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Abstract

This paper studies the enforcement abilities of authorities with a limited commitment

to punishing violators. Commitment of resources sufficient to punish only one agent is

needed to enforce high compliance of an arbitrary number of agents. Though existence

of other, non-compliance equilibria is generally inevitable, there exist punishment rules

suitable for a limited authority to assure that compliance prevails in the long run under

stochastic evolution.
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1 Introduction

Centralized authorities, such as governments, or decentralized ones, such as peers, use

threats of punishment to enforce norms. However the authority, whether centralized or

decentralized, achieves compliance only if it is able to commit to the punishment threat.

Punishment is often costly, and hence an important determinant of the authority’s

success at enforcement is the amount of resources committed for punishment. In this

paper I argue that both kinds of authorities are similar in that they can enforce high

compliance of many agents with only few committed resources. The argument is as

follows: suppose that the authority is limited in that it can commit only resources that

suffice to punish just one agent by an amount higher than the agent’s cost of compliance.

Then, the authority’s punishment threat induces among the agents a game with an

equilibrium, in which all agents comply, as no agent wishes to deviate individually. For

a centralized authority this implies that it is able to control an arbitrary number of

subordinates as long as it is able to control one. Similarly, it is possible to apply this

observation to decentralized peer enforcement in a public good game with punishment

option. N players, each committing one unit for punishment, can enforce individual

contributions of approximately N units, and to collect altogether approximately N2

units.

However, even though a small punishment commitment may deter individual defec-

tors from deviating, the existence of a non-compliance equilibrium would appear to be

unavoidable. The committed resources are insufficient to punish all and therefore, if

no agent comply, the punishment of each is small compared to the cost of compliance.

Yet, as shown below, any limited authority may avoid the non-compliance equilibrium

— at least in the long run — by choosing a proper punishment rule. The supporting

argument is contingent on the authority’s ability to punish colluding violators at least

slightly. I divide authorities into two categories along this line. Collusion-vulnerable

authorities cannot punish if all agents coordinate on the same level of non-compliance.

Anger-based peer enforcement is a prime example, because punishing after a perfect

collusion would require the punisher to be angry with peers who have perpetrated the

same offense as herself.1 Collusion-resistant authorities are able to punish by at least

some amount even after a perfect collusion. The punishment of each colluding agent

can be arbitrarily small so even an authority with limited committed resources can be

1Decentralized authority based on peer enforcement may more frequently belong to this category but even
a centralized authority such as a government may be constrained, for instance politically, to punish agents
unified in a common non-compliance action.
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collusion-resistant.

Let us first present a punishment rule which eliminates the non-compliance equilibria

yet which is suitable for a limited collusion-resistant authority. The rule requires the

authority to commit to punishing only the worst violator. In the case of a tie the au-

thority divides the punishment equally among the worst violators which in turn induces

a dominance solvable game among the agents. The lowest possible compliance level

is dominated as it guarantees punishment, and an increase in compliance just above

the second lowest level saves the violator from punishment. Elimination continues by

induction until only high compliance levels remain in the strategy sets.

A collusion-vulnerable authority, in contrast, cannot use the above “punish-the-

worst” rule as it requires slight punishment of all players even after a perfect collusion.

An equilibrium in which no players comply inevitably exists under a collusion-vulnerable

authority as no player can be punished in such an equilibrium. To assess which equilib-

rium prevails in the long run, I build a stochastic, evolutionary model along the lines

of Kandori, Mailath and Rob (1993). Agents occasionally but rarely deviate from their

best responses and experiment with a random action. As demonstrated below, only a

high level of compliance survives the evolution under a simple punishment rule.

This application of stochastic evolution is similar to that of Kandori (2003) who

examines a public good game (without punishment option). Kandori, in line with psy-

chological game theory, assumes intrinsic motivation to adhere to norms as long as others

adhere to it and analyzes the resulting coordination problem. Occasional mutations —

deviations from best responses — cause shifts of the norm. Downward shifts require

fewer mutations than upward shifts in Kandori’s model. As a result, high contribu-

tion levels eventually decay and only low contributions prevail in the long run, exactly

as observed in experiments (see Ledyard, 1995). As shown below, adding a punish-

ment option to the public good game reverses Kandori’s result despite the fact that

the commitment to punishment is limited. Small upward shifts of norms require fewer

mutations than any downward shifts under a simple punishment rule. Therefore, for a

low rate of mutations, shifts, conditional that they happen, are almost always upward

and the stochastic evolution converges to high contribution levels. The evolution can

be observed in the laboratory also in this case: the contribution level typically increases

during public good experiments with punishment option (Fehr and Gächter, 2000).

The paper at hand does not examine where the authority’s limited commitment

ability comes from. For that reason, I choose a black box approach for the motivation

of punishment. The authority is assumed to be able to commit to limited punishment.
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There is experimental evidence supporting this assumption for the case of peer enforce-

ment (e.g. Fehr and Gächter, 2000, 2002; Yamagishi, 1986). Punishment is modelled in

this paper as an automatic, limited reaction governed by a punishment rule which is a

function of the individual compliance levels. The focus is on specifying rules assuring

high compliance under the constraint of limited punishment.

The analysis starts by examining an optimal punishment rule suitable for a collusion-

resistant authority in section 2. A collusion-vulnerable authority and its associated

coordination problem is studied in section 3. Section 4 concludes.

2 Punishment Rule Suitable for a Limited Collusion-

Resistant Authority

This section reproduces the model in Steiner (2005). It formalizes the introductory ar-

gument that a collusion-resistant authority can always avoid non-compliance equilibria.

Though the authority of this section could be centralized or decentralized, the model is

formulated in the former setting, as I discuss its connection to tax enforcement at the

end of the section.

Each player i ∈ I = {1, . . . , N}, N ≥ 1, simultaneously chooses an action ci from

a common strategy set S = {0, ∆, 2∆, . . . , L∆}, where ∆ is sufficiently small, ∆ < 1,

and L∆ ≥ N . The assumption of the dense grid is needed to enable a sufficiently small

increase in compliance. The grid is used as a technically convenient approximation of

the continuous strategy space, so the assumption is not substantial. The assumption

L∆ ≥ N assures that players are not physically precluded from high compliance. The

action profile of all players is denoted by c.

The authority has committed to a punishment rule p(.), p : SN → RN
+ that allocates

punishment pi(c) ≥ 0 to each player i after the authority observes the realized strategy

profile. The authority committed to the rule before the players choose actions and the

commitment has been commonly observed by all players. The payoffs of the players are

ui(c) = −ci − pi(c). (1)

Thus ci is interpreted as the cost of compliance net of individual benefits of the com-

pliance, if these exist. (I, SN , {ui}N
i=1) is the punishment game. Only the one-stage

interaction of players is modelled here; the behavior of the (limited) authority is an
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assumption.

Enforcement of high compliance would be trivial if the authority could commit to

any punishment rule. However, the authority is limited in the sense that it is at most

able to commit to spending on punishment one unit per agent:

A1:
PN

i=1 pi(c)
N ≤ 1 for any c.

Despite assumption A1, there exists a punishment rule that induces a game with a

unique equilibrium in which the actions of all players are approximately N . Denote the

highest level below N by mcen, the lowest action among players by l, and the second

lowest by s with the convention that l = s if there is more than one player with the

lowest action. Let the punishment rule be

pi(c) =





N
mcen

(
min(s, mcen)− ci

)
if ci = l, l < s, and ci < mcen,

1 if ci = l, l = s, and ci < mcen,

0 otherwise.

(2)

The marginal punishment, which is N
mcen

> 1 or 1
∆ > 1, suffices to motivate the player

with the lowest action to increase her action, as long as the lowest action is below mcen.

Yet the total punishment expenditures are always at most N because the punishment

is not too costly even in situations when many players coordinate on the same lowest

level, as then s = l and each colluder is punished only slightly. This exact punishment

rule is not necessarily practiced in reality; Proposition 1 simply demonstrates that a

rule inducing high compliance exists.

Proposition 1. 1. The punishment game with punishment rule (2) has a unique

equilibrium with all N players playing mcen.

2. Punishment rule (2) satisfies assumption A1.

Proof of the Proposition 1. 1. Actions larger than mcen are dominated by mcen because

a player who has chosen at least mcen is never punished. Moreover, the player with the

lowest action below mcen always wishes to increase her action by at least ∆ because the

increase of her compliance by ∆ decreases her punishment by N
mcen

∆ > ∆ or by 1 > ∆.

Hence, the lowest level, 0, is dominated by level ∆. After elimination of {0, ∆, . . . , k∆},
level (k + 1)∆ is dominated by (k + 2)∆ because (k + 1)∆ would be the lowest action

among the non-eliminated strategies, for k = 0, . . . , mcen
∆ − 2. Thus, the game can be

solved by iterated elimination of dominated strategies. Only mcen survives this process.

2. There is either only one player with the lowest action, in which case she is the

only one being punished. The punishment is largest in this case if s = mcen and ci = 0.
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Then the punishment is N
mcen

mcen = N . Or there may be many players with the lowest

action, in which case s = l and each punishment is 1. Thus the cost is at most 1 unit

per player in both cases.

A limited authority fulfilling A1 cannot enforce higher actions than N , as this is the

highest possible punishment it can inflict on a deviator. The “punish-the-worst” rule is

thus the optimal rule.

Alm and McKee (2004) experimentally study several tax enforcement schemes and

document that a rule similar to the “punish-the-worst” rule indeed elicits high compli-

ance. The authors assume a coordination problem analogous to the one in the present

model: audit probability increases with the difference between the average and agent’s

reported income. This models the use of the Discriminant Index Function (DIF) scores

by the Internal Revenue Service in the United States. DIF is a statistical score indi-

cating levels of suspiciousness of tax returns; those with above average DIF are more

likely to be audited. Such an endogenous audit probability rule leads to a coordination

game, in which full evasion by all agents constitutes an equilibrium. The experiment

demonstrates that adding a small probability of a randomly allocated audit in a case

of perfect collusion prevents coordination on full evasion. The intuition is the same as

in the model of this section. Indeed, the experimental data show a gradual increase in

compliance, as players try to escape the gradually increasing lowest position.

3 Punishment Rule Suitable for a Limited Collusion-

Vulnerable Authority

This section examines long run sustainable compliance levels under a collusion-vulnerable

authority. Unlike in the previous section, such an authority cannot assure high compli-

ance in the short or medium run because zero compliance always constitutes an equilib-

rium. To compare the effectiveness of different punishment rules, I assume that players

occasionally, but rarely, experiment with a randomly chosen action. I look for compli-

ance levels that prevail in the long run.

For the sake of concreteness, the model is formulated in the setting of a public good

game with punishment option which mimics in gross features the experiments in Fehr

and Gächter (2000, 2002). The next subsection describes the evolution in a fixed group

of players. A modification describing the evolution under a random matching protocol

is given in subsection 3.2.
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3.1 Partners Treatment

A fixed set of N ≥ 3 risk-neutral players repeatedly plays the public good game with

punishment option in rounds t ∈ N, and each player i chooses a contribution level ct
i from

the common strategy set S = {0,∆, 2∆, . . . , L∆}, L∆ ≥ N . S is of the same structure

as in section 2 but a denser grid is required, ∆ < 1
N−1 . After the contributions c of all

players are made and observed by everyone, players automatically assign punishment

points to each other; pi
j denotes the punishment i assigns to j.

The punishment pi
j(c

t−1, ct) depends on the contribution levels of the previous and

current rounds in this section; pi
j : SN × SN → R+. By allowing mild history depen-

dence, the model diverges from the experimental design of the partners treatment in

Fehr and Gächter (2000), who excluded it in order to avoid reputation effects. The

reputation effects are excluded here by assuming myopic behavior. I can therefore per-

mit history-dependent punishment rules which are psychologically plausible and which

allow higher contributions than do memoryless rules. Although longer memories could

be considered, memory of length one turns out to be sufficient to support contribution

levels of approximately N , which is the highest possible level. History dependence in not

substantial for the qualitative results of the model. The enforceable contribution level

increases linearly in the number of players even under a memoryless rule, but as ∼ N
2

instead of ∼ N . Only memoryless punishment rules are considered under the random

matching setup in subsection 3.2.

Players play myopic best responses to the previous action profile in each round t.2

That is, each player maximizes payoff under the punishment rules assuming that her

opponents will carry over their contributions ct−1 from the last round:

ct
i ∈ arg max

ci



−ci −

∑

j 6=i

pj
i

(
ct−1,

(
ci, c

t−1
−i

) )


 . (3)

The public good does not enter the maximization problem; ci is interpreted as the

contribution costs net of the marginal increase of the public good. Also, the cost of

the punishment does not enter the maximization problem although the agents bear the

cost. The limited punishment is automatic and thus is not part of the agents’ decision

problem. Alternatively, I could presuppose a behavioral utility function under which the

limited punishment would be optimal, but the main claim is that a small willingness to

2The results would not be changed if players could adjust to their best responses only with a certain
probability.
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punish leads to high contributions. The exact motivation to punish is outside the focus

of this paper. The optimization problem (3) can be understood as a reduced form of a

more complex optimization with the punishment stage already solved.

The strategy set S and the punishment rules pi
j(., .) define a Markov process (SN ,Q)

where the transition matrix Q is determined by (3). Note that it is a memoryless process,

despite the fact that the punishment rule is history dependent, because the optimization

problem (3) depends only on the last round contribution profile ct−1. The pair (SN ,Q)

is the unperturbed process.

Assumption A1 reformulated for the decentralized authority setting is:

A1’:
∑

j 6=i p
i
j ≤ 1 for all i and any ct−1, ct.

Assumption A1’ is stricter than A1 because it not only requires average expenses for

the punishment to be below 1, but also individual expenses of each player to be below

1. The next assumption prohibits players from punishing peers that have contributed

the same amount as themselves3:

A2: If ct
i = ct

j then pi
j = 0.

Assumption A2 implies that c = 0 is inevitably a steady state of the unperturbed

process, so at worst a punishment rule does not induce any cooperation and at best there

are multiple steady states. However, as demonstrated below, there exists a punishment

rule under which increases of norms are much less demanding than decreases. Hence

high contributions prevail in the long run.

In order to study the transitions between different steady states I introduce, following

the framework of stochastic evolution of Kandori, Mailath and Rob (1993), occasional

deviations from the unperturbed process: each player plays best response with proba-

bility (1 − ε) whereas with probability ε a “mutation” happens — the player chooses

a random action from the uniform distribution on S. A perturbed system is a pair

(SN , Q(ε)), where Q(ε) are the transition probabilities, with ε > 0. The perturbed sys-

tem has a unique invariant distribution µε, which is close to µ∗ ≡ limε→0 µε for small

ε. Ellison (2000) provides an intuitive “mutation counting” technique for the computa-

tion of µ∗ based on the observation that step-by-step evolution passing through several

intermediate states, with each step requiring few mutations, is quicker than a sudden

evolutionary jump requiring the simultaneity of many mutations.

I utilize Ellison’s observation and design a punishment rule under which only one

mutation is needed for an increase in contributions by one level, but a decrease by any

number of levels requires more than one mutation. As a consequence, evolution reaches

3Which implies that players never punish themselves.
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high contribution levels more quickly than it escapes it. This intuition is formally

expressed in the following proposition. Let mpar be the highest contribution level below

N − 2 and denote by Mpar the state in which all players contribute mpar.

Proposition 2. There exists a punishment rule satisfying A1’, A2 under which Mpar

is the unique stochastically stable state, and the expected waiting time to reach Mpar is

of order O(ε−1).

Proof of Proposition 2. The proof is based on the following lemma and the theorem in

Ellison (2000).

Lemma 1. There exists a punishment rule satisfying A1’, A2 for which:

1. Any common contribution level 0 ≤ c ≤ mpar, c ∈ S constitutes a steady state of

the unperturbed process.

1’. No other limit sets of the unperturbed process than those in 1. exist.

2. Deviation of only one player from a steady state with common contribution level

c suffices to induce transition to the steady state with level c + ∆, for any c < mpar,

c ∈ S.

3. Deviation of more than one player from a steady state with common contribution

level c is needed to induce transition to a steady state with a lower level, for any c ≤ mpar,

c ∈ S.

Proof of Lemma 1 is given Appendix A.

Having established Lemma 1, Proposition 2 is a consequence of Ellison’s (2000)

theorem that specifies the long run stochastically stable limit set in terms of radius and

modified coradius. The radius R(Ω) is the number of mutations needed to escape Ω and

hence property 3 in Lemma 1 and the fact that Mpar is the highest steady state assures

that R(Mpar) > 1. The modified coradius CR∗(Ω) is the maximal modified number of

mutations needed to reach Ω from other limit sets of the unperturbed process, where

the modified number reflects that step-by-step evolution is more probable than sudden

changes. In particular, a set Ω that is possible to reach through a series of one or zero

mutation steps from anywhere has CR∗(Ω) = 1; see Ellison (2000) for details. Property

2 in Lemma 1 guarantees that only one mutation is needed for transition from a steady

state with level c to level c+∆ and thus there is a path consisting of at most one mutation

steps to Mpar from any other state, and hence CR∗(Mpar) = 1. According to theorem 2

in Ellison (2000), R(Mpar) > CR∗(Mpar) implies that Mpar is the unique stochastically

stable state. The same theorem specifies the waiting time as O
(
ε−CR∗(Mpar)

)
.
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Ellison provides an intuition for the speed of step-by-step evolution that translates

naturally to the current setting: An increase in the norm by one contribution level is

an ε probability event as it can be induced by one mutation. In contrast, a decrease in

contribution level is an ε2 or rarer event as at least two mutations are needed. Hence,

conditional on a transition occurring, it is almost always an upward shift, for small ε.

It is worth noting that the waiting time O(ε−1) to reach Mpar is of the least possible

order. The contribution level enforceable by an authority limited by A1’ and A2 is

bounded by N −1 because this is the maximal punishment a single deviator may suffer;

thus the modified “punish-the-worst” rule induces a nearly optimal contribution level.

3.2 Strangers Treatment

The model of the partners treatment in the previous subsection describes evolution

among a fixed set of players, evolving in isolation from the rest of the population. Alter-

natively, players may interact with different peers every round, in which case evolution

occurs simultaneously in a large population, from which the groups are drawn anew

each round. This subsection sketches evolution under the strangers treatment.

A population of KN risk-neutral players is randomly matched each round into K ≥ 2

groups of N ≥ 2 players to play the public good game with punishment option. The

strategy set S = {0, ∆, 2∆, . . . , L∆}, L∆ ≥ N , is of the same structure as in sections 2

and 3.1 but the grid is denser, ∆ < 1
KN−1 . In each round, players can punish only the

peers within the group they have been matched to and the punishment rules pi
j(c) are

history independent, pi
j : SN → R+. As in section 3.1, punishment rules are required to

satisfy A1’ and A2. The unperturbed process is again the best response dynamics and

under the perturbed process, players choose the best response with probability 1 − ε

and with probability ε choose a random action from the uniform distribution on S, as

in section 3.1. Let mstr be the highest level below (N − 1) (K−1)N
KN−1 ; it approaches N − 1

for large K and N . Let Mstr be the Markov state in which all players contribute mstr.

The counterpart of Proposition 2 of subsection 3.1 is:

Proposition 3. There exists a punishment rule satisfying A1’, A2, under which Mstr

is the unique stochastically stable state, and the expected waiting time to reach Mstr is

of order O(ε−1).

Proof of the Proposition 3. The punishment rule (4 in Appendix A) without exception

satisfies all four properties in Lemma 1.4 Proof of property 1 and 1’ remains unchanged.
4mpar needs to be replaced by mstr in the punishment rule and in Lemma 1.
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Property 2 is implied by the inequality ∆ < 1
KN−1 : suppose there is a single deviator

j contributing more than the norm c prescribes. Then the probability that j will be

matched with i is N−1
KN−1 , and hence i’s expected punishment is 1

N−1
N−1

KN−1 , which equals

the right hand side of the inequality. Hence the inequality assures that one deviator is

sufficient to induce all other players to increase their contributions by ∆.

The inequality mstr < (N−1) (K−1)N
KN−1 implies property 3: suppose that ck = c ≤ mpar

for all k /∈ {i, j} and cj < c. Then a conservative estimate of the slope of the expected

punishment for player i is N−1
mstr

(K−1)N
KN−1 > 1 because (K−1)N

KN−1 is the probability that j will

not be in i’s group, thus i will be the only deviator in her group, and hence punished

by N−1
mstr

(c− ci).

The properties of Lemma 1 imply R(Mstr) > 1, CR∗(Mstr) = 1 and Proposition 3

is a consequence of Ellison’s (2000) theorem as it was in Proposition 2 of subsection

3.1.

The models in this section are not literal models of Fehr and Gächter’s (2000, 2002)

experiments. Their grids of contribution levels in the strangers treatment experiments

were not as dense as Proposition 3 requires, the information structure of the partners

treatment in the (2000) experiment precluded history-dependent punishment, and, on

the other hand, punishment was cheaper in the experiments than in the model. Also,

while experimental subjects may have had a variety of motivations for contributing, the

model focuses solely on the contributions enforced by the threats of punishment. A

combination of Kandori’s (2003) model of intrinsic motivation and the models at hand

could provide even higher estimates of sustainable contribution equilibrium than do the

present models alone.

The models suggest that the high contributions are due to the game’s structure

that is focusing the limited committed resources of all players on one potential devia-

tor. Keeping the commitment ability fixed, the contributions increase linearly with the

number of players. This insight is experimentally confirmed by Carpenter (2005). who

documents positive group size effects in public good games with punishment option even

after controlling for the marginal group return of contributions.

Of course, the game requires quite a bit of information: the actions of all players

need to be monitored, which is feasible in small groups such as work teams. Still, the

effect can be noteworthy for a reasonable group size. Ten agents, each willing to spend

only one unit for punishment, are able to collect at least (10− 2) · 10 = 80 units for a

public good.
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4 Conclusions

The models demonstrate that the commitment necessary for successful norms enforce-

ment is small compared to the total cost of compliance of all agents. Agents in the

compliance equilibrium consider deviating off the equilibrium individually. Hence, to

support the compliance equilibrium, the authority needs only to be capable of substan-

tially punishing one agent.

Nevertheless, other, non-compliance equilibria may exist. The main claim of the

paper is that authorities can avoid these non-compliance equilibria by a proper punish-

ment rule, even if their commitment capabilities are low. A punishment rule focusing

on punishment of the worst offender creates competition among the agents and leads to

a unique equilibrium with high compliance levels.

However, authorities using such a rule need to be able to punish perfectly colluding

violators at least by a small amount, and many authorities fail to do so. Yet even such

collusion-vulnerable authorities can avoid the non-compliance equilibria in the long run.

They can introduce a punishment rule which deters revolts of a small fraction of players

and enables a small fraction of players to initiate at least a tiny increase in compliance.

Then, given a sufficiently small mutation rate, the increases are arbitrarily more times

probable. High compliance prevails in the long run.

The prime application of the collusion-vulnerable authority model is the public good

game with anger-driven punishment of free-riders. Even if the anger — a deviation from

the homo oeconomicus framework — is limited, it can go a long way towards modifying

equilibrium behavior. The public good game with punishment option is an instance of

an institution that efficiently utilizes this behavioral deviation; a systematic search for

other such institutions is needed.
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A Proof of Lemma 1

Lemma 1. There exists a punishment rule satisfying A1’, A2 for which:

1. Any common contribution level 0 ≤ c ≤ mpar, c ∈ S constitutes a steady state of

the unperturbed process.

1’. No other limit sets of the unperturbed process than those in 1. exist.

2. Deviation of only one player from a steady state with common contribution level

c suffices to induce transition to the steady state with level c + ∆, for any c < mpar,

c ∈ S.

3. Deviation of more than one player from a steady state with common contribution

level c is needed to induce transition to a steady state with a lower level, for any c ≤ mpar,

c ∈ S.

Proof of Lemma 1. let the definitions of l and s remain as in section 2. Consider a

“modified punish-the-worst” rule:

pi
j =





1
mpar

(
min(s,mpar)− cj

)
if cj = l, cj < mpar, l < s, and ci > cj ,

1
N−1 if cj = l, cj < mpar, l = s, and ci > cj ,

0 otherwise,

(4)
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except for situations when player k starts a rebellion against a norm of a common

contribution level c in the previous round t−1, persists in that rebellion in round t, and

player j joins the rebellion; then the remaining players concentrate on punishing the

new free-rider j, not the old k. Formally, the exception states that (4) does not apply

at t when at t − 1 all players i 6= k contributed some common level ct−1
i = c ≤ mpar

and k contributed ct−1
k < c, and ct

k = ct−1
k , ct

j < c, and ct
i = c, for i /∈ {j, k} in round t.

Then all N − 2 players i /∈ {j, k} punish j in round t each by amount

pi
j =

1
mpar

(c− ct
j).

The punishment rule suitable for the strangers treatment does not employ this exception.

This rule satisfies A1’ because either player punishes only one of her peers in which

case she spends at most 1
mpar

mpar = 1 or she punishes many players and then she spends

at most (N − 1) 1
N−1 = 1. The rule satisfies A2 because it prescribes to punish only

peers who have contributed less than the punisher. Let us verify that the modified

“punish-the-worst” rule satisfies all four properties in Lemma 1:

1. The best response to ct−1 = c and ct
−i = c is5 ct∗

i = c. Hence a state in which all

players contribute c is a steady state of the unperturbed process.

2. Suppose ct
i > c, ct

j = c < mpar for all j 6= i. The best response of j 6= i is c + ∆,

the best response of i is c. Thus, at t+1, ct+1
i = c, ct+1

j = c+∆, and at t+2 all players

contribute c + ∆ which becomes the new steady state of the unperturbed process.

3. Suppose that only one player has deviated from the common contribution level

in round t; ct
j = c ≤ mpar for all j 6= i and ct

i < c. Then the exemption applies in t + 1

and the best response of all players in t + 1 is to contribute c.

1’. Consider a state c in which more than one contribution level is chosen. Let us

distinguish two cases: in case A, N − 1 players contribute some common c and the

contribution of only one player differs from c; case B includes all other situations. If

A arises, players converge to a common contribution level c or c + ∆ within one or

two rounds( see proofs of properties 2 and 3). In case B, the best response of each

player i is to contribute l−i + ∆ > l, where l−i is the lowest contribution among i’s

opponents. Therefore the lowest contribution increases in those rounds when case B

arises.67 Thus in each round either l increases or A arises, and because the set of

5To avoid confusion, ct−1
i = c for all i and ct

j = c for all j 6= i.
6This does not hold in situations described in the proof of property 2. Therefore the division of all situations

into categories A and B is necessary.
7In the case of the adaptation of the proof for subsection 3.2 the best response is l−i + ∆ or higher.
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the contribution levels is finite, either l converges to mpar or A arises and under both

eventualities players converge to a common contribution level.
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