenated nature of the syntheses 
in the system.  Since Kt gathers all of the syntheses of the system of dialectical 
contradictions then Kt can be interpreted as the system of dialectical contradictions.  
As it will become clear later on, the actual definition is not relevant to the whole 
argument.  In any case, unless stated, the definition to be used throughout the work is 
[2.a].           

Note first that the set Kt is also time dependent for as history induces change on 
economic activity so does economic activity on the system that reflects it.  Second, 
note that this set is connected for all t.  The reason is simple: the syntheses of each of 
the dialectical contradictions concatenate, i.e. bind, the system as one single, 
inseparable abstract entity that reflects all of the relevant economic reality at once.  If 
the system were not concatenated as one inseparable entity then there would exist two 
non-intercepting sets of syntheses of dialectical contradictions K1

t, K2
t, i.e. K1

t ∩ K2
t

= φ.  That is, dialectical materialism would be reflecting two parallel material realities.  
This is, by any consideration of individual cognition, wholly absurd for it can only be 
a pathological cognitive scenario (two parallel realities are, by definition, a 
schizophrenic world).  Reality, is one and inseparable, at any point in time.   

Possible And Probable Understandings
Expressions of individual understandings give meaning to the disturbance term in [1].  
Indeed, if it is assumed that recorded facts of history are available up to t then the 
disturbance term λt

i is in fact, and rigour, a random variable that associates possible 
events of understanding to real numbers.  The construction of this variable highlights 

                                                          
14    2-ples are a mathematical expression completely identified with two dimension vector spaces, 
i.e. isomorphic, defined by (α, β) where α and β can be any mathematical entity.  An n-tuple is 
identified with an n dimensional vector space, i.e. ℜn.
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one of the keys in modelling individual novelty.  If an agent is to always possess the 
possibility of coming up with a revolutionary understanding, capable of perhaps 
changing the whole industry, then such an event of understanding must be present in 
the understanding space, even if it possesses only a very small probability.  Otherwise, 
the possibility of novelty could not in general be guaranteed.  In practice, 
psychological or cultural attributes are probably the most deterministic characteristics 
in the agent’s ability to discern the surrounding economic activity.  However, for 
modelling purposes, it is necessary to maintain the very same possibility as a probable 
event.  In that manner it could always happen, as any external modeller should expect.  
Ultimately, culture and individual psychological development will condition 
individual understandings but only probabilities will guarantee novelty.   

For expositional purposes we will first define the underlying understanding space and 
then proceed to construct it.  In this particular context, it means that λt

i is a measurable 
function from a (probability) space, i.e. Ωt

i, to the real numbers ℜ, where the measure 
is defined on a sigma-field Dt ⊆ ΩΩt

i.  In other words, for every element (i.e. event of 
understanding) ωi∈Dt ⊆ ΩΩt

i there exists a probability (measure) πt
i associated such 

that  

1yprobabilitwithr)(2.

iyprobabilitwithr)(1

qi1
i

qi1
i

t
i

t
i

iii
t
i

≡ℜ∈=

∀ℜ∈=

∑
≤≤≤≤

�

.

The upper limit of the index set, i.e. q, can of course be ℵ0.  Different probabilities 
may be constructed for different levels of generality and abstraction.  The relevant 
issue in this case refers to the nature of the probability space (Ωt

i, Dt, πt
i), in particular 

to the elements of Ωt
i.  At time t, as a new system of dialectical contradictions 

emerges, the agent learns from it and whatever he/she learns is knowledge that is 
translated into an (possible) n-fold composite event of knowledge that belongs to Ωt

i.
As it was mentioned previously, these possible events of knowledge are themselves 
complemented by events of intuition.  Hence, the n-fold composite event of 
knowledge and accompanying intuitions determine the sigma-algebra Dt that will 
(under certain restrictions) itself determine the composition of the probability space 
(Ωt

i, Dt, πt
i) at t +1.  Formally, this space, i.e. Ωt

i, is defined as  

}uu:{u

ding}tanundersanisu:{u
in
t

k
t

t
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ition}uintofeventanisu:{u

knowledge}ofeventanisu:{u
in
t

k
t

=

=

Ω

Ω

and  
∞<)m( in

tΩ
for any measure m defined on Ωin

t.  Whenever necessary, superscripts as well as 
subscripts will be used to identify the appropriate agent.  All that this definition 
requires is that an event of understanding at time t must be either knowledge or 
intuition, and that the subset of intuitions must be finite under any measure.  Under 
this scheme, history up to time t feeds the understanding space (and the underlying 
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sigma-algebra) that determines the value of the random variable λt
i at t + 1.  The 

requirements on the measure of in
tΩ  will be explained later on in section VI.  

The Links
Having defined the sets Ht, Ft, Kt and Ωt

i heterogeneity and diversity of knowledge 
follows directly through the following operators 

                    
t
it

t
i

t
it

t
i

ttt
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KH:
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Δ

→

→

→

termed the dialectical operator (Δt), formal learning (Ξt
i) and informal learning (It

i)
respectively, that link these sets amongst them.  We can describe the composition of 
an agent’s understanding space in terms of its subspaces.  The passage from history to 
knowledge at t, for agent i, through formal learning, is thus the composite operator 

k
itt

t
i

t
i H: Ω→=

The passage from history to intuitions is just 
in
it

t
i )H( ΩΙ =

The passage from history to understandings spaces (through any form of learning) is 
different for every agent.  The space of contradictions, i.e. Kt, is not, however, 
different for each agent.  This is a result, basically and unequivocally, of the fact that 
everyone faces the same history.  In other words, every one faces the same history and 
at the same time every one understands it differently (because every one learns 
differently).  If we assume for the time being that Ωt

i is indeed a proper probability 
space and define TSi

t+1 to be agent i’s time series recorded up to t + 1 then we can 
represent the dynamics of understandings for agent i as   

What this diagram conveys is a graphical representation of the previous section.  At t, 
agents face a history that allows them to learn (formally and informally).  The 

Ft

Kt Ωt
i

Δt

Ξt
i

Kt+1

Ft+1

Ωt+1
i

πt
i

Ξt+1
i

Δt+1
πt+1

i

TSi

Ht

Ht+1Other agents’
TSt+1

TSi

Conventional Timet t+ 1

Ιt
i

Ιt+1
i

Diagram 1
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understandings they gather are transformed into probable influences (of knowledge 
and intuitions) to be recorded through times series in the next period.  The double 
arrow between TSi

t+1 and Ft+1 is used only to emphasise that, as long as there are more 
than one agent, TSi

t+1 is a proper subset of Ft+1, i.e. TSi
t+1 ⊂ Ft+1.   

The autopoetic nature of a process driven by the agents’ understandings of the world 
is fully exposed in diagram 1.  At time t more detailed, possibly new, (imperfect) 
expressions of recorded economic activity are brought forth from the last period.  
These new expressions enhance and possibly alter the manner in which the agents can 
learn from the forces that determine economic activity up to t.  Hence, both history 
and its recorded facts determine what and how the agents learn.  Furthermore, what 
the agents learn from these new systems may change the nature and composition of 
their understandings space, however extended or limited is the dialectical knowledge 
derived thereof.  Innovative non-dialectical knowledge may emerge as well.  In either 
case, the agents’ understanding space will ultimately evolve from its previous state at t 
- 1.  Hence, the agent’s own record of their economic activity, i.e. the time series, will 
be influenced through these new expressions of understandings brought forward as 
events of understandings in Ωt

i.  The outcome of all the agents’ actions, managed 
through between t and t + 1 will be recorded at t + 1.  These records of history will 
possibly have evolved from t onto t + 1 and hence will have possibly influence the 
emergence of new dialectical understandings and intuitions about the world.  In other 
words, understandings at t will have generated new understandings at t + 1 through 
knowledgeable economic praxis between t and t + 1.  The description presented so far 
attains to individual agents and their respective personalised processes of 
understanding.   

The scheme of understandings generation just describe is general enough to account 
for all possible sources of heterogeneity.  In fact, it brings to the front the need for 
assumptions about the system’s status quo, its mechanisms of change (including its 
rate of change) and possible direction of change, i.e. biasness, if there was one.  In 
other words, it brings forth the need for assumption about what Metcalfe (1998) calls 
the fundamental determinants of evolutionary change.  In terms of individuals this 
translates into a question of what they can understand, how they can understand and 
what may ultimately influence their beliefs.  It means making assumptions about 
(individual) distinctions and (collective) similarities in between the agents.  This is 
contrary to the traditional orthodox neoclassical approach to microeconomic 
modelling where just the opposite is assumed or pursued; that is, individual 
similarities and collective distinctions.   

This should not be taken to mean that variety should be chased at all cost and to the 
limit.  Indeed, some structure is always needed in order to be able to say something 
about heterogeneous interacting economic activity.  The key is to seek and discover 
the sensible limit of variety in understandings and structure in the system.  This should 
be a limit that can bind all economic agents under one analytical category, with 
common attributes and individual differences, flexible enough to allow for structural 
change yet, at the same time, rigid enough to retain it as a functional economic 
system.   
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V  Further Characterisations   
In this section we discuss some further characterisations concerning the spaces and 
operators used in the previous section.  We will ascribe only to a general discussion 
and leave the mathematical details for the appendix.  Whenever necessary we will 
make certain restrictive assumptions in order to make the discussions manageable and 
the proofs mathematically consistent.   

The definitions provided in the previous section allow us to characterise a 
fundamental fact, stated before, and claimed by the Theory of Knowledge.  That is, 
that (material) reality, in principle, is a continuum of cognition.  Indeed, if we assume 
that the forces of history, at t, can be counted and that there exists a suitable form of 
aggregation of these forces (at least theoretically) then we can define a “conjugate”
space of history.  Let ν be the level of aggregation of forces of history (at least 
theoretically) so that the conjugate space can be defined as 

H*
t,ν = {(a, b): (a, b) are a pair of opposing forces of history considered at the        

              level of aggregation ν, at time t} 

It will soon become apparent that the issue of the level of aggregation is fundamental 
in the study of agents’ capabilities in understanding economic activity.  For the time 
being it can be established that the dialectical operator Δt can thus be defined 
indistinctively over history, i.e. Ht, or its conjugate, i.e. H*

t,ν.  If defined over H*
t,ν, we 

can prove the three following complementary propositions:   

Proposition 1 Kt is closed with respect to unions and intersections, that is       

t21t21 kkkk KK ∈∩∧∈∪  for any k1, k2 ∈Kt.

Proposition 2 The dialectical operator Δt: H
*
t,ν → Kt is a one-to-one map for every 

fixed level of aggregation ν.
Proposition 3 The operator Δt: H

*
t,ν → Kt is continuous over H*

t,ν (not t!).   

What these three propositions, whose proofs can be found in sections A, B and C of 
the appendix respectively, entail is a characterisation (given our mathematical 
conceptualisation) on the availability of knowledge to the agents.  Indeed, if Kt is 
closed under unions and interceptions it implies that Kt contains all possible 
“dialectical constructions”.  In other words, it contains all possible assemblages that 
may be structured upon more basic, primitive dialectical contradictions.  Additionally 
Kt contains, by definition, all the syntheses associated to the (opposing) forces that 
define reality (dialectically).  When combined with the fact that Kt contains all the 
constructs thereof (as stated in proposition 1), no matter how infinitesimally small or 
aggregated are the phenomena in question, Kt in fact becomes a direct reflection of 
reality.  A sort of abstract mirror upon economic activity where each component in the 
mirror is a synthesis associated to a pair of (opposing) economic forces.  This 
cognitive reflection, i.e. Kt, indeed makes up a continuum, as claimed by the Theory 
of Knowledge.  In the process no part of the economic activity has been lost through 
dialectics, i.e. the dialectical operator is continuous.   

In as far as learning is concerned the key issue, in this case, lies in whether there exists 
or not a lower bound on the level of disaggregation of the forces, i.e. a lower bound on 
ν.  A continuum of cognition implies necessarily that ν must, in principle, be capable 
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of becoming infinitesimally small.  It is up to the economic agents to pursue that 
lower bound.  This brings to the front an old idea in a different disguise.  That is that 
agents, in theory, have at their disposal the entirety of (dialectical) reality from which 
to learn.  If they do not hold complete knowledge it is necessarily because they have 
not, or they cannot, learn it all (except neoclassical agents).  The core competence 
literature recognises this fact and takes it as a corner stone of their approach to the 
study of the firm, e.g. Prahalad and Hamel (1990), Foss and Knudsen (1996).  It has 
also been recognised by some authors in the economics literature as well.  For 
example, Von Hayek (1937, 1945) spoke of agents incapable of knowing-it-all and 
hence of agents that hold at most focalised, subjective, bits of knowledge 
disseminated throughout the economy and coordinated through a pricing mechanism.  
Penrose (1959) and Richardson (1972) also spoke of limited expressions of 
knowledge within a firm that only holds what its constituent individuals can learn.  
The reader by Putterman and Kroszner (1996) contains several investigations on the 
nature of the firm as well, including Alchian and Demsetz (1972) study on industrial 
organisation. 

 Given a fixed level of aggregation ν then the syntheses in Kt are necessarily 
uniquely identified with its constituent forces at that level ν of aggregation.  If we let 
f1 = (a1, b1), f2 = (a2, b2), f

* = (a*, b*), f^ = (a^, b^) represent four pairs of opposing 
forces aggregated at level ν, then we can graph their relationship with their syntheses 
in the following manner: 

                                            

H*
t,ν Kt

f2

k1

k2

f1

k*

k^

Diagram 2

f^
f*

Δt

We can characterise perfectly knowledgeable neoclassical agents based on the above 
discussions in the following lemma, which we state without proof.   

Lemma.  Perfect knowledge, a la neoclassical, implies that the agents can learn as if ν
= 0.  That is, neoclassical agents hold an infinitely dense, continuum, cluster of 
knowledge at a single moment in time. 

This is a direct consequence of propositions 2,3 and 4.  If an agent learns as if total 
disaggregation had taken place, i.e. ν = 0 at a moment in time, then the agents will 
have discovered and understood all of the components of economic activity.  Hence, 
the agent will have (formally) learnt it all and thus will hold perfect knowledge of the 
material economic activity, as defined through dialectics.  What in reality takes place, 
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that is in a non-neoclassical world, is that agents learn from Kt with ν > 0.  In other 
words, they learn with constraints (for the reasons stated at the beginning) thus 
generating bounded understandings of the world with incomplete beliefs and limited 
inner logic.  That is, they learn in a manner as to induce bounded rationality. 

Finally, the present context presents a natural argument against any idealistic 
conception of understandings in economics.  In terms of the description presented here 
this implies Ωt

i is an open set.  Our argument is, again, by contradiction.  If Ωt
i were 

closed then there could exist an event of understanding with a neighbourhood 
containing some element that might not be an event of understanding.  This would 
imply that there exists a space Ω* such that Ωt

i⊆ΩΩ*.  But since Ωt
i incorporates all 

possible understandings arising from material economic activity (including intuitions) 
then Ωt

i’s complement (with respect to Ω*) can only be composed of that which has 
no origin in material reality15.  This consideration allows for the possibility of 
understandings to exist and originate as a possibly idealistic cognisant phenomenon, 
i.e. economic understandings might originate from non-material foundations, even if 
dialectical in nature.  This possibility, although philosophically valid, attempts against 
any common sense upon economic activity.  Loasby’s (1999, 2000, 2001) insistence 
on the mental patterns that help individual associate perceived economic phenomena 
only reaffirms our argument. 

Moreover, idealistic knowledge eliminates the possibility of determining some of the 
core dimensions of the unobserved underlying driving structures of an economic 
system.  The cycle (or loop) defined through the stages of economic activity-
abstraction-economic activity is lost.  Because of its very nature, idealistic 
understandings could never provide the necessary context for the emergence of this 
cycle.  Without this cycle one could never guarantee the effects that new emergent 
understanding will bring onto the industry later on.  In other words, history would be 
lost as a definitive source of understandings.  Indeed, some of these effects, and this is 
the key, are responses to observed past economic activity.  Therefore, it is only 
through this cycle that a causal chain of events can be guaranteed to exist.    

The next section is entirely devoted to the construction of πt
i, that is the probability 

distribution of agent i at time t.  To do this, learning must be examined first so that the 
required structure, in Ωt

i, can be identified.  At the same time it will also require 
making some concrete assumptions about the possible events of knowledge. 

VI  The Probability Space of Individual Understandings 
So far the space Ωt

i is just the union of the image of Ξt
i and It

i.  That is, the space that 
gathers all events of understanding.  These are, forms of understandings concerning 
the state of affairs up to t – 1, achieved through formal and informal learning between 
periods t - 1 and t.  Even without an explicit recognition of these influences, the 
definitions above do not, by themselves, guarantee that a probability space could be 
constructed from Ωt

i for the random variable λt
i at t.  The evolution of the present 

                                                          
15   As it was mentioned before intuitions are an acceptable (very much real) form of 
understanding originated in material reality.  In particular, economically relevant intuitions necessarily 
emanate from material economic activity itself for, otherwise, agents could understand something about 
economic processes without observing them.  That is, out of coincidence which, for present ontological 
purposes, is meaningless.  
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state of dependencies of knowledge across the industry will depend on the industry’s
ability to perceive and measure i’s knowledgeable-supported praxis.  That is, it will 
depend on the rest of the agents’ abilities to inform themselves of i’s knowledgeable 
behaviour.  In order for that to happen, understandings must somehow become 
available to the rest of the industry, e.g. econometric formulations, data banks.  For 
that, understandings must be conformed in some probability space.  Therefore the 
question concerning the existence of a Borel σ-algebra necessary in the construction 
of a probability is fundamental.  For this, further conditions on learning are required.  
In fact,  

Proposition 4 If the (formal) learning operator, Ξt
i, is unique (to the agent) at a given 

moment in time then Ωt
i is in fact a σ-algebra at that moment.  Equivalently, for every 

(individual) learning process there exists a unique σ-algebra, i.e. Ωt
i.

Proof   Consider an arbitrary agent i at an arbitrary moment in time.  In order to prove 
that Ωt

i is in fact a σ-algebra at t it must be proven  that 
1. Ωt

i∈ΩΩt
i

2. For any subset of Ωt
i its complement also lies in Ωt

i.  That is, for all S∈ΩΩt
i,

SC∈ΩΩt
i.

3. Any (infinitely) countable union of subsets of Ωt
i lies in Ωt

i.  That is, if {Si} is a 
countable collection of subsets of Ωt

i then  
t
i

i1
iS Ω∈

∞≤≤
�

Notice that we have used the belong-to symbol, i.e. ∈, instead of the inclusion 
symbol, i.e. ⊆, because Ωt

i is being considered as a collection of (sub)sets and not a 
set in itself.   

 We can trivially ascertain that Ωt
i∈ΩΩt

i (as a sigma algebra) since Ωt
i⊆ΩΩt

i.
Hence, the rest of the proof deals with 2) and 3). 

Consider two arbitrary events in Ωt
i such that ωj, ωk ≠φ.  If one of these objects 

were the null set, say ωk, then we would trivially have  
                          t

ijkj ∈=∪
for all j, k.  The same is true if countably infinite unions were considered.  Now, 
consider the pre-image of ωj ∪ ωk.  There are three possible situations in this case: ωj,
ωk∈ΩΩk

i or ωj, ωk∈ΩΩin
i or ωj∈ΩΩk

i and ωk∈ΩΩin
i,.  Let’s see them case-by-case:   

If ωj, ωk∈ΩΩk
i then the pre-image of  

ωj ∪ ωk = ][][ k
t
ij

t
i kk ΞΞ ∪

is 

[ ] 1

k
t
ij

t
i ]k[]k[

−
Ξ∪Ξ                 [a] 

Since Ξt
i is unique, it defines a one-to-one relationship between syntheses and events 

of understanding.  Henceforth, [a] must equal  

tkj kk K∈∪
by virtue of proposition 1.  In other words, there exists a class of synthesis of 
dialectical contradictions, namely k* = kj ∪ kk that must have an event of knowledge 
associated. Whence, 
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i
t
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This is valid for an infinitely countable union since 

�
∞≤≤

∈
i1

tik K

If ωj, ωk∈ΩΩin
i then  

ωj ∪ ωk = [History][History] t
i

t
i II ∪

Now, since intuitions arise out of yet to be discovered protocols of learning we can 
identify, at least mathematically, each intuition with a different informal operator.  
That is,  

k
t

i

i
t
i

[History]

[History]

=

=

I

I
~

Now, the union of both intuitions must necessarily be an intuition because, otherwise, 

it would become knowledge.  That is, one of the operators t
i

t
i , II

~
would be captured (or 

transformed into) in Ξt
i.  In other words, the union of intuitions could possibly alter 

the uniqueness of the formal operator at t.  Furthermore, the same is true for any 
infinitely countable union of intuitions.  If the (infinitely countable) union were not an 
intuition it would mean that one of the undiscovered operators would become part of 
formal learning and hence violate our initial assumption.  Hence,    

�
∞≤≤

⊆∈
i1

t
i

in
ii ΩΩ

Finally, if ωj∈ΩΩk
i and ωk∈ΩΩin

i, that is, one event is knowledge and the other intuition, 
then

t
i

k
i

k
ikj )( ΩΩΩ =∪∈∪

 for the two events ωj and ωk.  In general, any infinitely countable unions of events 
must lie in either Ωk

i or Ωin
i; that is, it must lie in Ωt

i.

 Finally, ω∈ΩΩt
i then we can define its complement as ωC = ωk ∪ ωin where ωk

and ωin are possibly composite (unions of) events of knowledge and intuitions 
respectively.  By virtue of the previous arguments we have that ωk∈ΩΩk

i and ωin∈ΩΩin
i.

Hence,  
                                                   ωC = ωk ∪ ωin(Ωk

i∪ΩΩin
i) = Ωt

i

for an arbitrary event of understanding ω∈ΩΩt
i.  Hence, Ωt

i is a Borel σ-algebra.  
Q.E.D. 

What this proposition, whose proof can be found in section D of the appendix, states 
is that, as long as there is a uniquely identifiable path between systems of dialectical 
contradictions and dialectical understandings, then the understanding space itself is a 
σ - algebra.  To use previous terminology it means that Dt = Ωt

i. It is a requirement of 
identification.  As long as (formal) learning is unique the events of knowledge that it 
delivers are identifiable, and hence they can be counted.  It does not require the 
learning operator Ξt

i to be the same throughout time, it only requires that it not change 
in between ticks of the (conventional) clock.  There could possibly be different 
learning operator Ξt

i for every t; however, in the present context the change must take 
place instantaneously at t.     
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Since by definition the subspace of intuitions is of finite measure for any measure 
constructed on Ωt

i, then a proper probability measure is guaranteed to exist if the 
elements in Ωt

i possess certain further characteristics, i.e. essentially topological.  A 
topology in this case constitutes a set of possible understandings.  Moreover, different 
topologies give rise to different characterisations of the understandings space because, 
ultimately, they represent different possibilities.  This is very much in the spirit of 
Belianin’s (2000) approach to the question of topologies in economically related 
abstract sets.  In fact, we can prove the following: 

Proposition 5  If formal learning is unique between t – 1 and t then the space (Ωt
i, Dt,

πt
i) is indeed a probability space for any t.  

Proof.  Proposition 4 proved that if learning is unique then Dt = Ωt
i is a indeed a sigma 

algebra.  Whence, the proof will be concerned with the construction of the underlying 
probability distribution πt

i.  The coming arguments are based on Ash(1972), Edwards 
(1972) and Weir (1974), particularly Edwards (1972).   

There are two possible approaches for the construction, the difference being whether 
the space of understandings are considered to be continuous of discrete.  Both require 
assumptions that somehow restrict the generality of the representation.  Nevertheless, 
they do not compromise in any way whatsoever the previous arguments.  The 
requirements on the appropriate topology will be made precise whenever necessary.   

First Approach. Assume that Ωt
i = [at

i, b
t
i] = It

i⊂ ℜ where 0∈[at
i, b

t
i].  Whence, 

the elements of Ωt
i are the subintervals of It

i.  These subintervals are closed although 
they need not be in principle since the difference is constituted by a set of measure 
zero, i.e. discrete points.  Now, consider then following: 

1. Let the space of continuous functions over It
i be S and fix an arbitrary function 

f∈S.  Now, consider a partition of It
i

at
i < x1<x2<….<xn<bt

i

     where pi = xi – xi-1.  Call this partition Pj ={pi}.
2. Let 

i

i

p

p

dxf∫ =

The measure dx is a Lebesgue measure.   
3. Let   

{ }
i

j
j p

P

MAX
P max=

       This is the maximum value of the integral over the different subintervals defined 
by the partition Pj.  In fact, the quantity defined above is valid for any partition Pj of 
It

i.  Hence,  
4. The quantity  

{ }MAX
P

P
f j

j

max=∗

is well defined.  This quantity ∗
f is the maximum value of the area under f for an 

interval, given all possible partitions of It
i.
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Now, define Fi :S→ℜ through which each f∈S has a real number associated, i.e. ∗
f .

Fi is continuous and linear since the process that defines Fi, i.e. steps 1-4, only involve 
integration and choosing.  Additionally, all functions in S are continuous as well.  
Finally, choose a topology τ so that It

i is both compact and Hausdorff; then the RRT 
ensures that we can represent Fi as 

∫= df(f)Fi

where μ is a regular Borel measure that depends on the representation.  Take careful 
notice that the integral in the above representation of Fi is not the integral of step 2.  
This is so because step 2 is only the integral over a specific subinterval of the partition 
Pj whereas Fi involves maximising the value of the integrals over all possible 
subintervals, defined by Pj, throughout the family of possible partitions of It

i, i.e. {Pj}.  
Fi is, in fact, much more than an integral.  It provides an approximation to a central 
tendency in the functions considered.    

In particular, the identity function over this interval Idi : [a
t
i, b

t
i] → [at

i, b
t
i] is 

continuous under any topology.  Then we can ascertain that  

i

]b,[a

iii mdId)(IdF
t
i

t
i

== ∫
Notice that 

1)(IdF
m

1
ii

i

≡

We can now consider the same argument on all the subsets of Ωt
i defined as stated at 

the beginning.  Then the identity function over a subinterval subIt
i, denoted Idi(ωj) : 

subIt
i → subIt

i is again bounded and continuous and hence the RRT is applicable.    In 
fact we can define a probability measure for (any) ωj = [αj βj] (where of course at

i ≤ αj

≤ βj ≤ bt
i) by considering 

1)d(Id
m

1
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1
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j
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<=== ∫                           [b] 

If we define non-intercepting events of understanding to be ωj ∩ ωl = [αj βj] ∩[αl βl]
= φ then 
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In fact if �

J
~

i

t
isubI

∈

φ= where J
~

is some indexing set for [at
i, b

t
i] then 

1)d(Id
m

1
)subI()(

Ji
ii

iJi

t
i

t
i

Ji
i

t
i ≡== ∑∫∑

∈∈∈ ~~~
�                   [c] 

where J
~

 is the ith member of the indexing set J
~

.  Finally, if {subIt
i} are such that they 

do not reduce integration to a set of measure zero, i.e. 
     0)subI(

Ji

t
i

t
i =∑

∈~
   

then, πt
i has finite variation given by 

i

]b,[a

i
t
i FdId)V(

t
i

t
i

== ∫
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Equations [E.1] and [E.2] guarantee that πt
i is indeed a well defined probability 

measure over Ωt
i = [at

i, b
t
i].  This construction specifies the values in probability for 

each event of understanding through [b].  Conceptually, it represents an 
approximation of the central tendency in the occurrence of the event. 

 The probability distribution πt
system for the product space, here termed Ωt

system = 
Ωt

1 × ΩΩt
2 × ⋅ ⋅ ⋅ × ΩΩt

n, is directly induced by each component.  Indeed, if each agent’s
understanding space Ωt

i = [at
i b

t
i] has an associated topology τi that makes it compact 

and Hausdorff then the product topology will make Ωt
system compact and Hausdorff 

(by virtue of Tychonoff’s theorem and the natural separation of points in Ωt
system).  

The analogous linear functional Fsystem is now defined the product space Ssystem = S1 ×
S2 × ⋅ ⋅ ⋅ × Sn so that  

nℜ→systemsystem S:F

where  

n21system FFFF ×××=
Each one of the components of FP defines the marginal probability upon that 
particular agent.  The probability distribution πt

system is conditioned on the individual 
probability distributions and is thus defined as 

( ) ( )

∑ ∫

∑
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where the event of understanding in the entire system is the composite event 

nj,j,2j,1j ×××=

The value of each one of the components of ( )t
n

t
2

t
1j

t
system ,,, ΩΩΩ  lies, by 

construction, between 0 and 1.  Geometrically, the probability density may be graphed 
as an n-dimensional cube. 

Second Approach. Assume that Ωt
i is countable.  Hence, there exists an 

isomorphism between Ωt
i and the natural numbers N that identifies each event of 

understanding with an (ordered) natural number.  Whence, we can write Ωt
i ={ωj}.  

This identification also leads naturally to identification with the rational numbers Q as 
well (because of the isomorphism between N and Q).  In any case, consider an 
arbitrary function ϕ : Ωt

i →ℜ such that 

jj r)( =ϕ
where rj are discrete real numbers.  Now, we can order the rj’s using the induced order 
from the real numbers, i.e. ≤ so that Ti = {rj} is an ordered countable set.  Because of 
this order Ti thus has a minimum and a maximum value.  Call them rMIN and rMAX

respectively.  Also, Ti is trivially σ - algebra because of the identificability with Ωt
i.

Only unions and complements of elements in Ti that can be “traced back” to Ωt
i have 

any meaning, i.e. are defined.  Hence, Ti is necessarily a σ - algebra.   
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 Consider now, 
1. Let f∈S* ={set of continuous functions on Ti} be an arbitrary function.  The 
existence of this set is equivalent to saying that there exists a topology δ that gives rise 
to a set (actually a Hilbert space of functions) of continuous functions.  Hence, define 

MIN
kk r)f(r))m(f(r −=

so that 
MIN

lklk r)}f(r),max{f(r))f(r)m(f(r −=+

2. Let 
{ }))m(f(rmaxm k

T

*
f

i

=

Hence, for every f∈S* there exists an associated real number, i.e. m*
f.  We can then 

define the following functional 
      Fi (f) = m*

f

Fi is not just the difference between numbers but actually involves choosing the 
biggest difference amongst them as determined by Ti and f.  It is a continuous linear 
functional since given a fixed set Ti a sequence {gi} can always be defined to 
approximate any f∈S*.  This is so because of the Cauchy property of the real numbers 
and any subset thereof.  The Cauchy property states that given any fixed real number 
there exists a convergent sequence of real numbers whose difference amongst the 
members of the sequence shrinks the further the convergence.  Finally, any f∈S* is 
defined over the real numbers and has a range of real numbers.  Hence, choose a 
topology τ over Ti that: 1) maintains the continuity of any f∈S*, 2) makes Ti compact 
and Hausdorff.  Then, the RRT, allows us to represent Fi as 

∫= df(f)Fi

In particular,  

i
MINMAX

TTi rrdId)(IdF
ii

=−== ∫
so that 

               1)(IdF
1

iTi
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≡

Therefore, if rl < rMAX then 
MIN

llTlTi rr)d(rId))(r(IdF
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−== ∫
We can define a probability measure for the event ωl as  
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rr

)d(rId
1

))(r(IdF
1

)( l
i

MIN
l

lT
i

lTi
i

l
t
i ii

<=
−

=== ∫                           [d] 

If ωl and ωk are two non-intercepting events then rl ∩ rk = φ then we can define the 
probability of the union as 

⎭
⎬
⎫

⎩
⎨
⎧

=∪=∪=∪ ∫∫∫ )d(rId
1
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From this we can ascertain, using the identificability of Ωt
i with Ti, that if 

φ=� j then
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           1)dr(Id
1

))r((IdF
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j
t
i ii ∑∫ ≤=== ���               [e] 

In particular, if il Tr =�  then 

1)( j
t
i ≡�                                                     [f] 

Equations [c], [d], [e] and [f] ensure that πt
i is a proper probability distribution for Ωt

i

at time t.   

 Just as in the previous construction, the topological properties of the product 
space Ωt

system = T1× T2 × ⋅ ⋅ ⋅ × Tn follow directly from the properties of each one its 
component.   A (product) topology τsystem that makes Ωt

system Hausdorff and compact is 
one determined by the product of those topologies τi that make each Ωt

i Hausdorff and 
compact.  Again, the analogous linear functional is defined as 

n*
Psystem S:F ℜ→    

where 
*
n

*
2

*
1

*
P SSSS ×××=

and 

n21system FFFF ×××=     

The probability distribution for an arbitrary composite event θj in Ωt
system is thus 
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where nj,j,2j,1j ×××=  and αj,k ≤ 1 for k = 1, 2, …, n.  Again, each 

component  
k

MIN
kkj, rr −

 defines the marginal probabilities of πt
system for each k = 

1,2,…, n.   
Q.E.D. 

It can be seen that a number of different probabilities can be constructed.  We 
have only shown two in order to emphasise the role of learning and understandings in 



24 

general in the process of formation of the understanding space.  Moreover, 
assumptions about the agents’ understanding spaces and their relation to the real 
numbers are not so restrictive either; especially in light of the equivalence of all 
measures in ℜ.  The crystallizations of understandings are always, at any time, real 
numbers simply because they are part of measured economic activity.  Hence, it is by 
no means arbitrary to conceptualise the agents’ understandings spaces, in as far as 
modelling is concerned, as subsets of ℜ.  As stated previously, this particular 
construction of the probability measure was chosen for Ωt

i, which is ultimately 
equivalent to a Lebesgue measure (because of the need to crystallise understandings as 
measured recordings), essentially to highlight the dynamics of understandings.  
Having stated this, the constructions are by no means unique.  Notwithstanding, all 
constructions are equivalent in as much as knowledge and intuitions are concerned. 

The probability distribution, constructed at time t, based on the dynamics of 
understandings generation is of course πt

i, the probability just constructed, i.e.  
[0,1]: t

i
t
i →                     [2] 

This probability, i.e. [2], is the underlying probability measure of the random variable 
λt in in our general statistical specification of section I.  Moreover, they may have 
different specific forms as far as empirical issues are concerned.  However, for the 
present context, it is not a concern simply because the basis of this probability are not 
(possibly) repeated experiments nor combinatorial deducts.  It is not a subjective 
measure of anything either.  They represent the effects of history, as channelled 
through learning, borne by the different agents.  Anything else concerning the nature 
of these probabilities is an assumption.  In particular, for agent i, we have that   

t
i

t
i

t
i

[0,1],x)(

where

r)(

∈∀∈=

ℜ∈=

given, of course, that a suitable topology τ has been chosen to represent the set of 
possible events of understanding by the agent at t.  In this case, then, the event ω takes 
place as rω∈ℜ with probability 0 ≤ x ≤1.  In terms of our econometric specification 
we have 

*),( ω+= rzhfh t
i

t
i

t
i

with probability xω* for some event of understanding ω* acquired at t – 1;  that is, λt
i

(ω*) = rω* and πt
i(ω*) = xω* .   

The construction of the probability distributions associated to the random 
disturbance term λt

i emphasised a couple of points previously hinted at.  First of all, it 
made explicit the requirement that learning be unique in between measurements of 
economic activity, i.e. between ticks of the conventional clock.  Second, the 
requirement, at every t, on the topology of Ωt

i highlighted the fact, recognised in the 
core competence literature, that not all forms of understandings do indeed become 
relevant in individual decision making procedures.  There are capabilities constraints 
inherent in the internal workings of individuals and firms that restrict the availability 
in use of understandings to agents and firms.  The process was also seen to be entirely 
subjective in respect to learning.  Individual (or firm) limitations on understanding 
processing capabilities were reflected in the spread of possible topologies to consider.  
Hence, we can always interpret limitations in individual understandings as arising 
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from either learning or inabilities in handling understandings (thus defining coarser 
and coarser topologies).  There will always exist at least one topology, i.e. the 
coarsest, that will guarantee the applicability of the RRT at each t.  However, this case 
is very uninteresting and trivial.  Agents normally operate anywhere in a position 
between the most trivial topology, i.e. the coarsest, and the finest, i.e. the one that 
contains all possible subsets of Ωt

i
16.  In general, the topologies associated to each Ωt

i

specify the possibilities of understandings.  The RRT specifies their probable 
occurrence.  

VII  An Example
We will develop the example based on the second approach in the proof of 
proposition 5.  Hence, consider 4 distinct agents each with a countable understanding 
space, i.e. Ωt

i is countable for i = 1,2,3,4.  We can (arbitrarily) define the functions ϕi

such that 
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where qj and pj are whole numbers, i.e. qj, pj∈Z.  Whence, at t, the agents’ probability 
distributions are                                 
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Each one of the sets Ti is in fact a strict subset of, i.e. it can never be equal to, the 
rational numbers that exist between the maximum and minimum values in Ti.  This is 
simply because of the definitions of ϕi.  We can depict this graphically for Ti as in the 
following diagram         

                                                          
16  This topology is called the Power Set of Ωt

i and it is denoted as P(Ωt
i).  
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Ω t
i

ϕ i

Ti ⊂ Q

Diagram 3 

The set Q represents the rational numbers, i.e. all numbers that can be written as 
i

i

p

q
.   

The probability distribution of the system, i.e. Ωt
i, is defined as the conditional 

probability, which in this case is, 
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Whence, we can define the probability measure for the system as  
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where, j,4j,3j,2j,1j ×××=  and qj,k, pj,k are whole numbers for k = 1,2,…,∞ and 

ωj,i∈ΩΩt
i .  The cumulative probability density function associated to πt

system may be 
depicted as the surface (up to a set of measure zero) of a four-dimensional cube 
defined by (x1, x2, x3, x4) where 0 ≤ xk ≤ 1 for k = 1, 2, 3, 4. 

VIII  The Evolution of an Agent’s Understanding Space 
An agent’s understandings space is defined at any moment in time by the present 
economic activity, as reflected by Kt, and his/her learning capacity.  Furthermore, all 
forms of path dependency are incorporated in Kt.  Hence, the understandings space’s
evolution will follow the path determined by history still-to-come.  This still-to-come 
history will define what he/she can learn.  The evolution of his/her learning process, 
on the other hand, will determine how and to what extent the agent learns.  Given 
certain restrictions the agent’s understanding space’s evolution can be modelled using 
elementary homotopy theory.   

Consider the following: let Ωt
i be agent i’s understandings space, where  

          
in
i

k
i

t
i

History

History

Ω

ΩΘ

=

=

][I

][
t
i

then if there exists a homotopy that can deform the identity over Ωt
i into another 

function, i.e. some other space’s identity function, then i’s understandings space will 
have been deformed.  That is, i’s understandings space will have been deformed if 
there exists a homotopy H such that  
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           Id Id re l(A )
i
t

i
tΩ Ω

≈ ~

where t
i

t
i

~
,A ΩΩ⊂ .  A is a subset of both understanding spaces and is of course 

allowed to be the null set.  Note that the set ℜ ∪ {+∞, -∞} is topologically the same, 
i.e. homeomorphic, to the unit interval I = [0 1].  Therefore if i’s understandings space 
were to be constituted by ℜ ∪ {+∞, -∞} then it would only be necessary to study the 
evolution of the interval [0,1].   

Observe an important consideration with respect to time.  First of all, the process just 
described is pertinent to both biological and conventional time.  Through both frames 
understandings may emerge and hence the agents’ understandings spaces be 
deformed.  For a matter of concreteness, though, let time be considered in its 
continuous conventional frame, i.e. t∈[0,1].  Second, the deformation, or evolution, 
takes place in its entirety within the unit interval since -∞ is identified with 0 and +∞
with 1.  The process is thus a continuous deformation through history reflecting the 
agent’s evolving adapting expressions of understandings.  At t = 0, Δ0 and Ξ0

i are 
identified with the beginning of i’s history and at t = 1, Δ1 and Ξ1

i with his/her end.  In 
this sense all forms of initial path dependencies of understandings are incorporated in 
Ξ0

i, i.e. in the agent’s status quo at t = 0.   Finally, the issue of the continuity of the 
deformation will become crucial when specifying equations as well as the continuous 
nature of the space through which the deformation takes place. 

Consider now the following example: let Ωt
i = [0, 1] so that 

       Id Ω Ω
i
t i

t( ) [ , ]ω ω= ∀ω ∈ = 0 1

Now if the evolution of i’s understandings space is such that it contracts, i.e. it 
collapses, to a point ω  in the space then the homotopy  
           H 1( , ) ( )ω ω ωt t t= + −        [4] 

continuously deform the identity over Ωt
i = [0 1] into the identity over { }ω=t

i

~Ω since  

1)H(1t

)0H(0t

=ω⇒=
=⇒=

,

,

If ω ∉I, i.e. if it were the case that Ωt
i = I ∪ { ω }, the homotopy defined in [4] would 

still be valid.  Moreover, geometrically, it would represent the net effect of a reduction 
of the space itself, i.e. 

              

t
iΩ~

Id

Ω t
iω

Diagram 4 
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The homotopy in [4] actually represents the collapse of a probability density function 
to a single point.  Graphically 
                                                                                     

                             

1

ω

Diagram 5 

The understandings space Ωt
i itself may be continuous or discrete, i.e. it may define a 

continuous or a discrete probability distribution.  This depends on the composition of 
available forms of understandings.  Furthermore, if the space is discrete, homotopies 
are still well defined since continuity of paths over the space depends on the existence 
of an appropriate topology on Ωt

i so as to make them continuous (which, 
tautologically, Ωt

i will always possess).  We can express the deformation of the 
agent’s understanding space, i.e. Ωt

t, in terms of the deformation of both of its 
constituent subspaces.  In fact, for Ωt

t and Ωt
t we can define the following homotopies 

(over H*t,ν ) respectively   
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where ς∈H*t,ν.  Note that by construction history has been identified with the unit 
interval.  Hence, it can be seen that the homotopy that represents Ωt

i’s evolution is 
determined through the dialectical operator Δt and the formal learning operator Ξt

i and 
the informal operator It

i.   

This can be taken a step further if we make the further assumption that Ωt
i ⊆ℜn for 

some n.  Then the homotopy in [4] can be thought of as a specific case of a more 
general type of homotopies.  In fact, the function that acts as the identity of the space 
at t = 1 is unknown a-priori and is also continuous for every t∈[0,1].  Contrary to the 
identity of the initial understandings space Ωt

i, whose structure and formation is 
known, through the learning and dialectical operators, the only thing known about the 
structure and formation of the final understanding space is that it is the result of 
continuous deformations induced through changes in the composition of 
understandings acquired by the agent.  In this respect understandings create a 
backward linking systemic web through time.  If understandings were complete, i.e. 
they did form a continuum, then each one of constituting elements at t = 1 can be 
traced back to its origin at t = 0.  Since future understandings can at most be 
speculated about at present then every future emergent expression of cognition 
incorporated in the understandings space can at most be interpreted, from our present 
position in time and space, as future (statistical) noise to be adhered.  Indeed, from our 
present perspective, future history has not happen yet.  It is at most a possibility, one 
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in the infinitely (perhaps, uncountably) many possibilities.  Hence, from our 
perspective, future history is structureless.  History that has not taken place cannot 
account for anything that might or might not induce, especially as time goes on into 
infinity.  This is the essence of Popper (1950) argument: we cannot know the future 
because history has not yet happened as of yet.  This was also insinuated in Polanyi 
(1946).  Along these lines Popper (1956) proposes an interpretation of scientific 
knowledge as one made up of conjectures and hypotheses that are subject to 
verifiability.  In this context we can interpret future history as one composed of pure 
statistical noise.  This requires a hypothesis (or conjecture) concerning the underlying 
probability distribution of this noise.  For a matter of expositional clarity we will 
assume that this noise has a Gaussian probability distribution with varying degrees of 
scatteredness, i.e. varying variances17.  Hence, we can interpret our ignorance of the 
future in such a manner that, from our position in time, i.e. t = 0, the identity function 
of the future knowledge space throughout [0,1] is a Wiener process, i.e. it is Brownian
Motion realisation.  Hence the (convex) deformation of the original space Ωt

i is given 
by 

            1t)Id1(BMtt),H( t
iΩ−+=       [5] 

as long as there exists a space ΩU such that U
t
itBM ΩΩ ⊂, .  In this case the 

Brownian Motion BMt represents a realisation through the space of deformation.  That 
is, an agent’s understandings space’s deformation can always be modelled through a 
homotopy as long as there exists a larger understandings space that contains both the 
initial and the final understandings space, e.g. U

t
itBM ΩΩ =∪  upon which H(ω, t) is 

continuous under some topology.  At time 1> t* > 0 we can represent Ωt
i’s

deformation as 

Ω t
i

IdΩ t*,i

BMt* 

Diagram 6 

Diagram 6 is meant to highlight the simple dynamics of the deformation.  At our 
present point in time t*, future history has not taken place yet.  The deformation of the 
space up to t* carries with it the path dependencies generated by past history.  Since 
we cannot possibly know or intuit (at most speculate) about future history then, from 
our perspective, the future identity can be, at most and from our position, a Brownian 
Motion process evaluated at t*.  The arrows indicate that as time goes on, i.e. t → 1, 

                                                          
17  In this sense, our conjecture becomes that the identity of the agents’ understanding spaces in 
the future is a Brownian Motion process from our present stance.  This is the claim subjected to 
verifiability. 
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the agent is reaching his/her economic destiny and the dynamics of understandings are 
leading him/her to it. 

 Brownian Motion processes reflect further undertakings to the processes of 
evolving individual understanding.  For any points in time 0 ≤ t1 < t2 <…< tk ≤ 1 the 
changes in Brownian Motion [BMt2 – BMt1], [BMt3 – BMt2],…,[BMtk – BMtk-1] are 
all independent multivariate Gaussian such that [BMs – BMt] ∼ N(0, s-t) for all s and t 
in [0,1].  That is, changes in the realisations of the Brownian Motion process, i.e. 
changes in the future understanding space, are not expected to occur and the 
dispersion of these changes increases with time.  These characteristics of Brownian 
Motion, conceptually, reflect the precise nature of the changes to an agent’s
understandings space.  Understandings become a possibility only through history, 
which, in the future, has not taken place yet.  Hence, understandings should not be 
expected to change from their actual form and essence when looked at from the 
present.  To put it differently, changes in understandings should be expected to take 
place incrementally; that is, as white noise processes.

 In order to model an agent’s understandings space in a somewhat realistic 
fashion it should be assumed that the agent in fact holds limited information that 
contributes to some individual articulation of his/her bounded rationality.  In 
particular, the agent’s learning mechanisms allow him/her to develop and adapt a 
proper understandings space that reflects what he/she is capable of learning from past 
observations on the environment.  This mere postulate eliminates the possibility of 
using continuous mathematical tools, e.g. continuous real analysis, differential 
equations (stochastic or not), etc., in order to model the evolution of understanding 
spaces.  Notwithstanding, homotopies can be used to describe the changes to the 
agents’ understanding spaces by assuming (and constructing if so desired) that there 
exists a coarse enough topology as to make all function defined over ΩU continuous.  
If Ωt

i is a discrete then the BMt term in [5] must be replaced18.  This is so because all 
of the events in Ωt

i, according to the logic from above, will follow themselves a BMt

process.  In section G of the appendix further details of this issue can be found.  We 
can represent this diagrammatically as   

Ω t
i

IdΩ 0,i 

Diagram 7 

•
•
•

•

•

•
•
•
•
•

•

•
•

•
•

•
•

•
•
•

The vertical lines are meant to represent the Brownian Motion process for each event 
and the black dots simply realisations of this events at different points in time after 0, 
                                                          
18   Basically, this implies that the entire space would be described as a family of Brownian 
motion.  
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i.e. t > 0.  Initially, all events in the understanding space lie in the 45-degree line.  As 
time goes on they move up and down in an entirely continuously random manner, i.e. 
following Brownian Motion processes. 

The discrete-continuity question concerning the composition of the initial 
understandings space brings forth an additional issue, the one concerning the 
connectivity of understandings (within the bounded limits of our problem herein).  For 
if the understanding space is connected (in the topological sense) then it would be 
possible to define connected paths of understandings.  If this were the case then it 
must imply that there exist appropriate syntheses of dialectical contradictions that 
connect differentiated individual manifestations of understandings across the 
understandings space.  Since the system of dialectical contradictions that reflects 
economic activity, i.e. Kt, is concatenated, i.e. connected then Ωt

i is connected which 
implies that individual learning must be intricate and refined enough to give rise to 
links that can bind the entire space. These links are local in nature and may develop to 
create an interconnected network of understandings.  Through the connectivity in this 
space, understandings disperse and ultimately bind themselves, in a sort of enveloping 
event.  Furthermore, in the limit, connectivity (of knowledge and intuitions) creates 
structure.  If this structure of understandings is indeed found then understandings-
driven non-random developmental evolution within the industry can be, at least 
conceptually, guaranteed to give rise to some abstract model of it.  Moreover, in the 
presence of structure, this type of understandings-related evolution will inevitably 
emerge.  Section IX is devoted to this topic.  First, though, we make further use of 
homotopies to study mutual influences amongst agents through understandings.  Then, 
we deal with some bounded rationality issues as they emerge in this context.   
   
IX  Mutual Influences Through Understandings 
If there are n agents at time t and each agent’s adapting process of understanding 
economic activity around him/her is as described in diagram 1 then there are n 
simultaneous such processes taking place between t – 1 and t (assuming of course that 
there has been no entry or exit in between t – 1 and t).  In order to guarantee that each 
agent’s understanding space Ωt

i was a σ-algebra at t, the learning process was required 
to be unique.  In other words, it could not change between t – 1 and t if Ωt

i is to define 
a σ-algebra upon which, through the RRT, a probability measure could be 
constructed.  No matter what the rest of the agents’ bearing is on an agent, the 
(formal) learning operator must be one and only one if it is to allow a proper 
probability space to be constructed.  This implies that learning routines must not 
change in between ticks.  The learning mechanisms that the agent had at t – 1 must 
carry him/her to t.  This situation implies that no other agent can aid the agent in 
learning, essentially, because aid could possibly change the agent’s learning routine 
and the required uniqueness of the process would be lost.  There cannot be any mutual 
influence between agents in between ticks of (conventional) time in a way to alter the 
nature of the (formal) learning operator of either agent.  In this section we relax this 
requirement upon learning and study the consequences.  That is, we further study the 
learning operator by including the possibility of mutual influence and hence leave 
open the possibility that a probability space might not be constructible at all times.  
More importantly, if the agents can influence each other’s learning routines, i.e. 
operators, then they can influence what each understands.  In this way, they can 
influence each other’s understandings.  Also, the necessary assumptions to assure a 
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probability space at all times will be revealed in light of mutual influence of 
understandings. 

What do mutual influences amongst agents really mean?  Consider two agents, say j 
and i, at time t.   If one of them, say j, does something, whether purposely or not, upon 
whose actions, i changes his/her learning practices, between t - 1 and t, then j directly 
or not, intended or not, will have influenced i’s learning practice.  In the context of 
diagram 1 this means that the nature of the learning operator, i.e. Ξt

i and possibly its 
functional specification, has somehow changed.  This “influence” on the learning 
operator takes place through a possibly distinct mode of time from that in which 
dependencies in understandings are represented.  Indeed, influences between j and i 
need not occur through any convened expression of time.  Nor do influences need to 
be measured in arbitrary sequentially spaced units of time.  Hence, to incorporate 
features by which agents could influence each other implies a consideration of 
possibly two distinct frames of time: a conventional one and a biological one.  
Furthermore, as mentioned before, in principle, these two time frames need not 
intersect although conventional time can always be interpreted as an approximation of 
biological time.  That is 

                     

t0 t1 t2 tn

Conventional time (t)

Biological time (tbio)

Diagram 8 

……

……

    
Whatever the manner through which these influences play themselves out the outcome 
is always, at any point in (conventional) time, the ultimate possibility of changes to 
Ωt

i.  Additionally, if this influence, developed amongst the agents through biological 
time, coincides in the time frame with that of conventional time, i.e. they are both the 
same, then the required uniqueness of the learning operator might be lost.         

Consider two agents, say i and j; if agent i begins influencing j’s learning operator 
indefinitely, ad perpetum through tbio, then there will come a point where j’s learning 
modes and routines will have changed to a point of being equivalent to that of i’s.  
This process, when taken to the limit, will have completely altered j’s learning 
operator into i’s operator.  Hence, in the present context, mutual influences always
deform the agents’ formal learning operators into the other’s formal learning operator, 
however small is the induced change.  Note that the complete deformation of one 
formal learning operator into the other does not imply that the agents’ understandings 
spaces must ever be the same, i.e. Ωt,j ≠ ΩΩt,i.  This is so, ultimately, because intuitions 
are always and at any point in time, through any frame of it, different and hence 
heterogeneous in the population.  Nevertheless, mutual influences can be modelled 
mathematically with the aid of a (special type of) homotopy; one that can deform one 
operator, i.e. Ξt

i, into the other, i.e. Ξt
j.  In fact, if we further require that 
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• The homotopy that deforms these operators Hi,j(tbio, k), where k∈Kt, also be 
continuously differentiable at all points 
• Biological time tbio be also normalise to an interval (just as in the last section), 
basically by identifying ± ∞ with the end points of an interval, call it Ibio

Noting that, although different, conventional time is contained in biological time then 

     t
Ubiobioji, I:k),(tH K

~ →×                         [6] 

where t
j

t
i

t
U ∪=  and �

bioIt
t

∈

= KK
~

completely describes any mutual influence 

through biological time between i and j by deforming Ξt
i into Ξt

j and, if need be, vice-
versa.  Note that the subscripts depicted in the learning operators and the 
understandings spaces are measurements of conventional time whereas possible 
deformations of these operators into each other take place through a different frame of 
time, i.e. biological.  Formal learning, in both i’s and j’s cases, is the composite 
outcome of the two-fold process taking place through convention and nature, i.e. 
factography and the biological concourse of nature respectively.  This can be 
represented graphically as 
    

                                        

Ht

Ω t,i Kt

Ω t,,j 

Δt
Ξ t

j

Ξ t
i

Hi,j(tbio, k )

Diagram 9 

Conventional time (t)

When can Ωt
i become a σ-algebra, in light of mutual influences through biological 

and conventional time, then?  If we assume that conventional time and biological time 
develop through the same frame irrespective of how discrete are the measurements 
that define conventional time, then the homotopy’s derivative with respect to 
(biological) time 

jiji
bio

HH
dt

d
., =      [7] 

 defines the rate of change of Ξt
i into Ξt

j and vice versa.  In other words, [7] 
determines how one learning operator is being transformed into the other through 
continuous biological time.  To put it differently, [7] tells whether at one point in time 
(which is the same for both frames of time by assumption) there is actual deformation, 
i.e. any mutual influence between i and j, at all or not.  Therefore, if at biott = , i.e. 

both conventional and biological, we have that 

0H
tji =,    



34 

then each formal learning operator, at t , bears no influence from the other agent.  
Hence, Ωt

i may become a proper σ-algebra at t.  From this argument, it becomes clear 
that either the evolution of mutual influence (or its functional representation) must be 
known, i.e. the evolution of Ξt

i, or the influences must be specified through a 
particular (everywhere differentiable) homotopy Hi,j (actually these two things are 
logically equivalent).  Hence, having assumed that conventional time and biological 
are the same, then the learning operator for (say) agent i could be finally (and 
definitively) be specified as 

))kt(Ht( ji,
t
i

t
i ,,ΞΞ =       [8] 

where t and Hi,j develop through the same frame of time. 

In general, note that in order to discover whether Ωt
i can indeed become a σ-algebra it 

is sufficient to evaluate jiH ,  at every { } Nnnt ∈ where each tn is a measurement in 

conventional time.  If 0H
ntji =,  then Ωt,i is a σ-algebra at tn.   

 The above arguments can be easily generalised to the entire system of n 
agents.  With n agents then (any) an arbitrary agent, say j, faces possible influences 
from n – 1 agents.  Hence, both n - 1 homotopies and their rate of change must be 
known or n - 1 possibly distinct mutual influences, with j, must be known.  Agent j’s
learning operator is thence  
   )H,,H,H,,H,H,( nj,1jj,1jj,j,2j,1

t
j

t
j +−= tΞΞ    [9]

     
In this case, for j’s understanding space Ωt

i to actually be a σ-algebra at t it must be 
true that 

0H
tlj =,

for l = 1, 2,…, j - 1, j + 1,…, n.  This is a highly unlikely situation in actual, real and 
concrete, economic activity to say the least.  If we assume that Ibio = [t1, t2] then we 
can depict the possibility of deformations for agent i’s learning operator in reference 
to the other agents, throughout biological time t1 < t < t2 as 

1t
i

.

.

.

2t
1

2t
2

2t
1-n

2t
n

Diagram 10

tbio
Evolving compound dependencies
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Finally, the need for assumptions should be noted.  It is necessary to make 
assumptions in order to make any sensible economic model of understandings 
interdependencies in a system composed of heterogeneous agents that learn through 
conventional and biological time, influence each other through biological (and 
possible conventional) periods and keep records of their activity through conventional 
stances.  These assumptions, for the case of formal learning, could be summarised as 

• Conventional time and biological time develop through the same frame 
irrespective of how they are both measured. 
• Either the evolution of mutual influences (manifested through the formal 
learning operators) or the corresponding homotopies and their derivatives must be 
known.  These requirements are logically equivalent.

X  Conclusions 
The passage from history to understandings spaces was seen to be essentially a two-
fold sequential process.  First, an elaboration of a system of materially-based 
dialectical contradictions takes place. Second, formal individual learning takes place 
over this system.  The result is knowledge, which is complemented through informal 
learning that determines intuitions.  Moreover, it is at this latter stage, the learning 
stage, in which heterogeneity is guaranteed.  Knowledge becomes an individual 
human attribute once it is internalised.  All forms of individual understandings are 
gathered in the agents’ understandings space.   

History, it was argued, exposes new facts, which are incorporated to the “stock” of 
information.  Ergo, time presents itself as the required vertex through which 
possibilities of understanding new syntheses sprout.  These new possible 
understandings, depending on each individual agent, may or may not become new 
probable events of understandings.  The key issues in this respect were seen to be  

• The required uniqueness of learning  
• A suitably chosen topology in the space of understandings.   

This implied that not all possible forms of understandings could become probable 
understandings.  In other words, for every suitable topology there is a set of (possibly 
distinct) probable understandings.  A suitable topology was seen to be one that made 
the agent’s understandings space a Borel σ-algebra so that a proper probability space 
can be defined through the application of the RRT.  In short, the first fundamental 
result was that for every different learning procedure and every different topology 
(and any combination thereof) there exists a possibly distinct probability distribution 
associated to λt

i.  The details of this construction can be found in section E of the 
appendix. 

 It was seen that the effects that history bears upon the agents’ understandings 
space, i.e. their evolution, can be modelled as a continuous deformation of the space 
through time.  This required several assumptions as well.  If it is assumed that 

• Biological and conventional times take place in the same frame of time  
• Either all learning operators are known or the homotopies that deforms them are 

known
• The homotopies are continuously differentiable 
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then mutual influences through understandings can be studied as deformation of one 
(formal) learning operator into another.  The value of the (time) derivative 
homotopies at each moment determines the rate of deformation, i.e. mutual influence.  
Finally, and this is the second fundamental result of the paper, section VII establishes 
that if the three assumptions above hold and the value of all the derivatives at a 
moment in time are zero then the agent’s understandings space is a Borel σ-algebra.  
This requirement is logically equivalent to the first fundamental result, established in 
section VI. 
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APPENDIX 

A.  Proposition 1 

Consider two arbitrary contradictions from Kt, say ki and kj.  Beyond the 
expression’s digital symbolism, the union (of anything) captures the idea of two 
aggregated entities, in this case of two contradictions.  When put together these two 
contradictions can represent either a more extensive system than the one defined by 
each of the contradictions separately19 or a new more aggregated (and less specific) 
contradiction.  Furthermore, two facts stand out: there exist at least four (opposing) 
forces that define the new contradiction (or system) and there exists a path that 
concatenates ki and kj together (because of the connectivity of Kt).  Let (a, b) ↔ ki and 
(d, e) ↔ kj be the four forces that underlie the new (aggregated) context.  If the 
aggregation of forces is (arbitrarily) defined to be (a, b) + (d, e) = (a ⊕ d, b ⊕ e) where 
⊕ is some form of aggregation of forces (at least conceptually) then what the union of 
contradictions, i.e. k* = ki ∪ kj, represents is simply a new unity of opposites where 
the thesis and antithesis are a ⊕ d and b ⊕ e respectively.  The particular definition of 
the aggregation of forces just presented only attempts to maintain consistency in the 
notation and conceptual coherence.  However, it need not be the only form of 
aggregation.  Moreover, the case for the interception of contradictions, i.e. ki ∩ kj, is 
even more direct.  Indeed, if the interception in non-empty, i.e. φ ≠ ki ∩ kj, then the 
interception of either the theses, i.e. a and c, or the antitheses, i.e. b and d, or both is 
non-empty.  That is, either a ∩ c ≠φ or b ∩ d ≠ φ or both.  Hence, the interception k^ = 
ki ∩ kj of both contradictions is itself a contradiction defined by the (opposing) forces 
(a ∩ c \ a ⊕ c, b ∩ d \ b ⊕ d).  In both case the forces are defined to be what is mutual 
minus what is not shared.  In this case, the commonality in the theses and antitheses is 
what defines the possibly “smaller” contradiction k^.  Finally, notice a subtlety in the 
manner that the elements of Kt are handled: aggregation is always indirect and not 
necessarily unique whereas interception is not.  The reason is that the interception of 
forces is always readily defined in terms of commonality whereas aggregation of 
forces requires a mechanism, or rule, of aggregation.   

B.  Proposition 2 

Our argument is intrinsically by contradiction. If Δt is defined over H*
t,ν, i.e. 

Δt:H
*
t,ν→Kt, and it is not a one-to-one map then there exists at least one k∈Kt such 

that [k]-1 = [Δt(ςt)]
-1 is not a singleton.  That is, the preimage of k is not a singleton.  

To put it differently, there exist at least 2 distinct pairs of economic opposing forces, 
at t, i.e. ςt ≠ ς*

t, such that Δt(ςt) = k = Δt(ς*
t).  But, since the level of aggregation ν of 

forces is fixed and both ςt and ς*
t give rise to the same synthesis, i.e. k, then 

necessarily they must both represent the same aggregate of forces.  That is, ςt = ς*
t.

This is a contradiction since Δt was assumed not to be one to one.  Whence, it must be 
one to one for a fixed level of aggregation ν.

                                                          
19   In strict rigour, what the two aggregated contradictions, in fact, form is a subsystem of the 
entire system.   



42 

C. Proposition 3 

In order to prove the continuity of Δt it is sufficient to consider an arbitrary 
convergent sequence {ςt} of events in Δt’s domain.  If {Δt(ςt)} is convergent as well 
then Δt is continuous.  As before Δt is defined over H*

t,ν (this means that ςt is a pair of 
opposing economic forces at t).  The level ν of aggregation of economic forces 
induces a natural topology on H*

t,ν that may be termed τt,ν.  This topology is, by 
construction and nature, countable and is composed of all of the countable subsets of 
H*

t,ν at a fixed level ν of aggregation.  This topology is the finest topology induced by 
the level of aggregation ν.  Also, it should be clear that this (finest) topology changes 
with ν.  Hence, if {ςt} is a convergent sequence then it means that the sequence has a 
cluster point under some topology, possibly coarser than τt,ν.  Call this topology ρt,ν,
i.e. ρt,ν ⊆ τt,ν, and the sequence’s cluster point tς .  That is, for all neighbourhoods 

N( tς ) of tς , under ρt,ν, there exists at least one ςl ∈{ςt} different from tς such that    

)N( t∈ς l        

Now, since Δt is one to one (for the fixed level of aggregation ν) then Δt( tς ), {Δt(ςt)}

and {Δt(p)}, where p⊂ρt,ν are the components of the topology, are all well defined 
quantities in Kt.  In fact, the collection {Δt(p)} forms a topology for Kt (because Δt is 
one to one).  This topology is, again, possibly coarser than the topology defined by the 
image, under Δt, of τt,ν.  Call the topology in Kt, that arises from the image of ρt,ν

under Δt, δ(ρt,ν).  This topology δ(ρt,ν) is also countable and completely identified in 
H*

t,ν.  For this topology every neighbourhood N(Δt( tς )) of Δt( tς ), under δ(ρt,ν), 

contains at least one member Δt(ςl)∈{Δt(ςt)}, different from tς .  To see this, it is 

enough to consider the preimages of the objects in Kt.  That is, pick an arbitrary 
neighbourhood of N(Δt( tς )) and consider its preimage [N(Δt( tς ))]-1.  Since Δt is one 

to one and δ(ρt,ν) is discrete topology then [N(Δt( tς ))]-1 must be a neighbourhood of 

tς .  Hence, it must contain a member of the series {ςt}, i.e. there exists at least one 

ςl∈{ςt} such that ςl∈[N(Δt( tς ))]-1.  This implies that there exist an open set in 

[N(Δt( tς ))]-1, say Opre, such that ςl∈Opre.  Since Δt is one to one and [N(Δt( tς ))]-1 is a 

discrete set we therefore have 
)](N[)(O)( tpre ttlt ΔΔΔ ⊂∈ς

That is, given an arbitrary neighbourhood N(Δt( tς )) of tς , under δ(ρt,ν), then there 

exists at least one Δt(ςl)∈{Δt(ςt)}, different from tς , such that Δt(ςl)∈N(Δt( tς )).  

Hence, Δt( tς ) is a cluster point of{Δt(ςt)}, under the “induced” topology δ(ρt,ν).  That 

is, {Δt(ςt)}converges and Δt is thus continuous for the level for aggregation ν.      

D An Unrealistic Situation: An Agent That (Formally) Learns it All 

 The passage of time carries with it the passage of history.  Through this 
pathway more facts and records of it are incorporated into the available stock of 
information.  Whence, in terms of the learning operator and the dialectical operators, 
changes in time occur if and only if there occur changes in available information.  
Otherwise there would exist a static world: no time necessarily implies no new 
records of history and vice-versa, i.e. Δtime ⇔ Δinformation.  Therefore, to say that 
the operators reflect change through time is logically equivalent to saying that new 
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information is arising and that history is transcribing. The following is an extension 
within the category of homotopies defined in [5], that is, of convex homotopies20 used 
to study the continuous evolution of a subset of an agent’s understanding space, i.e. 
the knowledge space. 

Indeed, assume that  
• That the formal learning, dialectical and initial identity functions are all 

differentiable at all points through time, i.e. 
            ϕ , , { | ( ) }Δ Ξt

i
t D f D f exis ts∈ =1

where D:C0→C0 is the differentiable operator over the set of continuous 
functions.  Among other things this implies that formal learning takes place 
through a differentiable process (in the calculus sense).    

• Formal learning is, throughout the evolution of the knowledge space, a unique 
single process. 

• The domain of the initial identity function ϕ is [0,1]. 

As it was previously mentioned, future knowledge spaces can be conceived at 
present at most as a reflection of the accumulated knowledge through time, all of 
which can be “unrolled” backwards.  This implies that at t = 0 the process by which a 
knowledge space evolves to its constituting stage is a noise process21, i.e. the 
evolution of the knowledge space, look at t = 0, is Brownian Motion.  Furthermore, 
the identity of the present knowledge space is, as it was mention defined by the 
learning and dialectical operator.  Hence, its time evolution is 

( ) )())(()))((()))((( tttt
t
itt

t
itt

t
i ϕϕ =

•

          [D.1] 

where ϕ represents the identity over the initial knowledge space Ωk
i, ςt∈H*

t,ν and Δt:
H*

t,ν → Kt.  Now, the rate of change of the future identity function must be 
BMt(dBMt) since this quantity represents the state of function at t times its differential 
change at t.  Hence, the rate of change of the initial identity function through time, i.e. 
ϕ , is the difference between the rate of change of the future identity function and the 
rate of change of the initial identity function determined by formal learning (and 
dialectics), i.e. [F.1].  Hence   
          

)())(()))((( ξξξϕ−=ϕ ttt
i

tt
itt dBMBM ΔΔΞΔΞ           [D.2] 

Equation [F.2] is a special case of a more general category of stochastic differential 
equations called “noise” processes, i.e. 

ttt
t BMXtXtb

dt

dX
),(),( σ+=    

where in this case22,

                                                          
20  By convex homotopy we mean a homotopy such that the expression H = tψ + (1-t) ϕ is always 
well defined over the spaces where ψ and ϕ are defined, e.g. ΩU.
21  In our scheme, the origin of noise is not-understood, untraced (backwardly), unrecorded 
expressions of, knowledge.   

22  Also, note that if BM and BM* are two Brownian Motion processes then so are BM⋅BM* and 
BM/dt. 
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t
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i
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tt

Xs

Xsb

X

ΔΔΞΔΞ           [D.3]

The term BMtdBMt in [D.2] is distributed as a t⋅χ2(1) variable across realisations.  
The Ito interpretation of equation [D.2] is that there exists a function ϕ such that ϕ
satisfies the stochastic integral  

( ) ∫∫ +ξξξϕ−ϕ=ϕ
],0[],0[

0 )())(()))(((
t

tt

t

ttt
i

tt
it dBMBMdsΔΔΞΔΞ           [D.4] 

The stochastic process henceforth defined in [D.4] is called an Ito diffusion.  The key 
issue in finding a solution to [D.4] is the second integral for the rules of integration of 
stochastic calculus have nothing to do with those of deterministic calculus.  In this 
sense, there arises the issue as to what type of integral should be used to solve the 
problem, Øksendal (1985).  For a matter of clarity and exposition the Ito integral (and 
Ito’s one dimensional formula) will be used in this instance.   

Notice that [D.2] as well as [D.4] contain a deterministic part (defined by the 
learning and dialectics operators) and a stochastic part.  Hence, using Ito’s formula the 
solution to [D.4] is 

∫ −+ϕ+ϕ=ϕ
]1,0[

2
12

t2
1

0t tBMds),s(b             [D.5] 

where 
    )())(()))(((),s(b ttt

i
tt

i ξξξϕ=ϕ ΔΔΔΞΔΞ    

Is there always a solution to this (Ito) diffusion problem? If so, is it unique?  In order 
to determine the existence and uniqueness of the solution certain conditions must be 
met by the b(s, Xt) and σ(s, Xt) functions in [F.3], Øksendal (1985).  Concretely in 
this case, if b(s, Xt) : [0,T] ×ℜ→ℜ is such that 

]T,0[,x;1|)x|1(C)x,(b ∈ℜ∈−+≤ tt

 and 
]T,0[,y,x;yxD)y,s(b)x,(b ∈ℜ∈−≤− tt

for real constants C and D and there exists a random variable Z with finite second 
moment, i.e. E[|Z|2]< ∞ then the stochastic differential equation  

ZX,Tt0;),t(b 0tttt =≤≤+ϕ=ϕ dBMBMdtd

has a unique t-continuous solution ϕt, Øksendal (1985).  These conditions essentially 
require that the composite outcome of formal learning and dialectics be represented by 
a bounded process, (in the mathematical sense), throughout the entire deformation of 
the knowledge space.  Hence, the existence and uniqueness of the solution of [D.2] 
depends entirely on the nature of both the learning and dialectical operators.  Also, 
notice again, that for every formal learning process there is a different stochastic 
differential equation. 

To summarise: if the nature of formal learning and dialectics are such that the 
previously stated conditions at the beginning are met and the composite synthesis of 
learning and dialectics is a bounded process then there exists a unique stochastic 
differential equation that represents the continuous deformation of the original 
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knowledge space.  Its family of solutions will depend on the composite representation 
of learning and dialectics and the type of stochastic integral used, i.e. whether it is an 
Ito integral or any other integral such as the Strationovich integral, Øksendal (1985). 

The main difference between the two types of deformation, i.e. homotopies 
and stochastic differential equations, resides in that in the homotopic case one can 
always fine a coarse (or fine) enough topology υ on ΩU so as to make any path or 
function defined on it continuous.  This is a mechanical mathematical procedure that 
holds no relationship to the nature of the economic problem in hand.  This situation 
allows, of course, the existence of discrete knowledge spaces (in the sense that its 
elements can be counted) that define discrete probability distributions.  In this 
situation the measure of the integral must be modified.  Usually a Lebesgue measure 
will permit integration over highly discrete function, e.g. the characteristic function 
over the rationals that lie in [0,1].  However, if the degree of discreteness is such that 
no integration is possible and hence the cumulative probability functions must be 
replaced with fine sums of point-wise accumulated probabilities.  On the other hand, 
stochastic differential equations can be used only in a continuous context, i.e. 
continuous flow of information and continuous knowledge spaces.   

Finally, as a matter of practical concern, if the learning, dialectics and the 
initial identity function are defined then the solution to [D.2] will require some 
specification of a Brownian Motion process BMt.  It is impossible to develop such a 
specification a-priori because of the very nature of process itself (i.e. probabilistic 
realisations with N(0,Δ) increments between t and t + Δ).  However, a Brownian 
Motion process can always be approximated by discrete random walk processes by 
virtue of Kolmogorov’s continuity theorem, Øksendal (1985), McCabe and Tremayne 
(1993), Hamilton (1994).  Computer simulations can develop refined enough process 
to actually approximate Brownian Motion through random walks, as found in 
Grimmett and Stirzaker (1982), p. 492.  In effect, equation [D.5] makes explicit the 
impossibility of knowing a-priori what will be known tomorrow (this is Popper’s
(1956) argument).  It is rather through observation and experience, which 
tautologically must occur in the past, however near it might be, and later reflection 
and learning that an agent’s understanding of the surroundings may be enhanced.  In 
this sense, the Brownian Motion process in [D.5] sets a bound to human 
understanding of the economic environment and reaffirms the limited available 
possibilities for adaptation to the evolving material conditions of economic activity.    


