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1 Introduction

There are two main system approaches to the estimation of cointegrating relations: Jo-
hansen’s (1988, 1991) fully parametric approach based on a vector autoregressive error cor-
rection model, and Phillips’ (1991, 1995) semi-parametric procedure based on a triangular
formulation of a vector error correction model. In the general case where there are r cointe-
grating (or long-run) relations amongst the m (> r) integrated (or (1)) variables in the error
correction model, the exact identification of the long-run relations requires the imposition of r
linearly independent a priori restrictions on each of the r cointegrating relations. Johansen’s
solution to the identification problem, often referred to as the “empirical” or ”statistical”
approach, is implicit in the choice of the numerical solution to the reduced rank regression
problem. In contrast, the scheme employed by Phillips is based on an a priori decomposition
of the I(1) variables, x;, into an r X 1 vector, x;, and an (m—r) x 1 vector, Xg;, such that xa;
are not cointegrated amongst themselves, namely it is assumed that the variables xo; are the
common stochastic trends.! Both of these approaches are based on restrictive assumptions
and cannot accommodate the diversity of long-run relations encountered in practice.? They
seem to have been adopted for their mathematical convenience rather than their plausibility
from the perspective of a priori theory. A more general approach is desirable.

In this paper we consider the problem of identification, estimation, and hypothesis testing
in cointegrated systems subject to general non-linear restrictions on the cointegrating vec-
tors. We explicitly deal with the long-run identification problem and derive rank and order
conditions for identification of the cointegrating vectors, allowing for parametric restrictions
across the cointegrating relations as well as for restrictions on individual cointegrating vec-
tors. Our approach emphasizes the use of economic theory and does not require the a priori
decomposition of the system variables as in Phillips (1991). Nor does it involve the type of
empirical identification implicit in Johansen’s (1988, 1991) reduced rank regression approach
to estimation of the long-run relations.

It is often taken for granted that the quasi maximum likelihood estimators (QMLE)
in a cointegrated vector autoregressive (VAR) model are consistent, but to our knowledge
no general proof of the consistency of QMLE of the cointegrating vectors is available in
the literature.®> The difficulty lies in the fact that the average log-likelihood function does
not have a finite limit when the underlying variables are trended, and standard proofs of
consistency and asymptotic normality of the QMLE are therefore not applicable. This prob-
lem has been addressed in Saikkonen (1995) in the context of a relatively simple model,
where he provides a proof of the consistency of the QMLE of the long-run parameters con-
ditional on the true values of the short-run parameters and wvice versa, and establishes the
asymptotic normality of the QMLE. Building on Saikkonen’s (1993b, 1995) work, this paper
provides a formal proof of the consistency and super-consistency of the QMLE of short-run
and long-run parameters, respectively, allowing for general non-linear restrictions on the

! Alternatively, such variables can be viewed as long-run forcing with respect to X, to use the terminology
in Pesaran, Shin and Smith (2000).

20n this see also Pesaran (1997), and Garratt et al. (2001).

3A proof of the consistency of the least squares estimator of an exactly identified cointegrating vector is
given by Stock (1987).



cointegrating coefficients. It further establishes stochastic equicontinuity conditions for the
weak convergence of the sample information matrix and derives the asymptotic distribution
of the QMLE. Finally, it establishes the validity of the standard x? tests for testing general
non-linear over-identifying restrictions on the cointegrating vectors.

The estimation and testing procedures are then applied to an Almost Ideal Demand
System estimated for three non-durable expenditure categories using U.K. quarterly ob-
servations over the period 1955(1) - 1993(2). This application provides an example where
economic theory predicts cross-equation restrictions on the long-run relations.

The plan of the paper is as follows. Section 2 sets out the vector error correction model,
distinguishes between the identification of the short-run and long-run coefficients, and derives
rank and order conditions for identification of the long-run parameters. Section 3 introduces
the quasi log-likelihood function and briefly reviews the approaches of Johansen and Phillips
to the identification problem. Section 4 provides the asymptotic theory of the QMLE under
general non-linear restrictions on the cointegrating vectors. The proof of consistency of
the QMLE and their relative rates of convergence are established in sub-section 4.1. Sub-
section 4.2 derives the asymptotic distribution of the QMLE. Section 5 gives the asymptotic
theory relevant to testing the over-identifying restrictions on cointegrating vectors. Section
6 presents the empirical application, and Section 7 offers some concluding remarks. Some of
the mathematical derivations and proofs are provided in the Appendix.

The following notation will be used throughout: The symbol = signifies weak convergence
in probability measure, ~ asymptotic equality in distributions, M N mixture normal, I(d) an
integrated variable of order d, Tr(-) the trace of a matrix, vec(:) columns of a matrix stacked
into a column vector, vech(-) elements on and below the main diagonal of a symmetric matrix
stacked into a column vector, I, an identity matrix of order m, diag|-| a diagonal matrix,

and ||A] = [Tr (AA’)]l/2 the Euclidean norm of A.

2 The Model and the Two Identification Problems

Consider the following VAR(p) model in an m x 1 vector of I(1) variables, x;:
A()Xt = bo + blt + A1Xt,1 + ...+ ApXt,p + Cta t= 1, 2, T, (21)

where p, the order of the VAR, is assumed known, by and b; are m x 1 vectors of unknown
coefficients, A;, © = 0,1, ..., p, are m xm matrices of unknown parameters, Ay is non-singular,
¢, is an m x 1 vector of (structural) disturbances, and the initial values, x,X_1,..., X_pt1,
are assumed to be given. For cointegration analysis it is convenient to rewrite (2.1) as

—1
AoAXt = bo -+ blt — A(].)Xt_l + Z \IfiAxt_z- + Ct? t= 1, 2, T, (22)
i=1
where W; = — 70 . Aj, and A(1) = Ag — >_7_| A;. The equilibrium properties of (2.2)

are characterized by the rank of A(1). If A(1) is of rank 7 (0 < r < m), then A(1) can be
expressed as
A(l) = a0,
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where a, and 3 are m x r matrices of full column rank, and 3'x; gives the r linear combi-
nations of x; that are cointegrated.

The two forms of the model given by (2.1) and (2.2) highlight the two types of identi-
fication problem that are present in structural modelling with 7(1) variables. The first is
the traditional identification problem and involves the identification of the contemporaneous
coefficients, Ay, and the short-run dynamic coefficients, A4, ..., A,. The second concerns the
identification of the long-run coefficients, B3, which arises only when the x;’s are I(1). As
the above derivations make clear, the identification of the coefficients in A;, j =0,1,...,p,
does not provide information on those of 3, and knowledge of 3 does not necessarily provide
information with which to identify the short-run dynamics. For example, without a priori
restrictions the cointegrating vectors of the model are only identified up to a non-singular
linear transformation, since for any non-singular r x r matrix, Q, &, = o, Q"' and 8 = 8Q
give the same value of A(1), and therefore (é&,, 3) and (e, 3) cannot be distinguished using
data alone.

The focus of this paper is on long-run structural modelling. It considers the problem of
identification and estimation of the long-run coefficients, 3, and assumes that the short-run
coefficients, Ag, Ay, ..., A,, as well as the structural loading coefficients, a, are unrestricted.*
Consequently, we pre-multiply (2.2) by Ag*?, and work with the autoregressive vector error
correction (VEC) model,

p—1
AXt =ag + alt — HXt_l + PZ'AXt_Z' + &y, t= 1, 2, T, (23)
=1

where ag = Ag'bg, a; = Ag'by, Ty = A1, I = A A(1) and &; = A, '¢,. Notice that
II=af, (2.4)

where ov = Aala*.

We develop a general maximum likelihood (ML) theory for the analysis of cointegrated
systems subject to non-linear restrictions on the cointegrating coefficients in the context of
the following VAR version of the model (2.3):

O(L)yx;=ap+P(1)ct+e, t=1,2,..,T, (2.5)

where ®(L) =1, = YV &L}, &; = A;'A;, i =1,2,...,p, ¢ is an m x 1 vector of unknown
coefficients and the trend coefficients, a; = ® (1) ¢, are appropriately restricted so that the
deterministic component of x; is linearly trended for all values of r.?

To ensure that x; are at most (1) and to rule out the possibility of explosive or seasonal
unit roots we assume:

4Identification of the structural parameters can also be achieved by decomposing the variables into en-
dogenous and exogenous and/or by restricting the loading coefficients and the covariance matrix of the
structural errors, ¢, . See, for example, Pesaran and Smith (1998) and Wickens and Motto (2001).

5If ay is left unrestricted, as shown in Pesaran, Shin and Smith (2000), the mean of the process {x;}3°;
will be a function of m—1r independent quadratic trend terms, with x; having different deterministic trending
behavior for different values of the cointegrating rank r.
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Assumption 2.1 All the roots of the characteristic equation, |L,, — ®12 —-- - — &,2P| =0,
are either on or outside the unit circle.

Assumption 2.2 o/, ['(1)3, has full rank, where T(1) = 1, —S?=' T\, and ., and B, are

m X (m — r) matrices of full column rank such that &’a; =0 and 3’3, = 0.

Under the above assumptions we have®

Ax; = pu+C(L)g, t=1,2,...,T, (2.6)
where p = C(1)ag + c,
C(L) = i C;L'=C(1)+ (1 - L)C*(L), Cgy=1,, (2.7)
C* (L) = icw’, (2.8)
and”
CH)®(1)=Cc()II=0, C(HII =1, (2.9)

Solving for x;, we now have
x; =Xo+ pt + C(1)s, + C*(L)ey, t =1,2,...,T, (2.10)
where s; = Zj’=1 g;. The condition for cointegration is given by®
c'(1)B=0. (2.11)

Finally, pre-multiplying (2.10) by 8’ we have

Bx.=Bx0+ (Be)t+> BB, (2.12)
i=0

where B; = ijo C,. It is clear that the cointegrating relations (3'x; will contain r different
deterministic trends, characterized by the r x 1 vector, 3'c.

6See Johansen (1991, Theorem 4.1, p. 1559).

Cy satisfy the recursions, Cf = C;_; @1 + C;_y®y + ... + C;_, @), for i = 1,2, ..., with C5 =L, — C(1)
and C! =0, i < 0. Summing these relations across ¢ = 0,1, 2, ..., it follows that C*(1)II = I,,,.

8See Engle and Granger (1987).



2.1 Identification of the Long Run Parameters: Rank and Order
Conditions

When II is of full rank m, then IT and the other parameters of (2.3) are identified under fairly
general conditions, and can be consistently estimated by OLS. See, for example, Liitkepohl
(1991). However, if the rank of IT is r < m, then II is subject to (m — r)? non-linear
restrictions, and therefore determined uniquely in terms of the m? — (m — r)? = 2mr — r?
underlying unknown parameters.

We shall assume that « is unrestricted and has full column rank and concentrate on the
case where the identifying restrictions are imposed only on 3. We suppose that an mr x 1
vector @ = vec() satisfies the non-linear restrictions,

0=f(), (2.13)

where ¢ is an s x 1 vector of unknown parameters. In particular we assume:

Assumption 2.3 kK = vec(a’) € Ty and ¢ € Ty where Yy, and Y, are compact subsets of
R™ and R?, respectively, with their true values, ko and @, being interior points of T, and
Y,. o has the full column rank r for all k € Yy, and the mapping £, defined by (2.13), is
continuously differentiable such that an mr x s matriz F(¢) = 0f(¢)/0¢’ has the full column
rank s for all ¢ € Ty.

A necessary and sufficient condition for identification of the long-run coefficients can be
derived using (2.11). Denoting the true value of C(1) by Cy(1), it must be the case that

Cy(1)B(¢) = 0 if and only if ¢ = ¢,. (2.14)

Vectorizing the left hand side of (2.14), and using the mean-value expansion of 8 = f (¢)
around ¢, we have

vec[Cy(1)B(9)] = [I @ Cy(1)]f (¢) = [I ® Cy(1)] F(@) (¢ — ) , (2.15)

where the (i, j) element of F(¢) is evaluated at (¢;, ¢;), and ¢; is a convex combination of
¢oi and ¢;. For (2.14) to hold, an mr x s matrix [I, ® C{(1)] F(¢) must have full column
rank for all ¢ € T4, namely the following rank condition must be satisfied

Rank {[I, ® Cy(1)] F(¢)} = s for all ¢ € Ty, (2.16)

where s < mr — r2.

The above identification condition is difficult to use in practice, but is needed in our
proof of the consistency of the QMLE. (See Section 4.1 below.) Theory restrictions on the
cointegrating vectors, 8 = vec(3), often take the form of direct zero-one type restrictions on
the elements of @ rather than indirectly through f (¢).% It is therefore useful to consider the
problem of identification and testing of over-identifying restrictions when 6 is subject to the
following k general non-linear restrictions:

h(9) = 0, (2.17)

9See, for example, the theory restrictions on the five long-run relations in Garratt et al. (2001).
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where 8 € ©, 0 C R™ h(0) = (h1(0), h2(0), ..., h(0))’, and h;(0),i = 1,2, ..., k, is a known
continuously differentiable scalar function of 8. Let 8y = f(¢,) be the true value of 8, and
assume that H(6) = 0h(0)/06" has the full rank k (< mr) for all 8 € Ty, where Ty =
© N {h(0) = 0}. (See also Assumption 5.2 below.)

The analysis of identification of the cointegrating vectors can now be approached noting
that Ty = a8 = eQ 'Q'B, = af’, where Q is any arbitrary r x r non-singular matrix.
Vectorizing 8 = 8,Q we obtain

0 = (I, ® By)vec(Q). (2.18)
Consider now the mean value expansion of h(8) around 6y,
h(6) = h(6y) + H(6)(6 — 6y), (2.19)

where the (4, ) element of H(8) is evaluated at (6;,6;), and 6; is a convex combination of
6p; and 6,. Under (2.17) we have

H(0)0 = b(0,0,), (2.20)
where b(0, 8y) = H(68)8, — h(6,) # 0. Substituting for 8 from (2.18) in (2.20) yields
H(B)(T,  By)vec(Q) = b(@, 6y), (2.21)
and a unique solution exists for vec(Q) if and only if
Rank {H(8)(I, ® B,)} = r*, for all € Y. (2.22)

This condition can be viewed as the dual of the rank condition (2.16).

A necessary condition for (2.22) to hold is given by the order condition, & > r2. Since
s + k = mr, this order condition is equivalent to the order condition implied by (2.16).
It is important, however, to note that for the rank condition to be satisfied the r? exact
identifying restrictions must be distributed across the r different cointegrating vectors such
that there are r restrictions per each of the r cointegrating vectors.

3 The Quasi Maximum Likelihood Estimators

Writing the VEC model, (2.3), in matrix notation, we have the following system of regression
equations:

AX =ZA + YT - X I + E, (3.1)

where X = (x1,Xa,...,x7), 7= (1,1,..,1),t = (1,2,...,7), Z = (1,t), Y = (AX_; AX_,,

R ,AX,ijl), E = (81,82, ...,ET)I, A = (ao,al)’, and I' = (Fl,rg, ---;prl)/ are 2 X m and

m(p — 1) x m matrices of unknown coefficients, respectively. Conditional on the initial val-

ues, X_p41, ..., Xg, and proceeding as if the disturbances were normally distributed the quasi

log-likelihood function associated with (3.1) is given by

(r(a, ) —g In || - %Tr [0 (AX — ZA — YT + X_,IIY(AX — ZA — YT + X_,IT)] |
(3.2)

(6]



where a = vec(A), ¢ = (v, K/, ¢, '), with v = vec(T'), k = vec(a’), and w = vech().
The computation of the quasi maximum likelihood estimators (QMLE) is complicated due
to the rank deficiency of II. To deal with problem Johansen (1988,1991) uses the reduced
rank regression method originally developed by Anderson (1951). He first concentrates out
all the unknown parameters except for 3 to obtain the following concentrated log-likelihood
function

T

(2(8) < =5 In[(B)| (33)
where
2 Swo| |B'Ar|
QB ‘ = 3.4
I Tiam .
A7 =S11 — S10S00 So1, Br = Si1, (3.5)
T
Sy =T7" Y rurly, i,j =0,1, (3.6)
t=1
and rg; and ry; are the residual vectors from the regressions of
Ax; and x,—1 on (1, ¢, Axy_1, ..., AX¢_py1) ,
respectively.!? Substituting (3.4) in (3.3) we have
T / /
(2(B) o 5 I {|6'ArB| ~ In|8Br) (37)

It is now easily seen that unconstrained maximization of ¢(3) will not lead to a unique
estimator of 3. For any QMLE of 3, say 3 A 3 5= 3 4Q will also give the same value for the
maximized log-likelihood function, where Q is any arbitrary non-singular r x r matrix. More
formally, independently of the observation matrices, A7 and B, we have ET(B N éT(B B)-

3.1 Johansen’s Empirical Identification Scheme

The just-identifying restrictions utilized in Johansen’s estimation procedure involve observa-
tion matrices, A; and By, and are often referred to as “empirical” or “statistical” identifying

10Tn general, the computation of Ay and By depends on the intercept-trend specifications used in the
VEC model. There are five different cases: Case (1) No intercepts and no trends. Case (2) Restricted
intercepts and no trends. Case (3) Unrestricted intercepts and no trends. Case (4) Unrestricted intercepts
and restricted trends. Case (5) Unrestricted intercepts and unrestricted trends. For details see Pesaran,
Shin and Smith (2000). For example, in the case of model (2.3), where the trend coefficients are restricted,
ro; should be computed as residuals from the regression of Ax; on (1, AXy_1,...,AX¢_py1), and rq; as the
residuals from the regression of (¢,x}_;)" on (1, Ax;_1,..., AX;_,11). In the case of the empirical application
provided in Section 6, Case 2 is relevant and rg; should be computed as residuals from the regression of Ax,
on (Ax¢_1,...,AX¢_p+1), and ry; as the residuals from the regression of (1,x}_;)" on (Axs_1,..., AX¢_py1).

[7]



restrictions, as compared to a priori restrictions on 3 specified, for example, by (2.13) which
are independent of particular sample values of Ay and By. The r? exact identifying re-
strictions employed by Johansen are implicit in the eigenvector problem associated with
Anderson’s solution to the reduced rank regression problem. Johansen’s exactly identified
estimator of 3, which we denote by 3 7, are obtained as the first r eigenvectors of By — A
with respect to Br, subject to the following “(ortho-)normalization” and “orthogonalization”
restrictions:

~/ N
B/BrB, =1, (3.8)

A/ ~ . . . .
/BJz'(BT - AT)BJj = 07 ? 7&]5 v,] = 1727"'7T7 (39)

where 3, represents an i-th column of 3. The conditions (3.8) and (3.9) together exactly
impose the r? just-identifying restrictions on 3, with (3.8) supplying r(r + 1)/2 restrictions
and (3.9) further r(r —1)/2 restrictions. See Anderson (1984, Appendix A.2). It is clear that
the above r? restrictions are adopted for their mathematical convenience and not because
they are inherently of interest in econometric applications.

3.2 Phillips’ Identification Procedure

The identification scheme employed by Phillips (1991,1995) is based on an a priori decom-
position of x; into an r x 1 vector Xy, and an (m — r) x 1 vector xa, such that xo, are not
cointegrated among themselves. Under this decomposition the number of the cointegrating
relations, r, is a priori known.!! In the context of the VEC model (2.3) this decomposition
implies the following restrictions on II

Hll H12
o rXr rxm-—r o /
H_ O 0 _aﬁ,

m-—-nrXr m-rXxm-—r

where II;; is a non-singular matrix,

(%) 5-(£).

and P = (TI;]'II;2)". Under Phillips’s identification scheme the r? exactly identifying restric-
tions are placed on the first r rows of 3, by setting the coefficients of x;; in long-run relations,
B'x; 1, equal to an identity matrix. Notice also that the scheme imposes further (m —r) x r
restrictions on the loading coefficient matrix, . The latter restrictions are not necessary
for identification of the long-run relations and stem from the subsidiary assumption that xo;
are not cointegrated among themselves.

1A similar set up is also considered more recently by Wickens and Motto (2001).
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Phillips’ procedure differs from Johansen’s in two respects. First, Johansen requires a
fully-specified dynamic model, while Phillips does not.'? Second, more importantly from
the perspective of this paper, Johansen employs “empirical” identification restrictions, while
Phillips relies on the triangular characterization to achieve the r? just-identifying restric-
tions needed for a unique estimation of the cointegrating vectors. Though the identification
restrictions used by Phillips do not involve sample observations, it is based on a secondary
set of restrictions on a that are not needed for identification of the long-run relations and
in general need not hold in practice.

More recently, Johansen (1995) has developed an eigenvalue routine for testing linear
homogeneous restrictions imposed on one cointegrating vector at a time, implicitly assuming
that the unrestricted part of the cointegrating space is exactly-identified. But he does not
allow for non-linear restrictions or restrictions across different cointegrating vectors. Using
Phillips’ triangular framework, Saikkonen (1993a) has considered estimation of cointegrating
vectors subject to linear restrictions, and develops tests of the validity of the restrictions. His
procedure, however, requires a priori decomposition of m integrated variables in the system
into r and m — r subsets, such that the variables in the latter are not cointegrated, as in
Phillips.

4 Asymptotic Theory for QMLE Under General Non-
Linear Restrictions

4.1 Consistency of the QMLE

In the literature it is taken for granted that the QMLE of a cointegrated VAR model are
consistent. But to our knowledge no general proof of the consistency of the QMLE of the
cointegrating vectors is available in the literature.’®> Here we provide such a proof which
is valid under relatively general assumptions about the distribution of the error process
and irrespective of the trending or cointegrating properties of x;.!* Due to the unit-root
and cointegrating properties of the model the consistency proof involves two stages. In the
first stage we establish that the QMLE of the long-run coefficients, B(¢), are consistent.
Based on this result we shall then proceed to prove the super-consistency of the long-run
coefficients and the consistency of the short-run coefficients. To simplify the exposition we
shall abstract from the analysis of the deterministic coefficients, ag and a;, and work with a
likelihood function that concentrate out these parameters. Using (3.2) we have:
=T 1 -1 Y /
lr(p) x — In|Q| — ETr [Q (AX = YI'+ X II)M(AX — YT+ X 411 )} ,

2 (4.1)

2However, Johansen’s approach allows one to test for the number of cointegrating relations while in
Phillips’ framework the number of cointegrating relations are assumed as given.

13 As noted in the introduction, the difficulty lies in the fact that the average log-likelihood function does
not have a finite limit when x; is trended, and hence the usual proof of the consistency of the QMLE along
the lines set out, for example, in Davidson and MacKinnon (1993, Section 8.4) will not be applicable.

4 This approach can be readily applied to the analysis of models with more complicated trends, or to cases
where the nature of the trend depends on the values of one or more unknown parameters of the model.

[9]



where M = Iy — Z(Z'Z) 7.
We now provide a proof of the consistency of the QMLE of ¢ under the following as-
sumptions:

Assumption 4.1 The m x 1 vector of errors, &, is such that

(a) E(e|Fi—1) = 0 and Var (eF —1) = Q, where F 1 = (X¢—1X¢—2,X¢_3,...) 1S @ non-
decreasing information set, and € is a positive definite symmetric matrix;

(b) sup, E <H€tHj> < oo for some j > 2.1

Assumption 4.2 ¢ € T, where Y, = Y., x T\, x Ty x Ty, is a compact subset of R™ with
hy =m?(p—1)+mr+s+3zm(m+1). The true value of @, denoted by @, = (v§, Ko, P, wh)',
is an interior point of Y.

Partition ¢ = (¢', p')’ into the long-run parameters, ¢, and the short-run parameters,
p= (v, Kk, ") Let $ be the QMLE of ¢o. As noted by Saikkonen (1993b, 1995), proving
the consistency of ¢ is complicated in models with unit roots due to the fact that the
QMLE of the short-run parameters, p = (4, &', &’)’, and those of the long-run parameters,
o, converge to their true values at different rates. In the context of a relatively simple model,
Saikkonen (1995, Section 5.3) provides a proof of consistency of the QMLE of the long-run
parameters conditional on the true values of the short-run parameters and vice versa.

In this sub-section we consider the convergence properties of

T [lr(py) — Lr()]

and show that

p—po=0p(1), and ¢ — ¢y = Op(Tflﬂ)- (4.2)
Using (4.1), it is easily seen that
T (o) — tr(e)] = 5 (Ar + Br) | (4.3)
where
Ap=—In|Q7'Qo| — Tr (' — Q1T 'E'ME], (4.4)
and

By =Tr {Q7" [T7(AX = YT + X ,II')M(AX — YT + X 4II') - T"'E'ME]| } .
(4.5)

But under the data generating process AX = ZAgy + YI'y — X 11I} + E, and noting that
MZ = 0 we have

Br = T {07 [Y(Ty =) = Xy (g — 1) + B] M [Y(T, — ) — X (I, - 11) + B} }
~Tr [Q" (T"'E'ME)] (4.6)

5For a discussion of this assumption in the VEC models see, for example, Pesaran, Shin and Smith (2000).

[10]



Also
T -1 = af' — oy = (o — ) By + e (B — By)’,
where for notational convenience we are denoting 3(¢) and 3(¢,) by B and 3, respectively.

Using this result in (4.6) and noting that Tr(ABCD) = (vecD) (A ® C') vecB',* then after
some algebra we obtain:

Br=(v—7) (91 ® YII;,AY) (Y — o) + (K — ko)’ (Ql ®

/Bé)Xlllf_\r/IXl/BO) (FL . K/O)

/ oy X MX_ , _ Y'MX_
+(0—00) (O(Q 1OA®1T1> (0—00)—2(’)’—’70) (Q 1®T1/60> (l‘.';—l‘.',o)

! X' MX
%) (0 — 00)+2 (s — 1)’ (Q—la & %) (0 — 6,)

Y'ME

2y — ) (ﬂ-la ®

) vec(Ly,) + 2 (k — ko) (Ql ® %X/_TINIE) vec(I,,)

=2 (v =) (Ql ®
X' \ME

+2(0 — 0,)’ {a’Q_l ® T} vec(I,). (4.7)

Define the open balls,

B(yo,0y) = {Av €Yy llv =0l <b:},
B(ko,0x) = {reTs:|k— Kol <bx},
B(¢o,0s) = {@ €Ty b — ol <bs},
B(wg,6,) = {weT,:||w—wo| <du},

and their complements

By, 6) = {yeTy:lv =l =6},
B(ko, 6x) {k €Y, ||k — Kol > b},
Bl(¢o,0) = {@€Ty:lléd— ol = 8},
B(wo, b.,) {weT,:||w—wl >d,}

~

To prove the consistency of the QMLE of the long-run parameters ¢ (namely ¢), it is
sufficient to show that for all values of p € Tp =T, x 7T, x 7T, and for every 6,4 > 0,17

T—o0 ‘PGE(¢0:5¢)XTP

lim Pr{ inf T lr(py) — br(p)] > 0} =1. (4.8)

16See, for example, Magnus and Neudecker (1988, p. 31).
1"The sufficiency of (4.8) for comsistency of the extremum estimators such as QMLE is established for
example by Wu (1981). See also Saikkonen (1995, p.903).
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Using (A.4), (A.8), (A.9) and (A.10) in Appendix A.2, and under Assumption 4.2, it is easily
seen that except for the third term in (4.7), all other terms of T~ [(7(,) — {r(p)] are at
most Op(1). Therefore,

S \MS_,

2T [br(spo) — Lr()] =T (6 — o)’ | o/ @ Co(1)—15

Co(1)'| (0 — 69) + Op(1),
(4.9)

where S | = (S¢,81,...,87.1), 8¢ = 8¢ 1 + &, t = 1,2,.., with sy = 0. Hence upon using
(2.15),
“Hlr(po) = Lr(p)] = T (P — ) Qrpo(d — @) + Op(1),

where
S’ ,MS

Qo = {1 © G| F@)Y {0t s =02 (1 0 Gu1) P(@)}
(4.10)

and the (i,7) element of F(¢) is evaluated at (¢;, ¢;), and ¢; is a convex combination of
¢o; and ¢;. By the rank condition (2.16), [I, ® Cy(1)'] F(¢) has the full column rank s (<
mr —r?), and T-2S" MS_; weakly converges to the positive definite (with probability 1)
matrix Qgg defined by (A.6) in the appendix, and by assumption o/ ta is an r x r positive
definite matrix for all values of K and w in T,. Hence, Qr 44 also weakly converges (with
probability 1) to the positive definite matrix Qg defined by

Qpp = {[ ® Co(1 } {04/9 104®QSS}{ r ® Co( )I]F(G_b)}
(4.11)

Therefore,

inf T [lr(pg) = Lr(@)] > T3 Amin(Qrps) + Op(1), (4.12)

PEB($0,60)x T

where Apin(A) denotes the minimum eigenvalue of matrix A. As T" — 00, Amin(Qr.60)
weakly converges to A\pin(Qgp) > 0, and the right hand side of (4.12) will increase without
bounds with probability 1. This first establishes the consistency of @, i.e., ¢ — by = 0,(1)
and also shows that the presence of stationary regressors does not affect the consistency of
the long-run parameters.

Next, we prove both the super-consistency of @, and the consistency of p, simultaneously.
Since the consistency of & has already been established, we now focus on values of ¢ that
are sufficiently close to ¢,. Formally we define'®

b=, +7T ", (4.13)

18The choice of § = 1/2 is made ensuring that all the decomposed terms of the average log-likelihood can
be of the same order of magnitude at most. Notice that the order of consistency of ¢ is determined by the
rate at which this ball shrinks to zero.
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where we take d to be an s x 1 vector of fixed constants defined on a compact set.!? Also
following Saikkonen (1995) we define the open shrinking ball

Nr(eo, 6a) = {d € Ty : T% || — ¢o|| < 64},
and its complement
Ni(¢g,60) = { € T : T% || — ol > 6a},

and note that on Nz (6o, 8;) we also have ||d|| > &,. Let
C (g, 04,6,) = Usa,6, (NT(¢0,5d> X E(Po, 5;))) 3

where B(py,6,) = {p € T, : |lp— poll > 6,}, and the union is taken over all values of &,
and 8, such that 6, = (63 + 62)1/2 and 6, = (82 4 6% + 62)"/*. We then prove that for every
o, > 0,

lim Pr{ inf T '[lr(py) — lr(p)] > 0} =1 (4.14)

T—00 ‘PGC(‘/DOvéd:éP)

Using (2.15), we rewrite (4.7) compactly as

By = (n—1n0)Qur(n —ny) +2(n — 1) Qarv, (4.15)
where n—ny = [(v — 7o), (k — K0)', (¢ — ¢0)']', v = [(vec (L)), (vec (1)), (vee (In))'],
0l Y’jl\f[Y —0lw Y/M);—lﬁg (Q Loy (X) Y’ MX 1 (_)
Qir = —Q_lo,oﬁ‘/)X”TlMY Q—l@QLﬁTM} O-law? lMX ) @)
“F(g) (a0 0 T F(@) (0t e ZETER) B(g) (0 x MXV R
— Y'ME
Q 1 ® T O'X’ ME 0
Qup — 0 Q-1 g PR 0
T\ / 1 1ME
0 0 F($) ( Ole )

Using (4.15) in (4.3), we note that

2inf T4 [r () — br(p)] > inf(Ar) +inf [(n — 0,)' Qur(n — my)] + 2inf [(n — "70)IQ2(TV] ,)
416

where all the inf operations are taken over the set ¢ € C(g),0q,06,). Defining Ky =
diag(ImQ(p,l),ImT,T ’1,), then

(1 — o) Qur(n — no) = [Kr(n —no)] (K7'QurKZ') [Ko(n — )],
(4.17)

19The case where elements of d are allowed to increase without bound is covered in the proof of (4.8).
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(m —n0)' Qarv = [Kr(n — "70)]/ K:FleTV, (4.18)

where for ¢ € C (¢g,64,6,) , |[Kr(n —mg)|| > 6 with 6y = (62 + &2 + 63)"/2. Using (A.4),
(A.8), (A.9) and (A.10), it is then easily seen that

K, QurKt = Jrgm +0p(1)  and K 'Qor = 0,(1), (4.19)
where
O loYMY  glgYMX b g
Jrm=| Qe —%X';MY 0l —36’“11;“‘—130 0o |
0 0 Qs

and Qr 4, is defined in (4.10). Using (4.19) and recalling that d and p are defined on compact
sets, it follows that (7 — 1)’ Qarv = 0,(1), and therefore,

2inf {T7" [lr(pg) — Lr(p)]} > inf(Ar) + inf {[Kr(n —19)]" T Kr(n — 1)l } + 0p(1),

(4.20)
where as before all the inf operations are taken over the set ¢ € C (¢, 64, 6)).
Consider Ay defined by (4.4), which can be rewritten as
Ap = Tr(Q7'Q) —m—In[Q7'Q| — Tr [(Qg' — Q1) (TT'E'ME — Q)]
_ fjl()\i —1—TnA) - Te (@) — Q) (T'E'ME — )], (4.21)

where \; > 0, i = 1,2,...,m, denote the eigenvalues of Q1. Since T-'E'ME uniformly
converges to g, the second term in (4.21) uniformly converges to 0. Notice also that
A; — 1 —In )\; attains its unique minimum at A; = 1, and is strictly positive for all feasible
values of \; not equal to unity. When \; = 1 for all i, we must have 2 = 4. Therefore

inf(Ar) >0« 6, > 0. (4.22)
For the second term in (4.20), we have®
inf  {[Kr(n —n0)) Trap Kr(n = no)l} 2 65X min(Tram)- (4.23)

‘PGC(‘/DO:édvéP)

As T' — 00, Amin(J1mn) converges weakly to Apin(Jyy) > 0, which is the smallest eigenvalue
of the positive definite (with probability 1) matrix 7, given by

Q'®Qy Q7'®Qu O
»77777 - Q_l ® Qyﬂo Q_l ® Qﬂoﬂo 0 )
0 0 Q4o
where Q,, = plimr_T'Y'MY, Qs = plimr_T'Y'MX 18, and Qg,5, =
plimy ., T713;X' ;MX 3, (see Appendix A.2). Using (4.22) and (4.23) in (4.20), and
recalling that &, = (63 + 62)"/? we obtain (4.14) for 6y > 0 and/or &, > 0. This establishes
the desired result given by (4.2), which we summarize:

Theorem 4.1 Under Assumptions 2.1, 2.2, 2.3, 4.1 and 4.2, and the identification condition
(2.16), the QMLE of ¢, obtained from the VEC model (3.1), is consistent. Furthermore, the
QMLE of the long-run parameters is super-consistent such that ¢ — ¢y = op(T*1/2).

*'Recall that [|[Kz(n — 19)|| > 69, where 6y = (62 + 62 + 6212,
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4.2 Asymptotic Distribution of the QMLE

Under Assumptions 2.1 and 2.2, Ax; 1,...,AX; 41, and Bgx; 1 are stationary, and using
the results in Phillips and Durlauf (1986) on the application of the Central Limit Theorem
for martingale differences it is then easily seen that Ax;_i,...,Ax;_,4q, and Byxi_1 are
asymptotically distributed independently of e;. Hence, using the results in Sections A.1l
and A.2 of the Appendix we have?!

1 0f 1 a
732 g(;%) = (' ®@ Lyp-_1))vec(T"2Y'ME) ~ N(0, Q7' ® Qy,),
1 E 1 a
T2 0 g(:(]) = (2 @ L)vec(T28,X' \ME) ~ N(0, Q' ® Qg,p,);
and
T*%afg—ffo) = %D;n(szgl % Oy " )Dynvech|T % (E'ME — TQ0)] £ N (0, 4D/, [25' © Q'] Dpy) -

where Dy, is an m x 3m(m + 1) duplication matrix.
The asymptotic distribution of T10¢7(p,)/0¢ is more complicated and involves func-
tionals of Brownian motions. From (A.1) in the appendix, we have

712880 _ () (00t @1, )vee (T X, ME).

O
which upon using (A.8) yields

12 a !
T’1M ~ F'(¢y)vec / vi(a)dvy (a)|, (4.24)
el 0
where vi(a) = Co(1)w* (a), va2(a) = apQ*w(a), and w (a) and w* (a), a € [0, 1], are the
standard and the demeaned and detrended Brownian motions, respectively (see (A.7) in
Appendix A.2). But, noting from (2.9) that Cy(1)aB3; = 0 and Rank(3,) = r, then

E[vi(a)vh(a)] = Co(1)E [w* (a) W' (a)] Qg eo = Co(1)eo = 0.

Hence, v;(a) and vy(a) are independently distributed, and the locally asymptotically mixed
normal (LAMN) theory of Jeganathan (1982) is directly applicable to (4.24). (See also
Phillips, 1991, p. 289). Therefore,

7222 & 0N (0,30} (1.25)
where
Tus(p0) = () [ a0 @ Cof1)QssCh(1)] By, (1.26)

2IThese results are obtained mainly using the multivariate invariance results derived by Phillips and
Durlauf (1986) and Phillips (1991).
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and Qgg, defined by (A.6), is a positive definite matrix with probability 1. Similarly, as
T — o0

_82ET(§00)
D - T/
! { Opdep!

} Dz = 3(p), (4.27)

where Dy = diag (T a1, T e, T, T 2 ) and

961 ® ny 961 ® Qyﬂo 0 0
j(‘P ) _ 961 ® Q;ﬂo 961 ® Qﬁoﬁo 0 0
0 0 0 j¢¢(900) 0 (4 28)
0 0 0 iDL(Q' @ Q1 )Dy, '

Combining the above results, and making use of the results in Sections A.1 and A.2 of
the Appendix we have

Theorem 4.2 [In the context of the VEC model (3.1), and under Assumptions 2.1, 2.2, 2.8,
4.1 and 4.2, and the identification condition (2.16),

D, {%f)} & MN{0,3(0)} (4.29)

where J(p,), defined by (4.28), is a positive definite matriz with probability 1.

Consider the mean-value expansion of 00y (®)/d¢ around ¢

0r(@) _ drley) | Plr(@)
Op Op Opdy’

(® — o),

where the (i, j) element of 9%7($)/dpd¢’ is evaluated at (¢;, ¢;), and @; is a convex com-
bination of ;o and ;. Using the first-order conditions, 0¢r(®)/0ep = 0, we have:

drley) [ (@),
Define
~ (= 0%l (@)
JT(CP) DT 6&08(’0/ DT, (431)
and write (4.30) as
ol (e ~ N1/ A
D220 51Dy - 00)

To derive the asymptotic distribution of D,'(% — ¢,) it now remains to show that J7(@) =
J(py)- Unlike the standard QML method, in the case of integrated and cointegrated systems
the consistency of @ is not sufficient to guarantee the weak convergence of J () to J(¢,),
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and additional conditions are needed. In particular, as shown by Saikkonen (1995, Propo-
sition 3.2) Jp(@) = T(epy), if DY@ — ¢,y) = 0,(1) and if the sample information matrix
Jr(¢p) satisfies his stochastic equicontinuity condition.?? The former condition is already
established (see Theorem 4.1). The latter is proved in the Appendix (Section A.3), under
the following assumption:

Assumption 4.3 For ¢, € T, B(¢) and F(¢) satisfy the Lipschitz conditions:

18(.) = B(9)l| < csllp. — oll; (4.32)

IF(¢.) — F(9)]| < crlp. — &, (4.33)

where cg and cp are positive constants.

These conditions impose a certain degree of smoothness on the non-linear dependence of
B(¢) and its derivatives, F(¢), on ¢, and are clearly satisfied when the restrictions on 3 are
linear. The following theorem summarizes the main result on the asymptotic distribution of
the QMLE:

Theorem 4.3 Consider the VEC model given by (3.1). Suppose that Assumptions 2.1,
2.2, 2.3, 4.1, 4.2 and 4.3, and the identification condition (2.16) hold. Then, the sample
information matriz Ip(@) defined by (4.31) weakly converges to I(p,), defined by (4.28), and
the QMLE of @, obtained subject to the general non-linear restrictions vec(B) = 0 = f(¢),
asymptotically has the mixture normal distribution:

D' (@ —¢) ~ MN{0,7(¢py) } - (4.34)

It is worth noting that when vec(8) = 0 is unrestricted, its associated information matrix,
Q5 g ® Co(1)QssCh(1), is singular, having rank mr — r? with probability 1. Therefore,
we need at least r? independent restrictions to identify @. This represents a generalization
of the result obtained by Rothenberg (1971) for the case where the underlying processes are
stationary.

Also, given that J(¢,) is block-diagonal, the QMLE of the short-run parameters, p, are
asymptotically distributed independently of ¢. Therefore, for large enough 7', inferences on
the short-run parameters can be carried out treating éﬁ as if they were given. Thus, the
results obtained in the literature for the case where the restrictions on @ are linear extend
readily to models with non-linear (over-identifying) restrictions.

220n the concept of stochastic equicontinuity and its use in establishing uniform convergence results in
econometrics see Davidson (1994, pp. 335-340) and references cited therein; in particular Andrews (1987,
1992) and Pé&tscher and Prucha (1994).
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5 Testing Over-lIdentifying Restrictions on Cointegrat-
ing Vectors
In this section we consider the problem of testing over-identifying restrictions imposed di-

rectly on the cointegrating vectors.?> Consider the following partition of h(@) = 0, the k
(> r?) restrictions on @ given by (2.17):

h(0) = [b,(6),h;5(6)] =0,

where h4(0) and hp(0) are r* x 1 and (k — r?) x 1 vector functions, respectively. Without
loss of generality, h(0) = 0 can be regarded as one set of many possible r? just-identifying
restrictions, and the remaining restrictions, hz(0) = 0, then constitute the k — r? over-
identifying restrictions.?*

Let 9 = (p/,0'), where p = (v/,k’,w’) and 0 are the short-run and the long-run
parameters, respectively, and consider the following assumptions that correspond to the
Assumptions 2.3, 4.2 and 4.3 of the previous sections:

Assumption 5.1 6 € © where © C R™ and h(0) is a continuously differentiable function
of 8. Under h(0) =0, 8 € Ty, where Yy is a compact subset of ©, and the k x mr Jacobian
matriz, H(0) = 0h(0)/06’, has full rank k < mr for all 6 € Ty.

Assumption 5.2 ¢ € Ty, where Ty = T, x Ty, is a compact subset of R" with hy =
m2(p — 1) + mr 4+ sm(m + 1) + mr. The true value of v, denoted by ¥, = (p}, 0;)', is an
interior point of Y.

Assumption 5.3 For 6, € Ty, h(0) and H(0) satisfy the Lipschitz conditions:

Ih(60.) —h(8)]|| < cul|6. — O], (5.1)

IH(6.) — H(0)[| < cull0. — 0], (5.2)
where ¢, and cy are positive constants.

Using similar results as in Section 4.2, we have

D) = [ o) | & M {0,306} 5:3)

where Dy = diag (T—%Ihp,TflImT>, h, = m?(p—1)+mr+m(m+1)/2, d(p,) = T—%%;bo)7
d(6y) = Tq%, and J(1p,) is defined by
0l (o) J,p(Y0) 0
Dyr ————F ¢ Dyr =7 = | "o , 5.4
- { Oponp } v = W) { 0 Joo(tho) o4

23Gee also the discussion at the end of Section 2.1.
24Tt can be shown that the log-likelihood ratio statistic for the test of over-identifying restrictions is
invariant to the choice of the exact identifying restrictions. See also the sub-section 5.1 below.
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Note that J,,(1),) is a positive definite matrix, but

Too(ho) = 25 g @ Co(1)QssCy(1) (5.5)

is singular, having rank mr — r? with probability 1.2

Let ¢ = (ﬁ',él)’ and ¥ = (ﬁ',él)’ be the QMLE of 1) obtained subject to the 72
exactly-identifying restrictions (say, h4(0) = 0), and subject to the k restrictions, h(@) = 0,
respectively. Then, the k — r? over-identifying restrictions on @ can be tested using the
log-likelihood ratio statistic

LRy = 2{t2($) — tr()} (5.6)
where (p(tp) and £7(v) represent the maximized values of the log-likelihood function ob-
tained under h(€) = 0 and h4(0) = 0, respectively.

Under Assumptions 2.1, 2.2, 4.1, and 5.1 through 5.3, and using a similar line of reasoning
as in Sections 4.1 and 4.2, it can be shown that p—p, = 0,(1) and 8 -6, = op(T_%), and the

sample information matrix, Jr(¢) = Dy {—6;%%) } Dy, also satisfies Saikkonen’s (1995)

stochastic equicontinuity condition SE,. Therefore, we have

Theorem 5.1 Under Assumptions 2.1, 2.2, 4.1, and 5.1 through 5.3,
VI(p = po) ~ N{0,7,, (%)} and T(8 —6y) ~ MN{O,Vas(tpy)}, (5.7
where

Voo (o) = Jgg (¥0) — Jgg (v00)H'(60){H(60) Ty (109 H'(60) }~"H(00) Ty (1), 55)
5.8

15 a singular random matriz having rank mr — k with probability 1, and

Joo (1) = Too(vho) + H); (60)Ha(60), (5.9)
1s a positive definite matriz.
Proof. See Section A.4 in the Appendix .

Theorem 5.2 Under Assumptions 2.1, 2.2, 4.1, and 5.1 through 5.3, the log-likelihood ratio
statistic for testing h (0) = 0, defined in (5.6), is asymptotically distributed as a x* variate
with k — r?degrees of freedom.

Proof. See Section A.5 in the Appendix.
The Wald statistic (W) for testing the k — r? over-identifying restrictions, hp(6) = 0, is
given by

W = Tk, (8)[H (0)Viy(9) Hy(8)] *hi(B), (5.10)

25For a general analysis of ML estimation in the case of singular information matrices see Silvey (1959,
Section 6) and Breusch (1986). However, their analysis is not directly applicable to models with unit roots.
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where Hp(0) = 0hp(0)/06'. Since
hy;(6) = Hp(0,)(6 — 6o) + 0,(1),
hence using (A.22) in the Appendix,
Thys(6) < MN{0,Hpy(00) V(1) Hy(00)}-

Therefore, W ~ Xi -
Next, the Lagrange Multiplier statistic (LM) for testing the over-identifying restrictions
can be written as

LM = XN{Va(9)} A, (5.11)

where X is the QMLE of the Lagrange multipliers A obtained under h(€) = 0 (see (A.13)),

and V(7)) is defined by (A.21). Then, using similar methods as used in the proof of Lemma
6 in Silvey (1959), it can be shown that LM ~ x?_,.

5.1 Testing Over-identifying Restrictions on a Sub-set of Cointe-
grating Vectors

The log-likelihood ratio statistic tests the validity of the joint hypotheses of over-identifying
restrictions on the cointegrating vectors in the system simultaneously. However, there are
situations when we are interested in testing over-identifying restrictions on a single cointe-
grating vector or a subset of cointegrating vectors only. For ease of exposition, we deal with
the single equation case, and partition 3 = (3;, 3,,) such that the dimensions of 3, and 3,,
are m X 1 and m x (r — 1), respectively, and partition 8 = (6',0",)’, conformably. Suppose
that there are k; > r restrictions on 3,, characterized by

h;(6,) = 0, (5.12)

and the remaining cointegrating vectors, 3,;, are subject to r(r — 1) exactly identifying
restrictions. Therefore, only 3, is subject to (k1 — r) over-identifying restrictions. Denote
the QMLE of € obtained under the above k; restrictions on 6; and the r(r — 1) exactly-
identifying restrictions on the remaining 7 — 1 cointegrating vectors, by 6,, and as before let
0 be the QMLE of 0 obtained under the r? exactly-identifying restrictions on #. Then, the
log-likelihood ratio statistic for testing the validity of h;(6;) = 0 is given by

LR, = 2{(+(8) — {+(8.)}. (5.13)

By Theorem 3.2, LR, has an asymptotic x? distribution with k; — r degrees of freedom.
Note that this result is invariant to how the remaining cointegrating vectors, 3,;, are exactly
identified.

It is also worth noting that the log-likelihood ratio statistic, LR, reduces to the same log-
likelihood ratio statistic proposed by Johansen and Juselius (1992), when testing restrictions
on a single cointegrating vector 3,. This is due to the fact that there are no over-identifying
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restrictions imposed on the remaining r — 1 cointegrating vectors, and therefore, the QMLE
of B,, can be chosen to be equal to any one of the many possible exactly-identified estimators
of B,;.

The above result can be readily extended to the more general case of testing over-
identifying restrictions imposed only on a subset of the cointegrating vectors. Partition
B = (B1,B,), where the dimensions of 8, and B, are m x 1 and m X (r — 1) with r > ry.
Suppose that there are k; over-identifying restrictions on 3. Defining B a= (61, 62 1), and
Jé; 5= (61, 62 ), it can be shown that the value of the log-likelihood ratio statistic for testing
the validity of &, over-identifying restrictions obtained using either 3 4 or 3 g 1s the same.

6 An Empirical Application: Long-Run Estimates of
Consumer Demand Equations for the UK

In this section we apply the long-run structural modelling techniques to Almost Ideal De-
mand Systems (AIDS) estimated for three non-durable expenditure categories using the UK
quarterly observations over the period 1956(1)-1993(2). (The available observations before
1956 were used to create the necessary lagged variables). This application provides a good
example where economic theory provides strong testable restrictions (such as homogeneity
and symmetry) on the long-run equilibrium relations. The symmetry restrictions are of
particular interest, since they provide an example of cross-equation restrictions.

Under the AIDS model of Deaton and Muellbauer (1980), the expenditure share of the
i-th commodity group, w;, is determined in the long run by

wi=0o;+ >, v;iln Py +6In(Y;/P), i=1,2,..,n, t=1,2,...,T, (6.1)
j=1

where Pj; is the price deflator of the commodity group 7, Y; is the per capita expenditure
on all n commodities, and P; is a general price index which we approximate using the Stone
formula:*® In P, = 377 | wjo In P}, where wjq refer to budget shares in the base year.

Consumer theory imposes the following restrictions on the parameters of the share equa-
tions:

e Adding-up restrictions: Y " a; =1, >0 ;i =0, > 6 =0.
o Homogeneity restrictions: » 7, v = 0.

e Symmetry restrictions: -y = ;.

26The exact expression for In P; is given by (see Deaton and Muellbauer, 1980):

InP=ag+ Y apln Py +

1 n n
3 Z >~ Vij In Py In Py
k=1 k=1j=1

Its use in our work will give rise to a non-linear VAR model, the analysis of which is outside the scope of this
paper. For an empirical application of Stone’s approximation in a static AIDS model see Pashardes (1993).
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The adding-up restrictions are not testable, and are imposed indirectly by first estimating
the n — 1 share equations, and then estimating the parameters of the remaining equation
from the adding-up restrictions. In system estimation of the share equations the results
are invariant to the choice of the n — 1 commodities included in the analysis. Although
there have been a number of attempts to deal with the dynamics of the AIDS model, these
analyses invariably consider rather restricted set-ups, and all treat prices and real per capita
expenditure as exogenously given.?”

The long-run structural modelling approach of this paper considers the share equa-
tions, (6.1), as the long-run equilibrium relations of a VAR model in the 2n variables,
x¢ = (Wig, Wat, .., Wy—1¢, In Pyy,..., In Py, In(Y;/P;)). This approach has two important advan-
tages. Firstly, apart from the order of the VAR, it does not impose any arbitrary restrictions
not supported by a prior: theory on the short-run dynamics. Secondly, it allows for any
possible interdependencies that may exist among the budget shares, prices, and the real per
capita expenditure. This approach has, however, one important limitation: due to its highly
data-intensive nature, only demand systems with a few commodity groups can be analyzed
in a satisfactory manner. Here we estimate a three-commodity system on the UK quarterly
seasonally adjusted data over the period 1956(1)-1993(2). The three commodity groups are
(1) food, drink and tobacco; (2) services (including rents and rates); and (3) energy and
other non-durables.?®

Since the analysis of the cointegrated VAR model pre-assumes x; to be I(1), we computed
augmented Dickey-Fuller (1979) and Phillips-Perron (1988) statistics for the three budget
shares (wyy, wo, ws), the price variables (In Py, In Py, In Py), and the per capita real
expenditure variable, In(Y;/P;). The results are summarized in Table 1, and show that for
none of the variables it is possible to reject the unit root hypothesis at the 95 percent level.?”

Table 1 about here

Consumer theory predicts that there should be two cointegrating relations among the
six variables, w1, way, In Py, In Py, In Py, and In(Y;/P;). To test this hypothesis, in what
follows, we consider a VAR(4) model with restricted intercepts and no trends to ensure that
there exist steady state values for the budget shares both under the null and the alternative

27The most general dynamic model used is by Anderson and Blundell (1983), which is a VAR(1) in budget
shares, and is estimated assuming exogenously given prices and per capita real expenditures.

28Consumer expenditures at current and constant 1990 prices for the three commodity groups were taken
from Central Statistical Office’s (CSO) quarterly Macroeconomic Database. Quarterly observations on pop-
ulation were obtained by interpolation of annual population figures taken from the CSO Annual Database.
Price indices of individual commodity groups were obtained as implicit deflators of relevant expenditure
categories. The general price index was approximated by the Stone index. All the data were converted into
indices with base equal to 1 in 1990. This ensures that the estimates of the a’s in (6.1) are close to the
budget shares in the base year.

29We also computed unit root statistics for all the variables not including trends in the underlying regres-
sions, but could not reject the unit root hypothesis in any case. Since budget shares are bounded between
zero and unity, it may be argued that the non-rejection of the unit root hypothesis is due to the relatively
small sample used and the lack of power of unit root tests. Nevertheless, it seems reasonable to proceed as-
suming that the budget shares can be approximated as unit-root processes (see also Chambers and Nowman,
1997).
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hypotheses. In this case, we have
3
AXt = Z F’iAthi — a,@lxz&l + Et; (62)
i=1

where x; ; = (x]_;,1)" is an (m + 1) x 1 vector, and B is an (m + 1) x r matrix. The
last row of 3 gives the steady state values of the budget shares. Using (6.2) we computed
the log-likelihood Trace and Maximum eigenvalue statistics over the period 1956(1)-1993(2).
The test results are summarized in Table 2.

Table 2 about here

At the five percent significance level, the Trace statistic (Airqce) Suggests two cointegrating
vectors, while the Maximum eigenvalue statistic (Apax) does not reject the hypothesis that
there is only one cointegrating vector among the six variables. At the ten percent level,
neither statistic rejects the hypothesis that there are two cointegrating vectors.

Given the fact that the evidence against theory’s prediction is rather weak we proceed
assuming that » = 2. Denote the corresponding cointegrating vectors on wy;, we, In Py,
In Py, In Py, In(Y;/F;) and the intercept by 8; = (811, Ba1, 831, Ba1, Bs1, Be1, Br1) and By =
(b1, Ba2, P32, Paz, Bs2, B2, Pr2)’, respectively. The exact (theory) identifying restrictions
implicit in the specification of the share equations in the AIDS model are given by>!

J Bu=-1, Bia=0
HE'{ fa1 = 0, 5222—1}’

and the exactly identified estimates of the two cointegrating vectors are

L, [ — 2215 | —.0516 | —.1761 | .2866
_ (.0372) | (.0235) | (.0433) | (.0303) | (.0027)
B o |y | 1672 [ 0536 1030 3218 5196

(.0637) | (.0395) | (.0754) | (.0521) | (.0044)

with the maximized value of the log-likelihood function being 3404.5, where the asymptotic
standard errors are given in brackets.?? The estimates in the last column of sz correspond
to the steady-state budget shares for the first two expenditure categories, namely “food,
drink, and tobacco” and “services and rent”. _

Next, we provide tests of the homogeneity and symmetry restrictions, taking 3, as the
appropriate exactly identified estimates. Estimation of the cointegrating relations subject to

30We obtained similar results when we estimated lower order VAR models. We did not consider models
of order higher than 4 on grounds of data limitations.

31This choice of exact-identifying restrictions rules out the possibility of placing (testing) zero restrictions
on (311 and P22. This seems plausible considering that the primary objective here is to test the homogeneity
and symmetry restrictions of consumer demand functions. Demand functions will not be defined if (11 (or
(22) is set to zero, and the homogeneity and symmetry restrictions can no longer be meaningfully formulated.

32For details of the computational algorithms see Pesaran and Pesaran (1997, Section 19.8)
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the homogeneity restrictions (namely, 331 + Bu1 + B51 = 0, and (32 + [12 + 52 = 0) yielded

the following results:

L] |2 — 2218 | —.0504 | —.1753 | .2866
o (.0166) | (.0208) | (.0216) | (.0164) | (.0028)
H = — 1160 | .0721 0439 2825 5101 |
0 | -1
(.0289) | (.0358) | (.0378) | (.0281) | (.0048)

with the maximized value of the log-likelihood function being 3404.0. Therefore, the log-
likelihood ratio statistic for testing the homogeneity hypothesis is equal to 2(3404.5 —
3404.0) = 1.0, which is well below the 95 percent critical value of the Chi-Squared test
with 2 degrees of freedom.3?

Turning to the symmetry hypothesis, the relevant restriction is the cross-equation re-
striction B4 = (32.%* The estimates of the cointegrating vectors subject to the homogeneity
and symmetry restrictions are as follows:*

] |6 —2150 | —.0415 | —.1771 | 2848
_ (.0399) | (.0281) | (.0411) | (.0222) | (.0066)
Pus = o | | | 210 | 097 1173 2837 5072 |

(.0281) | (.1111) | (.1295) | (.0955) | (.0188)

with the maximized log-likelihood value of 3402.8. The LR statistic for testing this joint
hypothesis is equal to 3.37, which is well below the 95 percent critical value of the Chi-
Squared test with three degrees of freedom, and does not support a rejection of this joint
hypothesis.

Finally, the estimates of the price and income elasticities for the specification that imposes
both the homogeneity and symmetry restrictions are presented in Table 3.

Table 3 about here

The income elasticities all have the correct signs and plausible magnitudes. The estimated
price elasticities are generally reasonable, except for the own price elasticity of the “food,
drink and tobacco” category which is slightly positive but statistically insignificant. Finally,
the estimates of the restricted intercepts, given in the last row of B s, namely .285 and .507,
for the w; and w, share equations match closely the average budget shares of .286 and .519
in the base year (1990).

33 As shown in Section 5.1, tests of the over-identifying restrictions are invariant to the choice of the exact
identifying restrictions. As an illustration we tested the homogeneity restrictions conditional on the following
fuii=-1, [i2=0

alternative set of exactly identifying restrictions:
P21 =0, fPs2=—1

} , and obtained identical test

results.

34Tn the case where (11 or (22 are not normalized to —1, the symmetry restriction needs to be expressed
as B41/0611 = P32/ P22, which is meaningful only if 517 # 0 and (a9 # 0. Also see footnote 31.

35Using the adding-up condition the third (cointegrating) share equation is given by

W3, = 0.2080 — .04151n Py + 0.11731n Py, — .07581n Py, — 0.1066 In(Y;/P,).
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7 Concluding Remarks

We have argued that in cointegrated VAR models where there is more than one cointegrating
relation, the statistical approach to identification of the long run cointegrating relations ad-
vanced in the literature is not satisfactory, and as far as the interpretation of the results and
their use in policy analysis is concerned, can be misleading. Identification of the long-run
relations requires a priori information, in the form predicted by economic theory, market
arbitrage conditions or institutional characteristics. When there are r cointegrating rela-
tions, there must be at least r independent a priori restrictions (including one normalization
restriction) on each of the r cointegrating relations. This paper provides a general theory for
the identification of the cointegrating vectors when they are subject to non-linear parametric
restrictions. It gives a rigorous proof of the consistency of the QML estimators, establishes
the relative rates of convergence of the QML estimators of the short-run and the long-run co-
efficients, and derives their asymptotic distribution; thus providing a formal proof for many
of the results routinely used in the literature. The empirical application in the paper also
shows that the econometric and computational methods advanced in the paper are readily
applicable to a wide variety of applied economic problems.



Table 1: Unit Root Test Results over 1956(1)-1993(2)

ADF(p) PP(0)T

Variables 0 1 2 3 4 1 2 3 4 5
w1 218 [ -1.91 | -1.83 | -1.90 | -1.85 | -1.81 | -1.69 | -1.73 | -1.82 [ -2.00
Wo -1.24 | -1.10 | -1.25 | -1.26 | -1.22 | -1.05 | -1.16 | -1.21 | -1.31 | -1.37
ws | -1.76 | -1.21 | -1.07 | -0.99 | -1.03 | -1.01 | 077 | -0.65 | -0.60 | -0.36

In P -2.68 | -2.12 | -2.10 | -2.18 | -2.33 | -2.58 | -2.57 | -2.60 | -2.65 | -2.70
In P -1.93 | -1.71 | -1.74 | -1.75 | -2.09 | -1.97 | -2.07 | -2.15 | -2.26 | -2.35
In Py -1.91 | -1.79 | -1.96 | -2.16 | -2.03 | -2.02 | -2.15 | -2.27 | -2.37 | -2.46
In(Y/P) | -1.60 | -1.54 | -1.89 | -1.94 | -2.45 | -1.53 | -1.85 | -1.99 | -2.23 | -2.41

* The ADF (augmented Dickey-Fuller) statistics are computed using the ADF(p), (p = 0, 1,2, 3, 4) regressions
containing intercepts and linear trends. * The PP (Phillips-Perron) statistics are computed using an AR(1)
regression containing an intercept and a linear trend, where the Bartlett window is used in computing the
long-run variance of the residual, and ¢ denotes the lag truncation parameter, { = 1,2,3,4,5. The 95%
critical value for both statistics is -3.44.

Table 2: Johansen’s Cointegration Rank Test Statistics for the AID System Applied to
UK Non-Durable Consumption Expenditures over 1956(1)-1993(2)*

Hy Eigenvalues Airace Anaw
r=20 .2404 119.61 | [102.56] | 41.24 | [40.53
r=1 .1938 78.38 75.98 32.31 | [34.40
r=2 1074 46.06 53.48 17.04 | [28.27
r=3 .0892 29.03 34.87 14.01 | [22.04
r=4 .0615 15.02 20.18 9.52 15.87
r=2>5 .0360 5.50 [9.16] 5.50 [9.16]

* Atrace and Apax are the trace and the maximum eigenvalue statistics, respectively. r is the number of
cointegrating relations. These values are estimated using the VAR(4) model with restricted intercepts and
no trends in the six variables, wq, wy, In P1, In Py, In P5, and In(Y/P). The values in [-] are the 95% critical
values.

Table 3: Own and Cross Price Elasticities and Income Elasticities of
Main Three Non-Durable Expediture Categories in the UK over 1956(1)-1993(2)"

Price Elasticities Income Elasticities

Food Services Others
Food .0413 —.4228 —.0216 .4042
(.1384) (.1255) (0.1300) (.0745)
Services —.5932 —1.0902 1211 1.5623
(.0980) (.3044) (.2264) (.1892)
Others —.0495 .8638 —1.2760 4617
(.3221) (.9020) (.6766) (.5609)

* Elasticities are estimated using the VAR(4) model with restricted intercepts and no trends, imposing
homogeneity and symmetry restrictions, at the 1990 budget shares. Asymptotic standard errors are given
in brackets.
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Appendix: Mathematical Derivations and Proofs

A.1 Derivatives of the Log-Likelihood Function
The first-order differential of {7 (), defined by (4.1), is given by (recall that MZ = 0)

dlr(p) = —dn [0 - 4Tr {(d0") BMB} - 3T {014 (R'ME)}
= ,Z -1 l -1 —1g - —1g
= 5T {071 ()} + 5Tr {077 (d2) O 'E'ME} — Tr {QT ' E'M (dE) }

1 —1 / —1 —1gv
= 5T {07 (B'ME ~ 70) Q7" (dQ)} — Tr {07 E'M(dE)} ,

where

dE = =Y (dT') + X_;(dB)a’ + X_,8(da’).

Next, the second-order differential of {1 (¢) is derived as
Plr(p) = ~Tr {Q () (E'ME — TQ) Q' (dQ)} — %Tr Q- (d)Q ! (d)]

+Tr {Q—l (Y (dl') + X_1(dB)e’ + X_18(da)] MEQ’I(dQ)}

+Tr {Q7H(dDQ'EM [ Y (d) + X_1(dB)a’ + X_18(da’)]}
~Tr {Q7! [(dD) (Y'MY)(dl) — (dI')(Y'MX_,8)(de') — (dI')'(Y'MX_,)(dB)e]}

—Tr {Q‘l [— (der) (B'X {MY)(dD) + (de) (X MX_18)(da’) + (dex) (B/XLIMX,l)(dB)a’]}
—Tr {Q_l [—a(dﬂ')(XLlMY)(dF) + a(dB)(X' MX_,8)(da’) + a(dﬁ/)(XLlMX_l)(dﬁ)a’] } .
Using Theorem 3 on p. 31 and Theorem 1 on p. 192 in Magnus and Neudecker (1988), and also noting that

dvec(B) = F(p)dep, dvec(?) = Dyw, vec(EEME — T) = Dy,vech(E'ME — TQ),

1

where D, is an m x 5m(m+1) duplication matrix, then the first and the second partial derivatives of £1(¢)

are given by

Olr(p) /0y (971 ® I'm(p—l)) vec(Y'ME)
op(p) | 9lr(p)/ok | _ (0! ®1,) vee(8'X";ME)
dp | Olr(e)/09 | F'(¢)(’Q7! ® L) vee(X_{ME) ’
Ol (p) /0w %D;n(ﬂ_l ® Q~1)D,, vech(E'ME — TQ)
82ET(‘P) _ Ay A12D,,
9pd¢’ | DiAy DAnDy, |

where Aq; is the symmetric matrix

A =

Y

QIR YMY Qe YMX_,3 (' ® Y'MX_1)F(¢)
Ol AX MX_ 18 (QlawBX MX_,)F(¢)
: F/(¢)(a'Q o XL MX_1)F(¢)

3

QO 'wBX_ ,MEQ !

O 1w YMEQ !
A12 -
(Q ' ® X' MEQ 1F(¢)

Ao =={( Q' H+@Q@ ' YT 'EME-Q)Q '}.

o

[A1]
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A.2 Probability Limits Involving Unit Root Processes

Under Assumption 2.4 and using the multivariate invariance principle (see Phillips and Durlauf, 1986)
T~3s(14 = w(a), a €[0,1], (A.3)

where sj7q) = Zgial] €, [Ta] is the largest integer part of Ta, and w(a) is an m x 1 vector of Brownian

motion with the covariance matrix, y. Next, applying the continuous mapping theorem,

. T 1
T % Zst = / w(a)da,

=1 0

T 1

T2 Z Sy = / w(a)w'(a)da.
i=1 0
From (2.7) and (2.10) we have
X_1=7(xo —p) +tp' +S_1Co(1)" + ZE—i—lcSQ,
i=0

/ /7 .
where S_1 = (sg,81,....,87—1) and E_; = (e1_;,€24, ...,€r—;) , i =1,2,..., and

X\ MX_; = Co(1)S"_,MS_;Cj(1) + 3 Co(1)S"_,ME_;_,C;},
=0

K

+ . CoE , {MS 1Cy(1) + 3 > Cy,E' , \ME_; ;Cg,
i=0 i=0 j=0

where M = Iy — Z(Z'Z) 'Z' (see also (3.1)). Then, it is easily seen that

T2X_ MX_; = T 2Co(1)S_;MS_;Cy(1) + O,(T™ 1), (A.4)
T7'X' ME = T7'C¢(1)S" ;ME + 0,(1).

Defining Dz = diag [T_%,T_%], and using (A.3) and (A.4), as T — oo,
1 1
7718 | ZD, = [/ W(a)da,/ aw(a)da} ,
0 0

T8 Z(Z'Z) 2SS, = [/01 w(a)da, /01 aW(“)d“] [ —46 Ig } l j?::;/(gﬁ 1 ’

1
T7'S’ \ME ;x/o w*(a)dw'(a), T728" MS_| = Qgs, (A.5)
where
1
QSS:/ W*(a)w*/(a)da (A.6)
0

is a positive definite random matrix with probability 1 (see Phillips, 1991), and

w*(a) = w(a) + (6a — 4) /0 w(a)da + (=12 + 6) /0 aw(a)da (A7)
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is an m x 1 vector of demeaned and detrended Brownian motion with the covariance matrix, 2g. Using the
above results in (A.4) , as T — oo,

T X’ ,ME = Cq(1) {/Olw*(a)dwl(a)} , (A.8)

T2X" \MX_; = Co(1)QssCy(1). (A.9)

Finally, noting that Y =(AX_ 1 AX o, ...,AX_,.1) and 33X _; are stationary processes and asymp-
totically uncorrelated with E, it is also easily verified (see also Phillips and Durlauf, 1986) that

T 'Y'ME = 0,(1), T'8;X_ME =o0,(1), T7'Y'MX_; = 0,(1), T'B,X_ MX_; = 0,(1).
(A.10)

Furthermore, the following probability limits can be shown to exist:

Y'MY Y'MX_, 53,

. . BoX_ MX_.3
ny = phmT—»ooT: Qyﬁo = plimr_. T 0 L 0

T

(A.11)

) Qﬁoﬁo = phmT—»oo

A.3 Stochastic Equicontinuity of Jr(¢)

Let p = (7, k’,w’)" and define the open ball, B(p,6) = {p, € T, : ||p, — p|| <6}, with X, =T, x T, x Y,
and the open shrinking ball, N7(¢,8) = {¢, € Yo : T/?||¢, — ¢|| < 6}, where § is a positive real number.36
The sample information matrix, Jr (), is given by

—3Ur(p)

D
8908901 T,

Jr(p) =Dr
where Dy = T3 diag (Imz(p,l),Im,,,T—%IS,Im(m ) /2) and —920,(p)/dpdy’ is defined by (A.2). T (¢)
satisfies Saikkonen’s (1995) stochastic equicontinuity condition SEy if

sup 137(p,) — I7(Pg) || = Op(1). (A.12)
‘P*EB(pU?‘S)XNT(d)O?‘S)

In the case where the long-run coefficients ¢y (or By = B(¢,)) are known the sample information
matrix of the short-run coefficients p involve only stationary variables and the standard asymptotic theory is
applicable. Therefore, in what follows we shall focus on establishing the condition SEy for those components
of J7(¢p) that involve the long-run coefficients, ¢. These are T-'Y'MX_8, T718'X’ ,MX_,3, (2 la®
T-3728X" MX_;)F(¢) and F'(¢)(o’Q 'ax ® T 2X" ,MX_,)F(¢). Consider the first term. Denoting
B(¢.,.) and B(¢y) by B, and B, respectively, and using the Lipschitz condition (4.32) we have

sup | T7YY'MX_ 18, T YY'MX_18| < cpd||T22Y'MX_,||.
¢.ENT(9,5)

But using (A.10), T7=3/2Y'MX_; = 0,(1), and hence T-Y'MX_ ;3 clearly satisfies the SE; condition.
To prove the stochastic equicontinuity of T7718'X’ \MX 3, let Qrxx = 772X’ ;MX ; and note
that

T(B.Qr,xxB.—BoQr,xxB) = T(B.—Bo) Qr,xxBo+TBeQr,xx(B.—Bo)+T(B.—Bo) Qr,x x (B.—Bo)-
Hence,

e ITB.Qr,xxB.~TBoQrxxBoll < 2c8(|T32X"  MX_1 8| + c6*|T X", MX_4].
¢, ENT(Pg,6

36Notice that in the construction of B(p,§) and Np(¢,§) the same § is used as required by Saikkonen’s
(1995, p. 894) stochastic equicontinuity condition, SEy.
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Again using (A.10), T73/2X" MX_18, = o0p(1), and Qrxx = T 2X' ;MX_; = O,(1). Therefore,
T3 X" ,MX_,[3 satisfies the SEy, in the sense that the above supremum can be made as small as desired
by choosing a small enough value for 6.

Let U, = (0 a0 T ?8.Qrxx), Yo = (A 'axTY?B,Qr xx), Fx = F(¢,), and Fy = F(¢,). Then

W — WoFo| < [[ W = Wol| X |[Fs — Fol + [[Ws — Wol| x [[Fol| + [| o]l > [[F. = Fol,

[0 — Wol| = Q7 || x | TV*(B, — Bo)' Qryx x|,
and

1Woll = 127 el x | T8 Qe xx -

Hence
sup ||, — o < pb|| Q7 el X [ Qrxx]-
¢, ENT(9,8)

Similarly, using (4.33)
sup  ||F, — Fol| < T7Y2¢p6.
. EN1(¢0,6)

Hence, under Assumption 4.3 we have

, s (B < 89 e {oal Qucxl  [Foll + erllT XL MX-afoll + T epens|Qrcxl}
*GNT 0’

Now using (A.10), and recalling that under our assumptions || 'e|| and ||Fo|| are bounded, it follows that

sup (@ 'aw TV2B.Qrxx)F(¢,) — (0 'a® TV2B,Qr,x x ) F(dy)|
¢*ENT(¢076)

is bounded by an O,(1) variable and therefore (2 ~'a © T/23'Qr x x )F(¢) satisfies the SEy condition.
Finally, for the term F'(¢)(a/Q ' ® T72X’ ;MX _,)F(¢), we first note that

F'(¢.)(A ® Qrxx)F(¢,) — F'(¢g)(A @ Qr,xx)F(¢hy)
= [F(¢.) —F(dp)] (A ® Qrxx)F () + F(¢py) (A ® Qrxx) [F(9,) — Fepy)]
+[F(,) — F(dg) (A ® Qr,xx) [F(d,) — F(hy)] .

where A = o’Q '« belongs to a compact set. Hence

sup  ||F(¢.)(A ® Qr xx)F(¢,) — F'(d)(A ® Qr xx)F ()|
¢, ENT(d,0)

< 27 Perd| A @ Qx| x |[F(eo)ll + T A © Qrxx].

It then readily follows that F/(¢)(a/Q lav @ T72X’ ;MX _;)F(¢) also satisfies the SEy condition.

A.4 Proof of Theorem 5.1

Using the Lagrangean function,
A, A) = lr(¥) — TA'h(), (A.13)

where A is a k x 1 vector of the Lagrange multipliers, the constrained ML estimators, 6 and 5\, satisfy the
following first order-conditions:

~ ~

or(y) _  Or(Y) s A _
Gy =0 —gg - TH(®A=0. n@)=o0. (A.14)

[A4]



Using the mean-value expansion of 8€T(1}) /0 around 1, we have

[ otr(9)/dp ] _ [ 9lr(vo)/0p } B [ —&2Ur()/0pdp’  —0*Lr(¢p)/0pdl’ } [ (P — po) ]
Ay () /06 Olr(1hy) /00 —0%(r(3)/000p"  —0%(r(1))/0008" | | (0 — 6y) (A.15)

where the (i, ) element of (—9%(7 (1)) /0pOrp’) is evaluated at (¢;,1;), and 1; is a convex combination of Vi
and ¥;9. In view of the consistency results in Theorem 4.1 and the stochastic equicontinuity for the sample
information matrix proved in Section A.3 above, we have

- —02%0p(2
Ip(h) = DwT%D¢T = J(2y), (A.16)
where J(1)g) is defined by (5.4). Similarly,
H(0)(0 — ) = 1(8) — h(Bg) + 0,(1). (A.17)

Notice that under the null hypothesis h(6y) = 0. Using the first-order conditions (A.14) in (A.15) and
(A.17), and then using (A.16) we obtain (after some algebra)

[ Tpp(0) 0 0 { \/T(ﬁfpo) ] { d(py) ]
0 Joo(vo) H'(6o) T —-0) | =| d(6o) | +o0p(1), (A.18)
0 H(0,) 0 A 0

Because Jgg (1) is singular, a direct manipulation of (A.18) is not possible. However, this problem can be
overcome following Silvey’s (1959) approach. Since H(0¢)T'(60 — 6¢) = 0,(1), and therefore H 4(60)T(6 —
6y) = 0,(1), we can rewrite (A.18) as

|: jpp(’ﬁo) 0 0 \/T(P_Po) ] |: d(po) ]
0 Joo(vg) H'(6) T(0—60) | = | d(Bo) | +op(1), (A.19)
0 H(6y) 0 A 0

where Joo(vy) = Joa(y) + H4(60)H 4(6p) is a positive definite matrix with probability 1. Note that
H 4(0) has rank 72, and the rank of Jgg (1) is equal to mr — 72, with probability 1. Therefore,

V(- po) o0 (o) O 0 d(po)
—= 0 Voo(g) Var(vo) d(6o)

T(6 — 00()) ( + 0,(1), (A.20)
0 Vor(o)  Vax(th)

where V(1)) is defined by (5.8) and

Vo (o) = 35 (90)H' (80) {H(00)T 5 (100)H'(80) } ", Van(3bg) = — {H(%)Je;wo)H'(oo)}‘l(A .

Then, (5.7) readily follows from (5.3) and (5.4). The expression for the covariance matrix in (5.8) can
also be easily obtained using the following results:

Voo (1) H'(8,) = 0, V(1) T00(%0) Vo (%) = Voo (%) [Lnr—H'(00) V5 (v0)] = Vi (9),

which can be derived from inversion of the bordered matrix in (A.19). H

A.5 Proof of Theorem 5.2

Using a similar procedure as in the proof of Theorem 5.1, we have

VI(p—po) ¥ N{0,3, (1)} and T(8 —69) < MN {0, Vyy(ehy)}, (A.22)

[AS]



where

Vio(1o) = Jgg ($0) — Jgg (v00)HA(00) {HA(00)J 54 (100)HIx(B0) } ~ HLa(60)T 55 (1), A23)

is a random matrix, having rank mr — r? with probability 1.
Also in view of the consistency results in Theorem 4.1 and the stochastic equicontinuity results established

in Section A.3, we are justified to write down the following Taylor series approximations of ¢7(1)) and ¢ (1)
around :

Ur(9) = Lr(vy) + d'(pg)VT (P — po) +d'(80)T (6 — 6o) (A.24)

_% {\/T(f’ - Po)ljpp(wo)ﬁ(f’ — po) + T(8 — 69)'J00 (1) T'(6 — 00)} (1),

and
(r($) = tr(tpo) + d'(po) VT (P~ po) + d'(80)T(8 -~ 09) (A.25)
3 (VT ~ 2030 (o V(B — o) + T(@ — 0) 300 () T(@ — )} + 0, (1).
Using (5.7) in (A.24), and (A.22) in (A.25), substituting the results in (5.6), now yields

LRy = d&'(80) [Vih(aby) — Voo(tb)] d(80) + 0,(1). (A.26)

Next, let P = I — H,(H.H,)~"H/, and P, = I — H,,(H/, H1,)"'H,,, where H, = J5.% (1o)H'(6))
1
and Ha, = Jp7 (¢g)H/;(0¢). Then, using (5.8) and (A.23), we have
~3 ~3 -1 -1
Voo(1hg) = Jgg* (¥0)PJ gy’ (¥p) and Vio (o) = Joo” (%) P ad gy’ (¥0).
Substituting these results in (A.26) we have

LR =u'(P, — P)uto,(1), (A.27)

where u = J 3 Py)d(6p). Using (5.3) and (4.31) it is then easily seen that u XN 0.X%,), where ¥, =
00 Y0
1

Je_eé (%0)T00(¥0)T 4 (V) = Ly — H;(60)H 4(0g). Notice that 3, is a non-stochastic matrix with rank
mr — r2. Then, by Theorem 9.21 of Rao and Mitra (1971, p. 171), it follows that the quadratic form,
u/' (P4 — P)u, is x? distributed with degrees of freedom equal to Tr[(P4 — P)X,] if and only if ¥, (P4 —
P) (P4 —P)Y, =3, (Pa—P)Z,, or [y (Pa —P)]? = [Z.(P4 — P)]%. Now note that

Eu(PA - P) = {Imr - H%(OO)HA(OO)} (PA - P)

=Py—P- H;‘(eo)HA(ao)PA + H;‘(QQ)HA(GQ)P =P4—P.

Since P4 — P is an idempotent matrix, we also have
Su(P =P =[S (P-P4)?=P—Py,.

Therefore, the quadratic term in (A.27) is asymptotically x? distributed with degrees of freedom equal to
Tr[(Pa—P)S, ] =Tt(P,—P)=k—7> N

[AG]
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