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Abstract

We present a 2 bidder multi-unit, common cost auction model

with uncertain demand and capacity constraints which ensure that

the participants sometimes face a residual market share. The model

is motivated by electricity pools. We show that a single-price auction

where the bidders can submit only one bid for all units weakly dom-

inates an auction where the bidders can make multiple-price bids in

terms of average prices. In the case of uniform price auctions we give

an example where the dominance is strict.
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1 Introduction

Since 1990, electricity markets around the world have gone through a radi-
cal transformation. The benchmark for change was the England and Wales
reform which separated generation from transmission. The rationale behind
a vertically integrated supply structure is the need for a centralized system
which ensures supply and demand are constantly matched at minimum cost
subject to network constraints. This requires a central dispatcher to con-
stantly monitor the system and instruct units when to switch on and off.
However, a major drawback of an integrated system is that there are no
competitive market forces acting on the potentially competitive generating
system. At the heart of the England and Wales reform was the innovative
way in which a competitive generating system was combined with a cen-
tralized dispatch system. This was done by setting up an electricity pool
which is a spot market for the sale of electricity. Generators compete to
supply electricity by submitting bids for the minimum price at which they
are willing to supply from each of their plants. The central dispatcher then
constructs the least cost rank order of plants for each period (half an hour in
the England and Wales pool). Hence the mechanism that determines which
units are dispatched is a multi-unit auction. A uniform-price auction was
initially adopted in the England and Wales pool where the units dispatched
are paid the marginal price (the bid on the marginal unit). Similar systems
have been adopted and are under consideration elsewhere1. The various sys-
tems differ in the way they deal with such things as imbalances, network
constraints and incentives for investment. In this paper, we restrict atten-
tion to the multi-unit auction aspect of electricity pools, a feature they all
have in common.
The England and Wales reform has not been without problems. The

hope that this market structure would lead to competition in generation was
not realized with average prices well above competitive levels2. Perhaps the
biggest mistake was that the thermal plants were divided between only two
companies which gave the two large generators significant market power.

1Competitive electricity pools are currently being used in Australia, California, Norway
and Sweden. The international experience is reviewed by von der Fehr and Harbord [9].

2See for example Wolak and Patrick [15].
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This has been the focus of the theoretical analysis of the England and Wales
pool. Green and Newbery [10]3 and von der Fehr and Harbord [8]4 show that
splitting the thermal generators between more than two companies would
have led to lower pool prices.
In this paper we model a 2 bidder multi-unit, common cost auction with

uncertain demand and capacity constraints which ensure that the partici-
pants sometimes face a residual market share. We demonstrate a revenue
ranking between types of equilibria, flat-supply where all units are bid at the
same price and increasing-supply where they are not. We show that flat-
supply equilibria dominate increasing-supply equilibria in terms of average
prices. This ranking demonstrates that allowing the bidders to submit multi-
ple price bids can only increase the average price since with single price bids
they are forced into a flat-supply equilibrium.
We also look at a comparison between pricing rules when multiple price

bids are allowed. An alternative to the uniform price rule is the discrimi-
natory price rule where the generators are paid their actual bids for units
dispatched. We identify a tendency to differentiate prices under a uniform-
price rule (by submitting increasing-supply functions) and to set uniform
prices under a discriminatory auction (by submitting flat-supply functions).
Intuitively, the strategies used counterbalance the price rule. We give an
example (with uniform demand distribution) of a uniform price auction equi-
librium with multiple price bids that does strictly worse than the single price
(flat supply) equilibrium. However, a complete ranking is not possible in the
general case as we do not demonstrate that there are no equilibria of the
discriminatory auction that do strictly worse.
These results are of general theoretical interest. Revenue rankings have

proved hard to come by in the multi-unit auction case when each bidder de-
mands more than one unit. Much of the interest in multi-unit auctions stems
from the sale of Treasury bonds where both discriminatory and uniform auc-

3Green and Newbery use the supply function framework of Klemperer and Meyer [11].
They simulate the England and Wales spot market to measure the extent and cost of
market power. They demonstrate that if the thermal plants had been split between five
companies rather than two, equilibrium pool prices would be much closer to competitive
levels.

4Von der Fehr and Harbord model the pool as a uniform-price, multi-unit auction.
They also find that the expected pool price is lower in a more fragmented industry.
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tions have been used. There is a significant amount of empirical work com-
paring the two auctions but this has proved inconclusive5. Back and Zender
[2] use the share auction framework of Wilson [14], where the good is perfectly
divisible and has a common value. They find that with a uniform auction,
any price between the reservation price and the lower bound of the common-
value distribution can be supported as a symmetric Nash equilibrium. There
is therefore a multiple-equilibrium problem and some of these equilibria are
extremely bad for the seller. However, the equilibria they construct do not
hold in the case where indivisible units are for sale. Ausubel and Cramton
[1] concentrate on the relative efficiency of the auctions but also demonstrate
that in the flat demand case, the discriminatory equilibrium revenue domi-
nates the uniform-price equilibrium. Engelbrecht-Wiggans and Kahn [5] and
Noussair [12] look at discrete private value, multi-unit, uniform-price auctions
where the bidders demand two units. They find that the uniform auction
possesses equilibria that are extremely bad for the seller because the bid-
ders will shade their second bids substantially as this reduces the price they
pay for the first unit when the second bid is marginal. Engelbrecht-Wiggans
and Kahn [6] look at the two unit case of the discriminatory auction. They
find equilibria that are better than the bad equilibria of the uniform auc-
tion. However, a revenue comparison is not possible as there may be other
equilibria of both auctions.
There are two features of our model that distinguish it from this multi-

unit literature. We have uncertain demand and a binding capacity constraint
which ensures that the firms face some residual market. Perhaps the best ex-
ample of such a market in practice is an electricity pool where the uncertainty
arises from the fact that the bids are made before demand is realised and
the constraints reflect the generating capacity of each firm. Such constraints
should be present in any efficient generating system as if it is the case that
there are m firms and demand can always be met by m− 1 firms then there
is surely over-investment in the generating stock. Fabra et al. [7] look at the
multi-unit case with certain demand and show that the uniform auction leads
to the worst possible outcome for the buyer. However, these pure-strategy
equilibria do not hold when there is uncertain demand. They also look at

5Binmore and Swierzbinski [3] review the empirical evidence.
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the single-unit case with uncertain demand and show that the expected costs
are the same under the two auctions. This result does not go through to the
multi-unit case because the uniform-price auction with multiple price bids
has equilibria where the firms mix between increasing supply functions. We
look at the multi-unit case with uncertain demand and show that the unique
equilibrium of the single price auction weakly dominates any other equilib-
rium in terms of average price. In the case of uniform-price auctions we show
that there are equilibria that do strictly worse when multiple price bids are
allowed. In section 2 we look at a simple example to highlight some of the
intuition underlying the main results. Section 3 presents the general model.

2 A simple example

Consider 2 suppliers that can supply up to 2 units each. They compete by
submitting a bid if a single price auction is used and two bids if a multiple
price auction is used. The marginal cost of producing each unit is c and the
buyer sets a maximum permissible bid (reserve price) p per unit. After bids
are submitted, nature chooses the level of demand, d, from the set [1, 2, 3, 4]
and the lowest d bids win. Let qi be the probability that demand is i.
The cases where demand is certain to be no more than the capacity of

each firm (q3 = q4 = 0) and where demand is certain to be greater than the
capacity of each firm (q1 = q2 = 0) are covered by Fabra et al [7]. In the
first case, the capacity constraint is not binding as demand is never greater
than 2. In the second case, the capacity constraint is always binding as each
firm will have a residual market share irrespective of how they bid.
In a uniform-price auction all successful bids are paid at the marginal

price. Without a binding capacity constraint, Bertrand type competition
ensures that there is no equilibrium where the units sell for a price greater
than c. However, when the capacity constraint is always binding, we get the
other extreme result where all the units sell for the maximum permissible
price p. The equilibrium involves one firm submitting two bids at p and
the other submitting low bids. Since the bids of the low price firm are not
marginal, there is no incentive to raise them and if the bids are sufficiently
low, say at marginal cost, there is no gain to be had from undercutting by
the high price firm.
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An alternative to the uniform-price auction is the discriminatory-price
auction where all successful units are simply paid at the actual bids. This
does not alter the competitive outcome when there is no binding capacity
constraint. Again, as each firm can supply the entire market, Bertrand type
competition ensures that there is no equilibrium where the units sell for a
price greater than c. However, the equilibria are different in the second case
(q1 = q2 = 0). We no longer get the extreme result that all units sell for p.
This would require both firms to submit each unit at p which cannot be an
equilibrium as each firm would have an incentive to undercut slightly and
avoid rationing when demand is 3. This simple analysis suggests that the
buyer should use the discriminatory auction in preference to the uniform
auction when there is a binding capacity constraint as the price paid in
equilibrium will be less than p. The strong intuition here is that with the
uniform-price rule, it is only the marginal price that matters in determining
the payment for all the successful units. If one firm submits its capacity at
a low price, there is no competition over this marginal unit which will then
be set at the highest permissible price. With the discriminatory-price rule
however, there is an incentive to increase all bids to increase payment but
at the same time to reduce high bids that are set to be unsuccessful. This
ensures that there is always competition between all the units.
This ranking is limited however, as it only applies when the opponent’s

capacity is always less than demand. In practice, when demand is uncertain,
it may be possible that a binding capacity constraint arises with a positive
probability but not with certainty. That is, there may be a high realization
of demand that results in a binding capacity constraint or there may be a low
realization of demand such that each firm can supply the entire market. This
removes the extreme result in the uniform auction case where all units sell at
p in equilibrium. The reason the equilibrium described above breaks down is
that the bids of the low price firm now set the marginal price when demand in
low which gives the firm an incentive to increase these bids. Once they have
been increased sufficiently, the high price firm can gain by undercutting. In
fact, when all realizations of demand occur with a positive probability, there
is no pure-strategy equilibrium in either auction. To rank the auctions in
this more general case, it is therefore necessary to look at the mixed-strategy
equilibria. We show that the single price and multiple price cases no longer
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give rise to the same equilibria if a uniform-price auction is used. To see this,
consider demand that is uniformly distributed [1

4
, 1
4
, 1
4
, 1
4
]. In either single

price case (discriminatory or uniform) there is a unique equilibrium where
the firms randomly select a bid from p [vi, p] (where i (D,U)) according to
some distribution function F (p). The distribution F has no mass points.
In this (flat-supply) equilibrium both firms are indifferent between offer

prices p [vi, p]. Setting p will mean that both units are certain to be ranked
below the opponent’s as there are no mass points and in the event they are
successful they sell at p. The expected profit of each supplier is therefore
(1× 1

4
+2× 1

4
)(p−c) = 3

4
(p−c). Each firm can make at least this much profit

by deviating from any increasing-supply equilibrium and setting both prices
at p. If there are no mass points at p, then the deviation will yield profit
3
4
(p− c). If the opponent does have mass points at p then the deviation will
be worth even more as there is a positive probability of selling units when
demand is 1 or 2. Now since the marginal cost is constant, all outcomes
are equally efficient. To rank the auctions it is therefore sufficient to look at
the profits of the suppliers which by the above argument cannot be less than
3
4
(p−c) in any equilibrium. Hence expected profits from any increasing-supply
equilibrium are greater than or equal to expected profits from the flat-supply
equilibrium.
In the multiple-price discriminatory auction the equilibrium remains the

same. In the multiple-price uniform auction case there is an equilibrium
where each firm chooses a price p1 [v1, v2] according to some distribution
function F1(p1) for the first unit and p2 [v2, p] according to some distribution
function F2(p2) for the second unit. This is an increasing-supply equilibrium
where the expected profits are strictly greater than 3

4
(p− c).

With this uniform demand distribution, there is no flat-supply equilib-
rium in the uniform auction. This contrast with the discriminatory auction
is important. To see the intuition behind it consider the gain from differenti-
ating prices in the uniform auction relative to the discriminatory case. First
consider lowering the price of the first (lower priced) unit. This will increase
the probability the unit is sold under both rules but the payment under a
uniform rule will only decrease when the unit is marginal. With a discrimina-
tory rule, the payment will be reduced even when demand is high and the bid
is certain to be successful. Now consider increasing the price of the second
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(higher priced) unit. This will reduce the probability the unit is sold and
increase the price of the unit under both rules. However, when demand is
high, the price of the first unit will also increase under the uniform-price rule.
Hence for any given strategy the opponent is using, differentiating prices is
more attractive under the uniform price rule. This difference between the
two auctions has been identified in other multi-unit contexts. Engelbrecht-
Wiggans and Kahn [6] characterise equilibria of the discriminatory auction
in the two unit case and show that there is a positive probability that a
bidder bids the same for both units even when the marginal valuations are
different. Ausubel and Cramton [1], Engelbrecht-Wiggans and Kahn [5] and
Noussair [12] demonstrate a general incentive to differentiate bids in a uni-
form auction. The intuition is that the highest bids are very high to ensure
they are successful (in the multi-unit demand case) and the lowest bids are
very low as there is a significant probability that these bids will be marginal
and therefore determine the price of all the units won.
The results demonstrate that there is never an advantage to allowing

multiple-price bids. In general, if multiple price bids are allowed then the
discriminatory auction has an equilibrium that is identical to the single-price
equilibrium and the uniform price auction may have equilibria that result in
strictly lower prices. However, we are not able to rule out increasing supply
equilibria of the multiple-price discriminatory auction and so a ranking of
discriminatory and uniform price equilibrium is not possible.

3 Model

There are 2 firms who can supply up to k units each at a constant marginal
cost, c per unit. The firms submit bids for the minimum price at which they
are willing to supply each of their units in the multiple price case and a single
bid for the minimum price at which they are willing to supply all of their
units in the single price case. The maximum permissible bid is p per unit.
Let S(p) be the number of units bid at or below p. After the firms submit
their bids, nature chooses the level of demand, d. Demand is distributed on
the interval [d, d] and the distribution is common knowledge. The market
clearing price, p(d), is the lowest price such that S(p) ≥ d. If more than
one firm has bid units at p(d) and S(p(d)) > d then units bid at p(d) are
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rationed6. When demand is not an integer, we assume a fraction of a unit is
sold at the margin7. The firms are risk-neutral. Under a uniform-price rule
the sellers are paid the market clearing price, p(d), for the units sold whereas
they are paid the bid prices on units sold if a discriminatory rule is used.

3.1 Preliminary results

The focus of the paper is the case where demand has positive density over
some interval, [d, d] where d > k > d. That is, there is a positive probability
that demand will be greater than the capacity of each firm so that each firm
faces some residual market share. The cases where k < d and d < k are
considered by Fabra et al. [7]. To summarise the results, in the case where
d < k (each firm is certain to be able to supply the entire market) we get
the competitive outcome in any equilibrium of the uniform or discriminatory
auction. Intuitively, Bertrand type competition ensures that there is no
equilibrium where the marginal price is above c. If d > k then there is no
pure-strategy equilibrium of the discriminatory auction. Furthermore, in
any pure-strategy equilibrium of the uniform auction the marginal price is
p which gives the worst possible outcome as all units sell for the maximum
permissible price. If d > k > d and there is positive density everywhere on
the interval [d, d] then the uniform auction also possesses only mixed-strategy
equilibria. These results do not depend on whether a single price or multiple
price rule is used8.

3.2 Equilibria

For the remainder of this section we assume d > k > d . From the preliminary
results, there are no pure-strategy equilibria of the single or multiple price,
discriminatory or uniform auctions. We therefore look for mixed-strategy
equilibria. We divide all the possible equilibria into two types, flat-supply
equilibria and increasing-supply equilibria.

6We assume any rationing rule where all these units have a positive probability of being
successful.

7The case where the entire unit is sold is covered by this assumption as we can simply
make the demand distribution discrete.

8Fabra et al [7] consider both single-unit and multi-unit auctions. The single unit
auction is equivalent to a multi-unit single price auction.
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Definition 1 A flat-supply equilibrium is a mixed-strategy equilibrium where
all units are set at the same price.

Definition 2 An increasing-supply equilibrium is a mixed-strategy equilib-
rium where firm i chooses k prices according to some joint density function
and the prices are different with positive probability.

Claim 1 In any flat-supply equilibrium (of the discriminatory or uniform
auction) each firm must bid according to a density function that is strictly
positive over the same atomless support p ∈ (vi, p), (where i ∈ (D,U)) and
the expected profit of each firm is

ΠF = (p− c) Pr(d > k)(E(d | d > k)− k).

Proof. In any mixed-strategy flat-supply equilibrium each firm must
be indifferent between prices in the support of the equilibrium and weakly
prefer not to set a price that is not in the support. Note first that this
implies the lower bound of the distributions must be the same. If firm 1 has
a higher lower bound, then firm 2 will strictly prefer setting a price above its
lower bound as this will increase the payment received without affecting the
probability the units are sold (with a uniform price auction this will happen
with positive probability). Let the common lower bound be vi.
No interior mass points: If one firm sets a price p < p with positive

probability then the other firm will not set prices on [p, p + ε] as bidding
slightly below p increases the rank without significantly affecting the price
for ε sufficiently small. However, this would imply that the firm setting p

can do strictly better by setting a price just above p. Hence setting p with
positive probability can not be part of a mixed-strategy equilibrium.
No holes: It is not possible to have an equilibrium where firm i does not

set prices on some interval [pa, pb] pa > vi, pb 6 p if there is positive density
over (pa − ε, pa). If there is such an equilibrium, firm j will not set a price
on (pa, pb) as increasing the price towards pb increases the payment without
affecting the probability of winning (with a uniform price auction this will
happen with positive probability). However, firm i will then prefer setting a
price just below pb to anything on the interval (pa − ε, pa) as this does not
significantly affect the probability of winning but increases the payment.
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The upper bounds must be p: If by contradiction one firm has upper
bound ep and the other has upper bound bp where p > bp > ep and p > ep then
the firm with the upper bound bp will strictly prefer setting p to ep as the
payment is increased without affecting the probability. This however implies
there is a hole in this player’s support. Hence ep = p.

Since both firms have a common lower bound, they must make the same
profit. It is not possible for both firms to have a mass point at p in equilibrium
as each firm can gain by bidding p− ε. Suppose firm i does not have a mass
point at p. Then from the above p is in the support of j’s strategy and setting
p will result in no units sold when d < k and (E(d | d > k)− k) on average
when d > k which gives expected profit (p− c) Pr(d > k)(E(d | d > k)− k).

Since both firms have a common lower bound, firm i must make the same
profit. This implies that firm j cannot have a mass point at p.

Corollary 1 The expected profit in a single-price discriminatory or uniform
auction must be ΠF .

This follows from the fact that a single price auction can have only flat-
supply equilibria.

Proposition 1 The average price in any increasing supply equilibrium is at
least as high as in a flat-supply equilibrium.

Proof. The expected cost to the buyer is equal to the sum of expected
profits plus the marginal cost of the units. To compare average prices in the
different equilibria it is therefore sufficient to compare expected profits.
Let the profit from some increasing supply equilibrium be ΠI . If setting

all units at p is in the support of the increasing-supply equilibrium strategy
then ΠI = ΠF . If it is not then one possible deviation is to set all units at
p. If there are no mass points at p in the increasing-supply equilibrium, then
the payoff from this deviation is ΠF . If there are mass points, the payoff will
be even greater as the firm will sell more units on average at the same price.
Hence ΠI > ΠF . QED.
The intuition for the result is very simple. Any bidder can obtain a payoff

of at least ΠF by setting all units at p. Corollary 1 shows that they cannot get
more than this in a single-price auction. We now show that if multiple-price

11



bids are allowed then there is generally an equilibrium of the discriminatory
auction that gives the single-price payoffs.

Proposition 2 There is a flat-supply equilibrium under a discriminatory
rule for any demand distribution that satisfies

qd(dd − (2k − α))qada > (qc + qd)(qd(2k − dd)(k − α) + qc(dc − k)α) (1)

+qb(db − (k − α))qc(dc − k) + qbqd(k − α)(db − dd + k)

where qa = Pr(0 < d 6 k − α), qb = Pr(k − α < d 6 k), qc = Pr(k < d 6
2k − α), qd = Pr(2k − α < d 6 2k), da = E(d | 0 < d 6 k − α), db = E(d |
k − α < d 6 k), dc = E(d | k < d 6 2k − α), dd = E(d | 2k − α < d 6 2k)
for all α [1, k − 1].

Finally we characterise equilibria of the uniform auction when the demand
distribution is uniform on the interval [0, 2k].

Proposition 3 Under a uniform-price rule there is no flat-supply equilib-
rium when demand is uniformly distributed on the interval [0, 2k].

An equilibrium in the uniform price case must then involve mixing be-
tween increasing supply functions. Increasing-supply equilibria are in general
difficult to characterize as they involve each firm choosing prices according
to some joint density. We have however managed to characterize a particular
type of increasing-supply equilibrium that exploits the tendency to submit
different prices.

Definition 3 An independent increasing-supply equilibrium is an equilib-
rium where the firms choose k prices independently, the first on some interval
[v1, v2] according to some density f1, the second on some interval [v2, v3] ac-
cording to some density f2.... and the kth on some interval [vk, vk+1] according
to some density fk.

Proposition 4 Under a uniform-price rule there is an independent increasing-
supply equilibrium when demand is uniformly distributed on the interval [0, 2k]
which leads to an average price that is greater than in the single-price equi-
librium.
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Allowing multiple price bids can never result in lower average prices and
at least in the case of a uniform price auction it can result in higher average
prices. We therefore conclude that in a multi-unit auction with common
costs, a single-price rule should be used.

A Appendix

Proposition 5 There is a flat-supply equilibrium under a discriminatory
rule for any demand distribution that satisfies

qd(dd − (2k − α))qada > (qc + qd)(qd(2k − dd)(k − α) + qc(dc − k)α) (2)

+qb(db − (k − α))qc(dc − k) + qbqd(k − α)(db − dd + k)

where qa = Pr(0 < d 6 k − α), qb = Pr(k − α < d 6 k), qc = Pr(k < d 6
2k − α), qd = Pr(2k − α < d 6 2k), da = E(d | 0 < d 6 k − α), db = E(d |
k − α < d 6 k), dc = E(d | k < d 6 2k − α), dd = E(d | 2k − α < d 6 2k)
for all α [1, k − 1].

Proof. Suppose firm 2 is submitting a price for all units, according to the
distribution function F (p). Let f(p) be the corresponding density function.
From claim 1, the support must be [vD, p]. Player 1’s expected payoff from
submitting a price p1 for all units is

Π(p1) = qh(

Z p

p1

(p1 − c)kf(p)dp+

Z p1

vD
(p1 − c)(dh − k)f(p)dp)

+ql
Z p

p1

(p1 − c)dlf(p)dp

where qh =Prob(d > k), dh = E(d | d > k), ql =Prob(d < k), dl = E(d | d <
k).

In equilibrium Π0(p1) = 0 for all p1 ∈ (v, p). This gives

(p− c)f(p) + F (p) =
kqh + qldl

qh(2k − dh) + qldl
(3)

From claim 1, in any flat-supply equilibrium each firm must bid according to
a density function that is strictly positive over the same support p ∈ [vD, p]
with no mass points. The distribution function that both firms use in a
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flat-supply equilibrium must therefore satisfy (3) and it must be the case
that F (p) = 1. The unique solution of this differential equation with the
boundary condition F (p) = 1 is

f(p) =
(dh − k)qh

qh(2k − dh) + qldl
(p− c)

(p− c)2
(4)

F (p) =
(kqh + qldl)p

(qh(2k − dh) + qldl)(p− c)
− (d

h − k)qhp+ (qh(2k − dh) + qldl)c

(qh(2k − dh) + qldl)(p− c)
(5)

Solving F (vD) = 0 gives vD = ((dh−k)qhp+(qh(2k−dh)+qldl)c)/(kqh+qldl).
We therefore have an equilibrium where both firms mix using (5).
Now we need to check that it is globally optimal to set a single price. Let

P be a vector of n prices, {p1, ....pn} where n ≤ k, p1 < p2.... < pn, pn ≤ p,
p1 ≥ v9. Let α be the number of units bid at pn, qa = Pr(0 < d 6 k − α),

qb = Pr(k−α < d 6 k), qc = Pr(k < d 6 2k−α), qd = Pr(2k−α < d 6 2k),
da = E(d | 0 < d 6 k − α), db = E(d | k − α < d 6 k), dc = E(d | k < d 6
2k − α), dd = E(d | 2k − α < d 6 2k). The profit made on the units priced
at pn is independent of all the other prices10. It is

Πn(pn) = qb
Z p

pn

(pn − c)(db − (k − α))f(p)dp

+qc
Z p

pn

(pn − c)αf(p)dp

+qd
µ R p

pn
(pn − c)αf(p)dp+R pn

vD
(pn − c)(dd − (2k − α))f(p)dp

¶
Substituting for f(p) using (4) and simplifying, the first derivative of the
profit function with respect to pn is,

∂Πn(pn)

∂pn
= −(q

c + qd)(qd(2k − dd)(k − α) + qc(dc − k)α)

(qh(2k − dh) + qldl)
(6)

−(d
b − (k − α))qb(qd(dd − k) + qc(dc − k))

(qh(2k − dh) + qldl)

+
qd(dd − (2k − α))(qada + qbdb)

(qh(2k − dh) + qldl)

9Any bid below v cannot be optimal as firm 1 will be assigned such units with prob-
ability 1 but can increase the payment received for these units by increasing the bid to
v.
10The other prices affect neither the payment nor the rank of the units priced at pn.
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Hence, the first derivative is a constant and if it is negative, the firm can
always gain by decreasing the highest price towards the second highest. If
it is negative for all α between 0 and k, then it is optimal to submit a flat
supply function. Consider the case where demand is always greater than k,
qa = qb = 0, qc + qd = 1. The derivative is then

−(q
d(2k − dd)(k − α) + qc(dc − k)α)

(qh(2k − dh) + qldl)

which is always negative. The flat-supply equilibrium therefore holds for any
demand distribution where d > k. Next consider the case where d ∼ U [0, 2k].
Then qa = (k−α)/2k, qb = a/2k, qc = (k−a)/2k, qd = a/2k, da = (k−a)/2,
db = (2k− a)/2, dc = (3k− a)/2, dd = (4k− a)/2. Substituting these values
into (6) gives,

−1
4

α(k − α)

k
Again, this is always negative. The general condition for the equilibrium not
to hold is,

qd(dd − (2k − α))qada > (qc + qd)(qd(2k − dd)(k − α) + qc(dc − k)α) (7)

+qb(db − (k − α))qc(dc − k) + qbqd(k − α)(db − dd + k)

As α increases qada decreases but qd(dd − (2k − α)) increases. This puts
a limit on the values the left hand side of (7) can take.
It is clear from (7) that for the equilibrium not to hold, the demand

distribution must be skewed to the right so that qada is significant but with
sufficient mass on the other tail. Hence for most distributions the equilibrium
will hold. However, it is possible to construct exceptions. To see this consider
the case where da = (k − a)/2, db = (2k − a)/2, dc = (3k − a)/2, dd =

(4k − a)/2. Substituting these values into the numerator of (6) gives,

−1
4
α(k − α)(2(qd)2 + qc(2qc + qb) + qd(4qc − qa))

This expression is greater than zero when,

qa >
qc(2qc + qb)

qd
+ 4qc + 2qd (8)

For example, if qa = .85, qb = .05, qc = .05 and qd = .05 then the inequality
holds. Each firm can then increase profits by increasing the distance between
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the prices. The mixed-strategy equilibrium, where they set one price for all
units, no longer holds. If, however qa = .7, qb = .1, qc = .1 and qd = .1 then
the equilibrium continues to hold. For any distribution that is not skewed in
this way the equilibrium holds. QED.

Proposition 6 Under a uniform-price rule there is no flat-supply equilib-
rium when demand is uniformly distributed on the interval [0, 2k].

Proof. We can construct an equilibrium where the firms mix between flat
supply functions as in the discriminatory case. Suppose firm 2 is submitting
a price p ∈ (vU , p) for all units, according to the distribution function F (p).
Let f(p) be the corresponding density function. Then player 1’s expected
payoff from submitting a price p1 for all units is

Π(p1) = qh(

Z p

p1

(p− c)kf(p)dp+

Z p1

vU
(p1 − c)(dh − k)f(p)dp)

+ql
Z p

p1

(p1 − c)dlf(p)dp

where qh =Prob(d > k), dh = E(d | d > k), ql =Prob(d < k), dl = E(d | d <
k). In equilibrium Π0(p1) = 0 for all p1 ∈ (vU , p). This gives

A−Bf(p)(p− c)− CF (p) = 0

where A = qldl, B = (2k − dh)qh + qldl, C = qldl − (dh − k)qh

The unique solution of this differential equation with boundary condition
F (p) = 1 when C 6= 0 is

f(p) =
A− C

B

(p− c)
C
B

(p− c)
C
B
−1

(9)

F (p) =
A

C
− (A− C)

C

µ
p− c

p− c

¶C
B

(10)

The unique solution when C = 0 is

f(p) =
A

B

1

(p− c)
(11)

F (p) = 1− A

B
Log

µ
p− c

p− c

¶
(12)
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However, this is not in general an equilibrium in the multi-unit case.
Using the previous notation , if firm 2 sets an increasing supply function the
profit function (focussing on terms that include pn) is

Π(P ) = K(p1, ....pn−1)

+qb

Ã R p
pn
(pn − c)dbf(p)dp

+
R pn
pn−1

(p− c)(k − α)f(p)dp

!

qc

Ã R p
pn
(p− c)kf(p)dp

+
R pn
pn−1

(p− c)(k − α)f(p)dp)

!

+qd(

Z p

pn

(p− c)kf(p)dp+

Z pn

vU
(pn − c)(dd − k)f(p)dp)

Unlike in the discriminatory case, it is not generally optimal to set pn = pn−1.

The first derivative with respect to pn is

∂Π(P )

∂pn
= qbdb − F (pn)(q

bdb − qd(dd − k)) (13)

−f(pn)(pn − c)(qb(db − (k − α) + αqc + qd(2k − dd))

Consider the case where d ∼ U [0, 2k]. Then qa = (k − α)/2k, qb = a/2k,

qc = (k− a)/2k, qd = a/2k, da = (k− a)/2, db = (2k− a)/2, dc = (3k− a)/2

and dd = (4k − a)/2. Substituting for f(pn) and F (pn) using (11) and (12)
the first derivative is

1

4

α(k − α)

k

which is always positive in which case each firm can gain by differentiating
prices.

Proposition 7 Under a uniform-price rule there is an independent increasing-
supply equilibrium when demand is uniformly distributed on the interval [0, 2k]
which leads to an average price that is greater than in the flat-supply equilib-
rium.
Proof. Let qx =Prob(x − 1 < d < x) and dx = E(d | x − 1 < d < x).

Assume firm 2 is choosing its highest price according to some density fk(p)

on some interval [vk, p], the second highest according to some density fk−1(p)
on some interval [vk−1, vk].... and the nth price according to some density
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fn(p) on some interval [vn, vn+1]. The profit function of firm 1 if it submits
a price vector P with a price in each of the intervals is,

Π(p) = q1
µZ v2

p1

d1(p1 − c)f1(p)dp

¶
+q2

µ R v2
p1
(p− c)f1(p)dp

+
R p1
v1
(d2 − 1)(p1 − c)f1(p)dp

¶
.

.

+q2x−1
µ R vx+1

px
(d2x−1 − (x− 1))(px − c)fx(p)dp

+
R px
vx
(x− 1)(p− c)fx(p)dp

¶
+q2x

µ R vx+1
px

x(p− c)fx(p)dp

+
R px
vx
(d2x − x)(px − c)fx(p)dp

¶
.

.

Now for this to be an equilibrium, firm 1 must be indifferent between any
price in each interval. We therefore have k first order conditions that give
rise to k differential equations. The xth first order condition is

∂Π(P )

∂px
= q2x−1

¡
d2x−1 − (x− 1)

¢
(14)

− (px − c) fx(px)

µ
q2x (2x− d2x)

+q2x−1 (d2x−1 − 2(x− 1))

¶
−Fx(px)

µ
q2x−1 (d2x−1 − (x− 1))
−q2x (d2x − x)

¶
The solution is of the type given in the proof of proposition 6. Finally, to
confirm that this is an equilibrium we must check that it is globally optimal
to set prices in these intervals. Suppose instead that player 1 submits x > 1

prices in the interval [vm, vl] with y prices below vm and k−y−x prices above
vl. In total, there will be y+m−1 prices below vm, x+1 prices in the interval
[vm, vl] and 2k− y−m−x prices above vl. Let qm be the price firm 2 sets on
the interval [vm, vl]. Now consider a unit firm 1 has bid at pt on the interval
[vm, vl]. This unit will be ranked as the m+ t lowest when qm < pt and as the
m + t − 1 lowest when qm > pt. Hence the terms in the profit function that
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include pt are

qm+t−1

Ã R vl
pt
(dm+t−1 − (m− 1)) (pt − c)fm(qm)dqm

+
R pt
max[vm,pt−1]

(t− 1)(qm − c)fm(qm)dqm

!

+qm+t

Ã R min[vl,pt+1]
pt

t(qm − c)fm(qm)dqm
+
R pt
vm
(dm+t −m) (pt − c)fm(qm)dqm

!
The first derivative of firm 1’s profit with respect to pt is therefore

∂Π(p)

∂pt
= qm+t−1

¡
dm+t−1 − (m− 1)

¢
(15)

−Fm(pt)

µ
qm+t−1 (dm+t−1 − (m− 1))
−qm+t (dm+t −m)

¶
−(pt − c)fm(pt)

µ
qm+t−1 (dm+t−1 − (m+ t− 2))

+qm+t (m+ t− dm+t)

¶
For a uniform distribution, qx = 1

2k
and dx = 2x−1

2
. Substituting these values

into (11) (using values from (14)) and then substituting into (15) gives,

∂Π(p)

∂pt
=
1

2k
(t−m) (16)

Firm 1 can gain by increasing py+x to vl if y + x > m and by reducing py+1
to vm if y + 1 < m. If x > 1 then at least one of these inequalities hold. It
is therefore not optimal to submit two or more prices on one interval. Each
firm can get the flat-supply equilibrium payoff by submitting all units at p.
However, (16) shows that the firm would strictly increase profit by reducing
the price of a unit to the second highest interval. Hence the average cost to
the buyer is strictly greater than in the flat-supply equilibrium.
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