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Abstract
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such a mobile game has a unique equilibrium that allows us to examine comparative
statics. The endogeneity of the outside option value and of the migration activity leads
to non-monotonicity of welfare with respect to mobility friction; high mobility may hurt
players. We apply these “general equilibrium” findings to the problem of the labor
market during industrialization as described by Matsuyama [11].
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1 Introduction

Coordination problems1 are usually analyzed in isolation. A typical model highlights

a single coordination problem characterized by a payoff function with strategic com-

plementarities and all other economic opportunities of players are summarized by an

exogenous outside option. Such models are analogous to the partial equilibrium ap-

proach and are useful for highlighting a particular economic feature. In this paper we

study the mutual interactions of several coordination problems in a setup analogous to

the general equilibrium approach. As is often the case, the subtle “general equilibrium”

effects lead to surprising comparative statics.

We set up the model within the framework of Matsuyama [11], who studies the

coordination problem of workers during industrialization.2 Matsuyama considers a single

emerging industry sector with increasing returns to scale and workers deciding between

joining the industry or joining agriculture which serves as a safe outside option. To

move to the “general equilibrium”, we consider several industries instead of one and

let players migrate among them, which allows examining the effects of mobility on

the extent of industrialization and, consequently, on welfare. Players are uniformly

matched to the industry sectors at the beginning of the game. The outside option of a

player born into sector (coordination problem) j, who considers staying in j, consists

of retraining/emigration which then allows her to join one of the other sectors. Thus

the outside option value in any coordination problem j is endogenously determined by

players’ behavior in all the other coordination problems. Another channel through which

the coordination problems mutually influence each other is that the mass of immigrants

to j depends on the coordination outcomes of all the other coordination problems.

Coordinating on an efficient but risky action is difficult to achieve and an increase

in the value of the outside option value further undermines the successful coordination.

Conversely, an increase in the mass of immigrants enhances coordination: first, the

immigrants to sector j directly increase the productivity in j because of the increasing

returns to scale; second, the players native to j are more motivated to stay in j which

further increases the participation in j.

A player leaving j imposes a direct negative externality on the players left behind

in j as she lowers productivity in j, and a direct positive externality on the players in

her new sector. But her migration also influences all the players also indirectly. Her

1Coordination problems are common in economics; for a review, see Cooper [3].
2We are grateful to the referee who pointed out this application.
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emigration from j decreases the outside option values in all the other sectors j′ 6= j,

hence players observing j′ coordinate on staying in j′ more often. However, the incentive

to leave j increases, and thus the coordination on staying in j becomes more difficult.

These causal links are difficult to analyze because of equilibrium multiplicity in

coordination games. We therefore use the global games approach, which allows us to

predict the coordination outcome in each sector j for given strategy profiles in all other

sectors. Global game approach is a reasonable selection tool for our purposes because

its comparative statics is indeed in line with the causal links described above.3

The uniqueness of equilibrium allows us to study comparative statics. We find

that the externalities discussed above lead to counterintuitive effects. Welfare is non-

monotonic in mobility: the direct non-strategic effect of an increase in mobility is pos-

itive, as, ignoring strategic considerations, moving to a successful sector is cheaper.

However, the strategic effect is negative: lower mobility cost increases the outside op-

tion value associated with the emigration, which undermines successful coordination.

Thus some sectors that would have succeeded had the mobility cost been high, fail

when the mobility cost is low. This negative strategic effect may outweigh the positive

direct effect and welfare may decrease with mobility.

The described game has a natural self-regulatory property. Consider, for instance,

a shift in the distribution of economic fundamentals towards poorer states of the world.

This decreases the outside option value as migrants end up in poorer sectors. The lower

value of the outside option enhances successful coordination and this positive strategic

effect partially counteracts the negative direct effect. Another channel through which the

self-regulatory mechanism operates is the increased mass of immigrants: the more sectors

that have poor fundamentals, the more players that migrate. This makes coordination

attempts more likely to succeed and thus helps to partially counteract the direct effect

of the distribution’s shift.

The benchmark result of two independent broad strands of literature, global games

(Carlsson and van Damme [2]) and the stochastic stability concept (Kandori, Mailath

and Rob [8]), is that risk dominance rather than Pareto dominance selects the equilib-

rium in coordination games. Given this benchmark result, the influence of mobility on

the coordination outcomes has been examined in various papers belonging to the latter

stream with the main conclusion that, if players are allowed to move and/or choose

3Global games were introduced by Carlsson and van Damme [2] and further developed by Morris and Shin
[14]. Heinemann, Nagel and Ockenfels [4] tested the theory experimentally and although they rejected the
quantitative predictions, they confirmed the qualitative features of the predicted comparative statics.
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with whom they interact, then the Pareto efficient equilibrium may prevail.4 Goyal and

Vega-Redondo [6] vary the cost of link formation and find an effect similar to the one

we find: welfare is non-monotonic with respect to mobility — the efficient equilibrium

prevails only at a high cost — while if the cost of the link formation is low the risk

dominant equilibrium prevails.

To our knowledge, mobility has not been studied within the global games literature.

However, the outside option value is often varied exogenously in global games appli-

cations, which leads, as in our model, to the tension between the positive direct and

the negative strategic effects; see the discussion of the strategic effect of a collateral on

creditors in Morris and Shin [15] and section 2.3.1 in [14] or the study of the influence

of demand-deposit contracts on bank run probability in Goldstein and Pauzner [5].

The model in Steiner [17] shares the non-trivial effects caused by the endogeneity of

the outside option with the model at hand but they differ in timing and interpretation.

We study many coordination problems simultaneously and emphasize the welfare effects

of mobility in the present model while Steiner [17] studies a time sequence of coordination

problems and emphasizes cycles endogenously arising in the equilibrium if players fear

bankruptcy and the associated loss of future profits.

Jeong [7] and Burdett, Imai and Wright [1] study “break-up” externalities which

occur when matched players search for new partners while not taking into account

the welfare loss of the abandoned partner. Jeong stresses the possible welfare-improving

consequences of mobility restrictions in environments with break-up externalities, which

is in line with our main finding. Burdett et al. focus on the multiplicity of equilibria; if

matched players search intensively, the partnerships become unstable and the intensive

search is the best response. We find a similar multiplicity in the case of a finite number

of sectors.

We describe the game formally in Section 2. We informally analyze the limit case of

a large number of sectors and precise signals in Section 3.2. In Sections 3.3 and 3.4 we

justify the informal shortcuts to the limit cases used in Section 3.2. Based on that we

return to the informal solution from Section 3.2 and analyze its comparative statics in

Section 4. Section 5 concludes. All proofs are relegated to Appendix.

4E.g. Oechssler [16]; Mailath, Samuelson and Shaked [10].
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2 The Model

We start by describing a standard static coordination game in Section 2.1. Then, build-

ing on this, we describe a mobile game in which players are able to migrate among

the coordination problems in Section 2.2. We link the abstract setup to the economic

problem of industrialization in Section 2.3.

2.1 The Static Game

There is a continuum of homogeneous, risk-neutral players of measure 1, one industry

sector and the players simultaneously decide whether to leave or stay in the sector; the

actions are denoted by 0 and 1 respectively. The payoff to those who have stayed is

π(θ, l) =

{

1 if l ≥ 1 − θ,

0 if l < 1 − θ,
(1)

where l is the measure of players who have stayed and 1− θ is the critical participation

needed for the sector’s success. The payoff for leaving the industry sector is a constant

V ∈ (0, 1). The payoff function (1) exhibits strategic complementarity; incentive to stay

in the industry increases in the measure of other players who stay, which typically leads

to equilibrium multiplicity. Clearly, for non-extreme values of θ, the game has two pure

strategy equilibria in which nobody, respectively everybody, stays.

Building on Carlsson and van Damme [2], Morris and Shin [14] show that the equi-

librium multiplicity disappears if a noise in observations of the sector’s fundamental θ

is assumed. We introduce this standard global game structure in the rest of this para-

graph: θ is a random variable distributed according to c.d.f. Φ(·). The players observe

an imprecise signal xi = θ+σεi of the state θ, which itself is unobserved. The parameter

σ describes the size of the noise. The errors εi are i.i.d. with c.d.f. F (·) and expectation

of the error is assumed to be well defined. Pure strategy is a function si : R → {0, 1}.
The static game is denoted by Γσ(V ).

2.2 The Mobile Game

In the static game, the productivity of the sector described by the function π(θ, l) and

the outside option payoff V were postulated exogenously. Next we consider several

sectors simultaneously and assume that players who emigrated from their native sectors

immigrate to another of the remaining sectors. In such a mobile world, the payoff for

5



staying in or leaving a particular sector depends on players’ behavior in the native sector

and all the other sectors as well.

There are J sectors indexed by j ∈ J = {1, . . . , J}; each sector j is characterized

by fundamental θj independently drawn from c.d.f. Φ(·).5 The corresponding p.d.f. is

bounded from above by some φ. Players are randomly and uniformly matched to the

sectors at the beginning of the game. The measure of players observing each sector is

normalized to 1. An individual player observing sector j is denoted by (j, i), j ∈ J ,

i ∈ [0, 1]; we will sometimes refer to the observers of sector j as j-players.

Each player (j, i) observes a private signal x(j,i) = θj + σεi about the fundamental

of sector j and chooses staying in j or leaving it. Players who have left j are randomly

matched to one of the remaining sectors k ∈ J /{j} and each sector k receives 1
J−1 of

the emigrants from j.

We say that sector j is established early if the measure lj of j-players who stay in j

exceeds the critical measure 1−θj , and in such a case those who have stayed in j receive

payoff 1. Sector j will be established late if lj < 1− θj but lj + nj > 1− θj , where nj is

the measure of immigrants to j from all the other sectors and in such a case j-players

who have stayed in j receive payoff 1 − c, where the “penalty” c ∈ (0, 1). Sector j will

be not established if lj + nj < 1 − θj, and in such a case j-players who have stayed in j

receive 0. The payoff of j-players staying in j is summarized by

cπ(θj , lj) + (1 − c)π(θj , lj + nj),

with the function π(·, ·) specified in (1).

The payoffs of emigrants are defined as follows: j-players who have left j receive

1 − c if they are matched to a sector which is established early or late and receive 0 if

they are matched to a sector which has not established.

Pure strategy is, as in the static game, a function s(j,i) : R → {0, 1}. A threshold

strategy is a particularly simple pure strategy characterized by a threshold x∗ such

that a player observing j stays if and only if x(j,i) > x∗ and leaves otherwise. sj is a

collection of strategies of all players observing sector j; formally sj : [0, 1]×R → {0, 1},
s(j,i)(x) ≡ sj(i, x). Similarly, s−j is a collection of strategies of all players observing

sectors other than j; formally s−j : J /{j} × [0, 1] × R → {0, 1}, s(k,i)(x) ≡ s−j(k, i, x),

k 6= j. We call the whole game a mobile game and denote it by ΓM
σ .

5The setup can be generalized to allow independent fundamentals drawn from different distributions.
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2.3 Labor Market Interpretation

The mobile game has a intuitive interpretation within the framework of Matsuyama

[11]: the migration between the sectors takes place in real time and the penalty c is the

cost of delay. Players are interpreted as workers who can either directly join the sector

they are born into, or to retrain for another sector; retraining lasts T > 0. We interpret

the length T of the retraining as a degree of (im)mobility.

Worker receives an income stream w while working in a (yet) unestablished sector

or during the retraining. A worker working in an established sector receives an income

stream w > w. Sector j is established at time 0, T or never, depending on whether

1 − θj < lj , lj < 1 − θj < lj + nj or lj + nj < 1 − θj. The discount factor is 0 < δ < 1.

The lifetime payoff of a worker who stays in an early established sector is

U =

∫ +∞

0
δtwdt,

a worker who stays in a late established sector or retrains to an established sector receives

M =

∫ T

0
δtwdt +

∫ +∞

T

δtwdt,

and a worker who stays in or immigrates to a sector which never gets established receives

D =

∫ +∞

0
δtwdt.

There exists an affine transformation of payoffs which maps U to 1, M to 1−c and D to

0 so the labor market setup corresponds to the above abstract setup, with c = U−M
U−D

=

1 − δT . Note that c does not depend on w or w.

Steiner [18] examines other closely related setups: an immigrant is allowed to opt for

an outside option after she observes a signal about the fundamental of her new sector,

players are allowed to migrate repeatedly, migration is biased towards sectors with better

fundamentals, and general payoffs with strategic complementarities are examined. The

insights from the current model are robust to each of these modifications. Steiner [18]

assumes a continuum of sectors, which simplifies the analysis. In this paper we emphasize

that equilibrium in a game with a continuum of sectors is a good approximation for

equilibria under a large but finite number of sectors.
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3 Solution

3.1 Solution of the Static Game

The static game can be solved by applying Proposition 2.2 in Morris and Shin [14] to

the particular payoff function (1): The proposition states that the equilibrium threshold

solves the Laplacian equation
∫ 1

0
π(x∗, l)dl = V. (2)

The left hand side of (2) simplifies to

L(x∗) =







0 if x∗ < 0,

x∗ if 0 ≤ x∗ ≤ 1,

1 if 1 < x∗,

and because V ∈ (0, 1), the unique root of (2) is x∗ = V , which we formally summarize

in:

Proposition 1. (Morris and Shin [14]) For each δ > 0 there exists such σ > 0 that

for all 0 < σ < σ, if strategy s survives iterated elimination of dominated strategies in

the game Γσ(V ), then s(x) = 0 for x < V − δ and s(x) = 1 for x > V + δ.

The equilibrium threshold x∗ increases in V , and thus industrialization is more likely

for low V . This confirms the insight of Matsuyama [11] who, using foresight dynamics

techniques, finds that productive agriculture has adverse effects on industrialization.

An increase of V has two distinct welfare effects. The direct effect is positive, but

the negative strategic effect consisting of the decrease in the probability of successful

coordination may prevail — welfare is non-monotonic in V .

3.2 Solution of the Mobile Game – Informal Approach

A player leaving sector j receives an expected payoff V , which depends on the equilibrium

strategies of all the other players. V is approximately a common value across all sectors

if the number of sectors J is large because then the impact of emigrants from any

particular sector j on success of any other particular sector k 6= j is negligible, as

only 1
J−1 of them immigrate to k. In the limit J → ∞, each sector receives the same

measure of immigrants and we denote this common value by n. Further in this section
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we informally solve the mobile game under the limit J → ∞ and we postpone the formal

interpretation of this limit solution to Sections 3.3 and 3.4.

Values V and n are defined for any equilibrium strategy profile and are bounded:

n ∈ [0, 1], and V ∈ [V , V ], V = (1 − c)(1 − Φ(1)), V = (1 − c)(1 − Φ(−1)) because an

emigrant may be matched to a sector with θ > 1, which surely succeeds, or to a sector

with θ < −1, which surely fails. Given any pair V and n, the observers of any particular

sector j face a global game with the Laplacian threshold condition

∫ 1

0
[cπ(x∗, l) + (1 − c)π(x∗, l + n)] dl = V,

which simplifies to

cL(x∗) + (1 − c)L(x∗ + n) = V. (3)

The threshold player with Laplacian beliefs cannot be sure of success or failure of her

native sector in the second round, because V is bounded between V > 0 and V < 1− c;

if she were sure, she would not be indifferent between staying and leaving. Hence

0 < x∗ + n < 1, which allows rewriting (3) as

(1 − c)(x∗ + n) +

{

cx∗ if x∗ ≥ 0,

0 if x∗ < 0
= V. (4)

A sector succeeds (at least) in the second round if and only if its fundamental exceeds

x∗. Otherwise the threshold player observing signal x = x∗ would be, in the limit of

precise signals, sure of the sector’s success. Hence

V = (1 − c)(1 − Φ(x∗)). (5)

The measure of immigrants n to any sector is equal to the share of sectors with a

fundamental below x∗ because the matching for migrants to sectors is uniform:

n = Φ(x∗). (6)

Using (5) and (6), (4) can be written as

(1 − c)(2Φ(x∗) − 1) +

{

x∗ if x∗ ≥ 0,

(1 − c)x∗ if x∗ < 0
= 0, (7)
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Figure 1: The welfare is non-monotonic in c due to strategic effects.

and the left hand side is strictly increasing in x∗, and thus (7) has a unique root. Below

we will refer to (7) as the informal equation.

The solution of (7) leads to a complex comparative statics; for instance welfare is

non-monotonic in c, see Figure 1. However, before we analyze the comparative statics in

Section 4, we need to clarify the formal meaning of this informal solution. Namely, we

formally analyze the limit σ → 0 for any finite number J of sectors in Section 3.3, and

then examine the limit J → ∞ in Section 3.4. Readers uninterested in these technical

issues may wish to skip to Section 4.

3.3 Two Sectors

We formulate the results and the proofs in this section for the case of two sectors, ie.

J = 2. The results are generalized to any J ≥ 2 in Section 3.4.

In the first step, we fix a strategy profile s−j in sector −j and examine the induced

game Γσ(s−j); the set of players in Γσ(s−j) is the set of all j-players, they decide between

staying in j or leaving it and the payoff difference is denoted by π̃(θj, lj ; s−j). We find

that:

Lemma 1. The game Γσ(s−j) satisfies all the six conditions in Proposition 2.2 in Morris

and Shin [14] for any fixed s−j.

We verify the six conditions in Appendix. In particular, the strategic complemen-

tarity holds because an increase of emigration from j increases the incentive to emigrate

for two reasons: the measure of participants in sector j decreases, and the measure of

participants in the other sector increases.

The game Γσ(s−j) induced by any fixed s−j can be solved as a global game:
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Lemma 2. For each δ > 0 there exists, uniformly for all s−j, such σ > 0 that for all

0 < σ < σ, if strategy s survives iterated elimination of dominated strategies in the game

Γσ(s−j) then s(x) = 0 for x < θ∗j (s−j) − δ and s(x) = 1 for x > θ∗j (s−j) + δ, where

θ∗j (s−j) is the unique root of the Laplacian equation

∫ 1

0
π̃(θ∗j , lj ; s−j)dlj = 0.

Lemma 2 is an application of Proposition 2.2 in Morris and Shin [14] to the particular

payoff function π̃(·, ·; s−j) but with making the statement uniform over all s−j. We check

in Appendix that the proof in [14] allows such strengthening.

Now we are prepared to formulate the main result of this section:

Proposition 2. For any δ > 0 there exists σ > 0 such that for any σ ≤ σ the mobile

game ΓM
σ has only Bayes-Nash equilibria in which observers of sector j stay for x(j,i) >

x∗j + δ and leave for x(j,i) < x∗j − δ, where (x∗1, x
∗
2) solves the system of two equations,

j = 1, 2:

cL(x∗j )+(1−c)
(
∫ x∗

−j

−∞

[
L(x∗j + 1) − L(θ−j)

]
dΦ(θ−j) +

∫ +∞

x∗

−j

[
L(x∗j ) − L(θ−j + 1)

]
dΦ(θ−j)

)

= 0.

(8)

We denote the left hand side of (8) by g(x∗j , x
∗
−j).

Proposition 2 is a fixed point statement. Any strategy profile s−j in sector −j in-

duces a global game in sector j with a unique equilibrium profile sj and vice versa. We

are looking for such a pair of strategy profiles s1 and s2 that are mutually a “coordi-

nation response” to each other. This “coordination response” is not chosen by players

individually, rather the j-players as a group are driven by their individual optimiza-

tions to the strategy profile that is a “coordination response” to the strategy profile of

−j-players.

Lemma 1 and 2 state that, for small σ, the “coordination response” to any strategy

profile s−j (possibly asymmetric across players and with non-threshold strategies) is

a symmetric profile of threshold strategies, up to a small set of signals around the

threshold. Thus when looking for the fixed point of the “coordination responses”, we

can focus on the symmetric profiles of threshold strategies. The proof of Proposition 2

consists of showing that though there exists, for small but positive σ, a set of signals

around the threshold x∗j on which the “coordination response” may differ from the

selected action, the set is too small to alter the result.
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Further we utilize the equilibrium from Proposition 2 in the following way. We

assume that the errors in the observations of fundamentals are small, and therefore

the equilibrium selected in the limit σ → 0 is a good approximation of the actual

equilibrium. Formally we return to the complete information setup with σ ≡ 0 and

say that an equilibrium of the complete information game is robust to the global game

perturbation if it is summarized by two thresholds satisfying (8). Below we analyze the

properties of the robust equilibria.

Unlike the static global game, the mobile game may have multiple robust equilibria.

Figure 2 depicts the “coordination responses” according to (8) and each of the three

intersections constitutes a robust equilibrium. In addition to the symmetric equilibrium

which always exists, there may exist asymmetric equilibria in which one sector has a low

and the other sector a high threshold. E.g., if 1-players rarely emigrate then 2-players

are highly tempted to emigrate because the sector 1 often succeeds, hence 2-players

emigrate often, the sector 2 often fails, and 1-players are not too tempted to emigrate,

which confirms that they emigrate only rarely. The existence of asymmetric equilibria

allows one of the two ex ante identical sectors to succeed more often than the other.

The equilibrium multiplicity arises because the rate of emigration from any particular

sector has a non-negligible influence on the success of the other sector. In the next

section, we will consider J sectors, and state that for large J all robust equilibrium

thresholds lie in a small neighborhood of the informal solution (7). The intuition is

that, for large J , the immigration from any particular sector is a negligible part of the

total immigration mass, and thus all sectors receive approximately the same measure of

immigrants.

We examine the comparative statics of the informal solution in Section 4, because the

informal solution is a good approximation of the robust equilibria if the number of sectors

is finite but large. Alternatively, we could have continued the analysis with the two

sectors setup, and examine the comparative statics of the symmetric equilibrium. The

results are qualitatively the same, however the first approach bypasses the equilibrium

selection and a finite but large number of sectors seems to be a reasonable assumption

from the applied point of view.

3.4 Many Sectors

Next, we generalize the system of equations (8) from Proposition 2 to the case of J > 2

sectors. Let XJ
−j = (xJ

1 , . . . , x
J
j−1, x

J
j+1, . . . , x

J
J). Robust thresholds x∗J1 , . . . , x∗JJ satisfy
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Figure 2: The threshold in sector j as a “coordination response” to the threshold in −j. Each
of the three intersections constitutes an equilibrium.

gJ(x∗Jj ,X∗J
−j) = 0 where gJ (x∗Jj ,X∗J

−j) equals

cL(x∗Jj )
︸ ︷︷ ︸

I

+(1−c)E









L

(

x∗Jj +

∑

k 6=j ek

J − 1

)

︸ ︷︷ ︸

II

− 1

J − 1

∑

k 6=j

∫ 1

lj=0
π

(

θk, 1 − ek +

∑

m6=j,k em + 1 − lj

J − 1

)

dlj

︸ ︷︷ ︸

III









.

(9)

The expectation is taken with respect to the random realization of fundamentals in all

k 6= j sectors, and ek denotes the emigration from sector k, hence ek is a random variable

equal to 1 if θk > x∗Jk and 0 if θk < x∗Jk .

The term I is the expected payoff under the Laplacian belief for staying in j during

the first period before the immigrants arrive. The term II is the expected payoff for

staying in j in the second period after the immigrants arrive. The term III is the

expected payoff for leaving sector j, that is, player is allocated to one of the remaining

sectors k 6= j, whose success depends on θk, and on the measure of players participating

in k: the measure 1 − ek of k-players who stay in k are joined by the measure of immi-

grants from m 6= k, j and by the measure of immigrants 1 − lj from j.6 Generalization

of the proof of Proposition 2 to J > 2 is straightforward but notationally cumbersome,

6The threshold j-player’s beliefs over the immigration from j and k 6= j differ because she has the Laplacian
belief about the measure of players staying in/leaving j.
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and we therefore omit it.

The following proposition states that for finite but large J , all robust equilibrium

thresholds lie close to the informal solution: Let x∗J1 , . . . , x∗JJ denote the thresholds in a

robust equilibrium of the mobile game with J sectors.

Proposition 3. For any ε > 0 there exist J ′ such that for all J > J ′

|x∗Jj − x∗| < ε,

for all j = 1, . . . , J , where x∗ is the root of (7).

Each sector j faces an environment defined by the behavior in sectors k 6= j sectors. If

J is large, each sector faces approximately the same environment, as the influence of any

particular sector is negligible. Hence the solution has to be approximately symmetric,

which is the main idea of the proof (delegated to Appendix).

4 Comparative Statics

Proposition 3 implies that the informal solution is a good prediction for the equilibrium

threshold under a setup with a large but finite number of sectors. With this interpreta-

tion in mind we return to examine the comparative statics of the solution of (7).

We start by examining the comparative statics with respect to changes in the distri-

bution of fundamentals Φ(·). The left hand side of (7) increases in Φ(x∗) and thus the

implicit function theorem implies:

Finding 1. Let x∗ be the equilibrium threshold under the distribution of fundamen-

tals Φ(·), and x′∗ under the distribution of fundamentals Φ′(·). If Φ′(·) stochastically

dominates Φ(·) then x′∗ > x∗.

Thus an improvement in the distribution of fundamentals increases the threshold.

Intuitively, an improvement in Φ(·) increases the expected payoff of emigration as the

chance of being matched to an established sector increases, and decreases the expected

threshold payoff for staying as the measure of immigrants decreases. The increase of

the threshold x∗ increases the probability p = Φ(x∗) of a sector’s failure, which par-

tially offsets the direct effect of the improvement in Φ(·). However, the direct positive

effect always prevails and the equilibrium probability of a sector’s failure unambiguously

decreases with an improvement in Φ(·):
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Finding 2. Let x∗ be the equilibrium threshold under the distribution of fundamentals

Φ(·), and x′∗ under the distribution Φ′(·). If Φ′(·) stochastically dominates Φ(·) then

Φ′(x′∗) < Φ(x∗).

The proof of Finding 2 is the following: We substitute x∗ = Φ−1(p) into (7) and get

(1 − c)(2p − 1) +

{

Φ−1(p) if Φ−1(p) ≥ 0,

(1 − c)Φ−1(p) if Φ−1(p) < 0
= 0. (10)

The left hand side of (10) increases in p and an improvement from Φ(·) to Φ′(·) causes an

increase in the left hand side of (10) which, according to the implicit function theorem,

implies Finding 2.

Finding 2 directly translates into comparative statics with respect to the population

size. If the measure of players per sector is changed from 1 to n > 0 then the critical

labor mass needed for the success of sector changes from 1− θ to 1−θ
n

. Thus the change

of the population has the same effect as keeping the population size at 1 but shifting

the fundamental in the following way:7

θ → θ′ = ϑn(θ) =

{

1 − 1
n
(1 − θ) if θ < 1,

θ if θ > 1.

The distribution of θ′ is Φ′
n(·) ≡ Φ(ϑ−1

n (·)) and hence, as ϑn(·) increases in n, Φ′
n′(·)

stochastically dominates Φ′
n(·) for n′ > n, which, together with Finding 2, implies:

Finding 3. The equilibrium probability of a sector’s failure decreases in the population

size n per sector.

Next we examine the comparative statics with respect to c. Equation (7) has different

properties for x∗ < 0 than for x∗ > 0. In the case x∗ < 0 it simplifies to

2Φ(x∗) − 1 + x∗ = 0,

and thus:

Finding 4. If the equilibrium threshold x∗ is negative, it is not sensitive to local changes

in c.

7For θ > 1 the sector succeeds for any population size n and any l.
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In the case x∗ > 0, equation (7) simplifies to

(1 − c)(2Φ(x∗) − 1) + x∗ = 0. (11)

The left hand side of (11) increases in c because (2Φ(x∗) − 1) = −x∗

1−c
is negative for

x∗ > 0. The implicit function theorem implies:

Finding 5. If the equilibrium threshold x∗ is positive then it increases in c.

Intuitively, an increase in c by dc makes both staying in and leaving the sector less

attractive. The expected payoff for leaving j is (1 − c)(1 − Φ(x∗)) and it decreases by

dcΦ(x∗). The expected payoff for staying in j under the Laplacian beliefs decreases by

dcn = dcΦ(x∗).8 For Φ(x∗) < 1
2 , which is implied by x∗ > 0, the adverse effect on the

payoff for leaving prevails and hence the equilibrium threshold must decrease — this

increases the payoff for leaving, decreases the Laplacian threshold payoff for staying,

and thus restores the balance.

Further we analyze welfare consequences of changes in c where welfare is defined as

expected payoff before the observation of signal:9 (p denotes the equilibrium probability

of a sector’s failure.)

W = (1 − p) + p(1 − p)(1 − c).

The total welfare effect dW
dc

consists of the direct effect ∂W
∂c

= −p(1 − p) ≤ 0 which

is negative, and of the strategic effect ∂W
∂p

dp
dc

. The strategic effect is positive, as ∂W
∂p

is

negative, and according to Finding 5 the derivative dp
dc
< 0. The total effect is ambiguous,

both the negative direct or the positive strategic effect can prevail, see Figure 1. Below

we describe conditions under which the strategic effect dominates.

The equation (11) defines x∗ (and hence p) only implicitly, and so it is generally

possible to express dW
dc

only as a function of x∗ (and p). However, it is possible to

obtain an explicit expression for x∗, and hence for dW
dc

in the limit of a very narrow prior

distribution. Formally, the prior distribution is set to be Φ(θ−y
ω

) and we examine the

equilibrium in the limit ω → 0 in which the root of (7) can be expressed explicitly:

Finding 6. The equilibrium threshold x∗ and failure probability p as functions of y in

the limit ω → 0 are

8This is because according to (3) the Laplacian threshold payoff for staying is cL(x∗)+ (1− c)L(x∗ +n) =
x∗ + (1 − c)n.

9We analyze only the case x∗ > 0. The welfare analysis is straightforward for x∗ < 0, as there is no indirect
welfare effect.

16



y < −1 −1 ≤ y < 0 0 ≤ y < 1 − c 1 − c < y

x∗ −1 y y 1 − c

p 1 1−y
2

1
2 − y

2(1−c) 0

.

Further we look for pairs of y and c for which the total welfare effect dW
dc

is positive

(in the limit ω → 0). The first condition is 0 ≤ y < 1 − c otherwise dp
dc

= 0. If this

condition is satisfied, then using the expression p = 1
2 −

y
2(1−c) from Finding 6, the total

welfare effect dW
dc

= ∂W
∂c

+ ∂W
∂p

dp
dc

simplifies into

dW

dc
=

−(c− 1)2 − (y − 1)2 + 1

4(1 − c)2
,

which implies:

Finding 7. The set of pairs (c, y) at which the total welfare effect is positive (in the

limit ω → 0) is the one depicted in Figure 3.

While a “partial” equilibrium analysis of a coordination problem would suggest that

an improvement of the prior distribution by a slight increase in y would dramatically

increase welfare because the probability of a sector’s failure would decrease to 0, we

find that this is not the case in a mobile world. The threshold increases with y, and

the decrease in the probability of failure is only proportional to the increase in y, for

y ∈ (−1, 1).

We now return to the labor market interpretation introduced in Section 2.3. Welfare

in the labor market is w + (w − w)W1−δT where W1−δT is the welfare in the abstract

setup studied above if c is set to c = 1− δT . The function 1− δT increases in the length

of the retraining period T and thus welfare at the labor market increases in T if and

only if welfare in the abstract game increases at c = 1 − δT . Note that the sign of the

welfare effect is entirely independent of w and w, and depends only on T .

The labor market interpretation of the abstract mobile game is not the only one

possible. Alternatively we could stress the capital side of industrialization and interpret

the players as investors. The penalty for the late investment or for the late success can

originate in increased government regulations in post-industrialized society. Finding 7

suggests that the welfare effect of the regulations is ambiguous. While the regulations

surely decrease the returns of late investors or of those whose sectors succeed late, the

expectation of the regulations may increase welfare by enhancing efficient coordination

at the beginning of the industrialization.
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Figure 3: The total welfare effect is positive for pairs (c, y) in the shaded area.

In order to examine additional comparative statics, we consider the abstract game

with general payoff parameters U > U − γ > D, instead of 1 > 1− c > 0 and vary U or

D keeping other parameters constant.10 The threshold x∗ under payoffs U , U − γ and

D equals to the threshold solving (7) with c = γ
U−D

, so the strategic effect of variation

in U or D can be straightforwardly mapped to the strategic effects with respect to c

in the abstract game. The direct effect of increasing U or D is positive; the indirect

effect of increasing D is positive as well, because, according to Finding 5, an increase in

D increases c which decreases equilibrium probability of a sector’s failure. In contrast,

c decreases in U , and thus an increase in U has a negative strategic effect which can

override the positive direct effect. This is summarized by:

Finding 8. The welfare effects of an increase in U or D have the following signs:

Increase in: U D

Direct effect + +

Strategic effect - +

Total effect ± +

.

Counterintuitively, more productive technologies do not necessarily facilitate indus-

trialization. If the new inventions are highly productive, the temptation to leave the

10The payoffs U , U − γ and D are not independent under the labor market interpretation, so such a
comparative statics is useful only for alternative applications of the abstract mobile game.
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native industry for a more promising one is high. The losses from the excessive mobility

may override the direct advantage of the high productivity.

5 Concluding Remarks

While our main economic application is the labor aspect of industrialization, the model

is abstract enough to accommodate other interpretations. We could reinterpret the

industry sectors as different geographical locations and assume increasing returns to scale

in local industries as discussed in Krugman [9]. The mobile game with its non-monotonic

welfare effect of increased mobility would then be a simple model of globalization.

By focusing the discussion on the counterintuitive comparative statics we have ex-

posed ourselves to the danger of overemphasizing the negative consequences of mobility.

While we find that an increase in mobility may lead to a decrease in welfare, the finding

is sensitive to the model’s parameters. Also, though the presented model has a unique

equilibrium in the limit of many sectors; a general payoff function may lead to equilib-

rium multiplicity, similar in the logic to the one we encountered in the case of a few

sectors. See Steiner [18] who, in a related model, provides the examples of setups leading

to such equilibrium multiplicity, the underlying intuition and sufficient conditions for

equilibrium uniqueness in the limit of many sectors.

Thus, rather than in particular policy recommendations, the contribution of the

model is in building intuition needed for judging the tension between mobility and

ability of local coordination. More generally, the model transfers the understanding of

the distinction between partial and general equilibrium analysis from market systems to

coordination problems. The “partial equilibrium” approach to coordination problems,

which has been prevalent in the existing research, is useful in focusing the model on

a particular economic problem, but we should be aware of the “general equilibrium”

effects it abstracts from.

In particular, the equilibrium threshold in a static global game is independent of

the prior distribution Φ(·) in the limit σ → 0 and hence the global game theory can

be used as an equilibrium selection in an isolated complete information coordination

problem. In contrast, the prior has an influence on the equilibrium threshold in the

mobile game even in the limit σ → 0. Once the players have the means to choose the

coordination problem they participate in, it may be misleading to select an equilibrium

in a coordination problem in isolation from other problems because the whole set of

coordination problems interacts as a result of the “general equilibrium” effects.
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A Proofs

Proof. (Lemma 1) Each strategy profile s−j induces some joint distribution Ξs−j
(nj , n−j, θ−j)

over nj, n−j and θ−j, where nj denotes measure of −j-players who immigrate into j,

and n−j the measure of −j-players who stay in −j.11 We define

π′(θj, lj ;nj , n−j, θ−j) = cπ(θj , lj) + (1 − c)π(θj , lj + nj) − (1 − c)π(θ−j , 1 − lj + n−j),

which is the incentive to stay in j for a fixed triple nj, n−j , θ−j.

The payoff difference between staying and leaving sector j is

π̃(θj , lj ; s−j) ≡
∫

π′(θj , lj ;nj, n−j , θ−j)dΞs−j
(nj, n−j, θ−j).

We check that π̃(θj , lj ; s−j) satisfies all six assumptions of Proposition 2.2. in Morris

and Shin [14]:

1. (Action Monotonicity) π′(θj , lj ;nj, n−j , θ−j) is weakly increasing in lj for any

nj, n−j, θ−j and thus π̃(θj, lj ; s−j) is weakly increasing in lj after we integrate

over nj, n−j , θ−j.

2. (State Monotonicity) π′(θj, lj ;nj , n−j, θ−j) is weakly increasing in θj for any nj, n−j, θ−j

and thus π̃(θj, lj ; s−j) is weakly increasing in θj after we integrate over nj , n−j, θ−j.

3. (Unique Laplacian State) The Laplacian payoff
∫ 1
0 π̃(θj , lj ; s−j)dlj is not strictly

monotone, as the payoff function π̃(·, ·; s−j) is only weakly monotone, however we

prove single crossing — the Laplacian payoff is strictly increasing at the root of

the Laplacian equation (with the slope bounded from zero uniformly over all s−j):

We call pair (θ, n) unresolved if n < 1 − θ < n + 1. This terminology reflects

that, for unresolved (θ, n), sector with fundamental θ and measure of immigrants

n has a probability of success in the second round (under the uniform distribution

of l) strictly between 0 and 1. Thus the derivative of the probability of the (late)

success with respect to θ is 1, for unresolved (θ, n).12

The probability of the late success of sector j (under the uniform distribution of

lj) is bounded between p ≡ V
1−c

and p ≡ V
1−c

at the root of the Laplacian equation
∫ 1
0 π̃(θj, lj ; s−j)dlj = 0; the bounds V and V on the payoff for emigration were

11nj and n−j are trivially dependent as, in the two sectors setup, nj + n−j = 1. However, this notation
facilitates the generalization of the proof to cases J > 2.

12This derivative is zero if (θ, n) is not unresolved, which is the reason why this property is useful.
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established in Section 3.2. Otherwise the threshold player with Laplacian beliefs

would strictly prefer leaving or staying in j and the indifference implied by the

Laplacian equation would not hold.

Consider θj > 0: 1 − θj < nj + 1 for all nj ∈ [0, 1] and hence the probabil-

ity that the sector j succeeds (under uniform distribution of lj) is strictly posi-

tive for any measure of immigrants nj. Be θj the root of the Laplacian equation
∫ 1
0 π̃(θj, lj ; s−j)dlj = 0. Then under the distribution of nj induced by s−j

Prob

(

nj + 1 − (1 − θj) >
p+ 1

2

)

≤ b,

where b solves p+1
2 b+(1− b)0 = p. In words, if nj +1− (1− θj) >

p+1
2 then, under

Laplacian beliefs, probability of success of j, which is nj + 1 − (1 − θj), exceeds
p+1
2 , and if the measure of immigrant nj would be so high with a probability higher

than b, the total probability of success, would exceed p. Thus, if θj is the root of

the Laplacian equation, then the probability that (θj, nj) is unresolved is at least

1 − b > 0. The derivative of the Laplacian payoff with respect to the threshold

under a fixed nj is one if (θj, nj) is unresolved. Hence, after we integrate over nj,
∂

∂θj

∫ 1
0 π̃(θj , lj ; s−j)dlj ≥ (1 − b)(1 − c) > 0.

The symmetric argument applies for θj < 0. In the case of θj = 0 we can apply the

argument from the case θj > 0 for the right hand side derivative and the argument

from the case θj < 0 for the left hand side derivative. Hence the derivative of the

Laplacian expected payoff is positive at the root of the Laplacian equation, for any

s−j, which establishes the single-crossing.

4. (Limit Dominance) The payoff for leaving j is bounded by the bounds 0 < V <

V < 1. Measure nj of immigrants to j is bounded by 0 and 1, and thus π̃(θj , lj ; s−j)

is strictly negative for θj < −1 and strictly positive for θj > 1.

5. (Continuity)

∫ 1

0
g(lj)π

′(θj , lj ;nj, n−j , θ−j)dlj =

Prob(lj > 1 − θj)c+ Prob(lj + nj > 1 − θj)(1 − c) − Prob(1 − lj + nj > 1 − θ−j) =

(1 −G(1 − θj))c+ (1 −G(1 − θj − nj))(1 − c) −G(θ−j + n−j)(1 − c),

where G(·) is the c.d.f. of g(·). Thus
∫
g(lj)π

′(θj, lj ;nj , n−j, θ−j)dl is continuous
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with respect to density g(·) and with respect to θj for any nj, n−j, θ−j . This is

preserved when we integrate over nj, n−j , θ−j.

6. (Finite Expectation of Errors) Satisfied by the assumption on the error distribu-

tion.

Proof. (Lemma 2) We check that the proof in Morris and Shin [14] allows for the state-

ment in Lemma 2 to be uniform over all fixed strategy profiles s−j in sector −j:
Morris and Shin define π̃σ(x, k; s−j) to be the expected payoff for staying conditional

on observing signal x when all other j-players have a threshold strategy with threshold

k, and s−j is fixed. The authors show in their Lemma 6.1 that, for a fixed s−j, it is

possible to find dominance regions for π̃σ(x, k; s−j) uniformly for σ below some σ > 0.

We add that the dominance regions can be specified uniformly across all s−j because

the expected payoff for leaving is bounded between 0 < V < V < 1. Thus the left

dominance region can be taken from the game which pays V for leaving and the right

dominance region from the game which pays V for leaving.

In their Lemma 6.2 Morris and Shin prove that, fixing s−j, π̃σ(x, x − σξ; s−j) con-

verges to π̃∗σ(x, x−σξ; s−j) as σ → 0, where π̃∗σ(x, k; s−j) is the variable corresponding to

the uniform prior and private values, and the convergence is uniform for x in a compact

interval.13 We add, in the rest of the proof, that this convergence is uniform over all

s−j:

π̃σ(x, k; s−j) =

∫

π′σ(x, k;nj , n−j , θ−j)dΞs−j
(nj, n−j , θ−j),

where π′σ(x, k;nj , n−j, θ−j) is the expected payoff conditional on signal x when all oppo-

nents use threshold k under the payoff function π′(θj , lj ;nj, n−j , θ−j). Be π′∗σ (x, k;nj , n−j, θ−j)

the variable corresponding the uniform prior and private values under the same payoff

function π′(θj , lj ;nj, n−j , θ−j).

We have restricted ourselves to x from a compact interval, nj and n−j lie in [0, 1],

and we can restrict to θ−j in [−1, 1] because its further decrese/increase beyond [−1, 1]

does not influence the success of sector −j.
13We can constraint ourselves to a compact interval after eliminating the dominance regions.

22



Morris and Shin prove that

π′σ(x, k;nj , n−j, θ−j) =

∫ 1

l=0
π′
(
k − σF−1(l), l;nj , n−j, θ−j

)
ψσ(l;x, k)dl,

where ψσ(·;x, k) is p.d.f. corresponding to c.d.f. Ψσ(·;x, k) and Ψσ(l;x, x−σξ) uniformly

converges to Ψ∗
σ(l;x, x − σξ) ≡ 1 − F

(
ξ + F−1(1 − l)

)
as σ → 0. The c.d.f. Ψ∗

σ(l;x, k)

corresponds to a game with uniform prior distribution.

Hence π′σ(x, x−σξ;nj , n−j, θ−j) converges to π′∗σ (x, x−σξ;nj , n−j, θ−j) and the con-

vergence is uniform over x from a compact interval and over ξ because variation in ξ gen-

erates a compact set of distributions over l. We only need to add, that because we con-

sider a compact set of (nj , n−j, θ−j), the convergence is uniform also over (nj, n−j , θ−j).

Hence after integrating over (nj , n−j, θ−j) with the distribution Ξs−j
(nj, n−j , θ−j), we

get uniform convergence over all s−j.

The rest of the proof in Morris and Shin relies on the fact that π̃σ(x, x − σξ; s−j)

converges uniformly to π̃∗σ(x, x− σξ; s−j) and needs not to be altered for our needs.

Proof. (Proposition 2) Consider any equilibrium profile s = (s1, s2) in the mobile game

ΓM
σ . The profile induces two thresholds x∗j(σ), j = 1, 2 that are solving the Laplacian

equations in the global games Γσ(sj), j = 1, 2. Using Lemma 2, there exists a function

δ(σ) > 0, limσ→0 δ(σ) = 0, such that the equilibrium strategies in ΓM
σ satisfy s(j,i)(x) = 1

for x > x∗j (σ) + δ(σ) and s(j,i)(x) = 0 for x < x∗j (σ) − δ(σ); j = 1, 2.14

Lemma 3. There exists a function ε(·) > 0 such that limσ→0 ε(σ) = 0, and

∣
∣g
(
x∗j(σ), x∗−j(σ)

)∣
∣ < ε(σ)

for j = 1, 2.

Proof. x∗j(σ) satisfies

cL
(
x∗j(σ)

)
+(1−c)

∫ +∞

−∞

[
L
(
x∗j (σ) + 1 − l−j,σ(θ−j)

)
− L

(
θ−j + l−j,σ(θ−j)

)]
dΦ(θ−j) = 0,

(12)

14The equilibrium profile in ΓM
σ , σ > 0, need not consist of threshold strategies. Lemma 2 only guaranties

that there exist thresholds x∗j (σ) such that the equilibrium strategies differ from the threshold strategy only
on a neighborhood of thresholds thresholds x∗j (σ).
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where l−j,σ(θ−j) is the measure of −j-players who stay in −j under the fundamental

θ−j, strategy profile s−j(σ), and error size σ. Be l−j,0(θ−j) the function corresponding

to the threshold strategy with threshold x∗−j and σ = 0, that is l−j,0(θ−j) = 1 for

θ−j > x∗−j(σ) and 0 otherwise. By replacing l−j,σ with l−j,0 in the left hand side of (12)

we get g
(

x∗j (σ), x∗−j(σ)
)

. The difference caused by the replacement is smaller than

ε(σ) ≡ 2φ(1 − c)
(
δ(σ) +

√
σ
)

+ (1 − c)max

(

F

(

− 1√
σ

)

, 1 − F

(
1√
σ

))

(13)

The first term comes from integration over interval
[

x∗−j(σ) − δ(σ) −√
σ, x∗−j(σ) + δ(σ) +

√
σ
]

.

Outside of this interval, the difference between l−j,σ and l−j,0 is bounded by

max

(

F

(

− 1√
σ

)

, 1 − F

(
1√
σ

))

which gives the second term in (13)

Function g(·, ·) is continuous, thresholds x∗j (σ) are from a closed interval and thus

there exists a function ε′(σ) > 0, limσ→0 ε
′(σ) = 0, such that |x∗j (σ) − x∗j | < ε′(σ),

j = 1, 2 where (x∗1, x
∗
2) is a solution of (8).

Then, the j-players in ΓM
σ stay in j for signals above x∗j + δ′(σ) and leave below

x∗j − δ′(σ) where δ′(σ) = ε′(σ) + δ(σ).

Proof. (Proposition 3) Below, we omit asterisk from the notation of the threshold and

instead of x∗Jj write simply xJ
j .

Let XJ denote (xJ
1 , . . . , x

J
J). We introduce a system of approximate equations,

g̃J(xJ
j ,X

J ) = 0, where g̃J (xJ
j ,X

J ) equals

cL(xJ
j )+(1−c)E

[

L

(

xJ
j +

∑J
k=1 ek
J − 1

)

− 1

J − 1

J∑

k=1

∫ 1

lj=0
π

(

θk, 1 − ek +

∑

m6=k em + 1 − lj

J − 1

)

dlj

]

.

(14)

The difference between the correct equations (9) and the approximate equations (14) is

that in (14) we allow index k and m to equal j.15

Approximate equations are a good approximation of the exact equations if J is large:

15In words in (14) we “add” one virtual sector with the threshold equal to xj and with an independent
realization of fundamental. This assures that in (14) all sectors j = 1, . . . , J face identical environment of
other sectors.

24



Lemma 4. There exists α > 0 such that

∣
∣g̃J

j (xJ
j ,X

J ) − gJ
j (xJ

j ,X
J
−j)
∣
∣ ≤ α

J − 1
,

for all j = 1, . . . , J and all XJ ∈ [−1, 1]J .

Proof. (Lemma 4) The first terms in (9) and (14) are identical. The difference between

(9) and (14) in the second term is that the approximate equation overstates the measure

of immigrants to j, but at most by 1
J−1 and derivative of L(·) is bounded by 1 which leads

to a difference at most 1−c
J−1 . There are two differences in the third term: the approximate

equation has one additional summand in the sum over index k, with the value of the

summand at most 1
J−1 which leads to a difference at most 1−c

J−1 . The additional summand

in the sum over the index m leads to a difference at most (1 − c) 2
J−1φ because

∣
∣
∣
∣
∣

∫ 1

lj=0
π

(

θk, nk +
1 − lj
J − 1

)

dlj −
∫ 1

lj=0
π

(

θk, nk +
1

J − 1
+

1 − lj
J − 1

)

dlj

∣
∣
∣
∣
∣

is 0 if 1−θk lies outside of [nk, nk + 2
J−1 ] and is at most 1 if θk ∈ [nk, nk + 2

J−1 ]. Thus, in

expectation with respect to θk, the additional measure of immigrants in the approximate

equation can cause a difference at most (1 − c) 2
J−1φ. The total difference between (9)

and (14) is thus at most
[
(1 − c) + (1 − c) + (1 − c)2φ

]
1

J−1 .

Lemma 4 implies that any solution x∗J1 , . . . , x∗JJ of the correct system (9) approxi-

mately solves the approximate system (14):

∣
∣g̃J

j (x∗Jj ,X∗J )
∣
∣ ≤ α

J − 1
for all j = 1, . . . , J. (15)

The argument identical to the one in the proof of Lemma 1 point 3 (unique Laplacian

state), establishes that the derivative ∂
∂x∗J

j

g̃J
j (x∗Jj ,X∗,J ) is bounded from below at the

root of the approximate equations with a positive bound denoted here as b which is

uniform over all J . Hence

|x∗Jj − x∗Jj′ | ≤
2α

b(J − 1)
for all j, j′ = 1, . . . , J. (16)

We introduce function γJ : R → R, where γJ(x) ≡ g̃J
j (x, x, . . . , x). Next, using the

following Lemma, we establish that γJ(x∗Jj ), j = 1, . . . , J , are close to zero:

25



Lemma 5. There exists β > 0 such that

∂

∂xJ
j′

∣
∣g̃J

j

(
xJ

j , x
J
1 , x

J
2 , . . . , x

J
J

)∣
∣ <

β

J − 1
, j′ 6= j. (17)

Proof. (Lemma 5) The derivative of the second term in (14) with respect to xJ
j′ is, in

absolute value, at most (1− c) 1
J−1φ. The derivative of the third term is proportional to

1
J−1 as shown in the rest of the proof. We will use the following:

∂

∂nj′

∫ 1

lj=0
π

(

θk, nj′ +
1 − lj
J − 1

)

dlj

is J − 1 if nj′ ≤ 1 − θj′ ≤ nj′ + 1
J−1 and 0 otherwise. Thus

∂

∂nj′
E

[
∫ 1

lj=0
π

(

θk, nj′ +
1 − lj
J − 1

)

dlj

]

is at most (J − 1) 1
J−1φ = φ.

The derivative of the third term in (14) with respect to xJ
j′ consists of two parts: 1.

The derivative of the summand when k = j′ is at most (1 − c) 1
J−1φ. 2. The inflow of

immigrants to all sectors indexed by k 6= j′ changes, which leads to the derivative at

most, in absolute value, (1 − c) 1
J−1 (J − 1) φ

J−1 .

Inequality (16) and Lemma 5 imply

|g̃J
j (x∗Jj , x∗Jj , x∗Jj , . . . , x∗Jj ) − g̃J

j (x∗Jj , x∗J1 , x∗J2 , . . . , x∗JJ )| ≤ (J − 1)
β

J − 1

2α

b(J − 1)
, (18)

and hence, using (15)

|γJ(x∗Jj )| =
∣
∣gJ
(
x∗Jj , x∗Jj , x∗Jj , . . . , x∗Jj

)∣
∣ ≤

(
β2α

b
+ α

)
1

J − 1
,

for all j = 1 . . . J .

γJ(x∗Jj ) differs from the left hand side of the informal equation (7) by the fact that

the measures of immigrants to sector j and k are stochastic. The weak law of large

numbers assures that γJ(x∗Jj ) converges to the left hand side of the informal equation

(7), and the convergence is uniform, because the derivative of the second and third term

in (14) with respect to the measure of immigrants are bounded.

We denote the left hand side of the informal equation by γ(x∗). For any ε′ > 0
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there exist J ′ such that |γ(x∗Jj )| < ε′ for all J > J ′ and j = 1, . . . J . Function γ(·)
is continuous and x∗Jj are from the closed interval [−1, 1 − c]. Hence there must exist

function ε(ε′) such that |x∗Jj −x∗| < ε(ε′), where x∗ is the unique root of γ(x∗) = 0, and

limε′→0 ε(ε
′) = 0.
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