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Abstract

This paper compares the trading costs for institutional investors who are subject to
liquidity shocks, of trading in auction and dealer markets. The batch auction restricts
the institutions' ability to exploit informational advantages because of competition be-
tween institutions when they simultaneously submit their orders. This competition
lowers aggregate trading costs. In the dealership market, competition between traders
is absent but trades occur in sequence so that private information is revealed by ob-
serving the °ow of successive orders. This information revelation reduces trading costs
in aggregate. We analyse the relative e®ects on pro¯ts of competition in one system
and information revelation in the other and identify the circumstances under which
dealership markets have lower trading costs than auction markets and vice versa.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7068381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction
In this paper we compare the two archetypal types of mechanism for trading ¯nancial securi-
ties, namely an auction and a dealer market, by examining the pro¯ts/costs to institutional
investors of trading on these two alternative trading platforms. We are able to identify
conditions under which one system is preferred to the other. Keim and Madhavan (1998)
provide evidence that trading costs of institutions are di®erent on di®erent exchanges, and
given the importance of institutional investors [Becht and Roell (1999), Myners (2001)],
and their in°uence in determining the structure of an exchange,1 we examine which type
of trading mechanism will be preferred by investors trading blocks of shares.2 We develop
a model of trading in equities by large institutional investors that are subject to stochastic
liquidity shocks and that have acquired private information through monitoring about the
¯rm whose shares they are attempting to trade.3 We are able to show that when asymmet-
ric information concerns are important, the dealership system is preferred by institutional
investors, but when liquidity shocks are more important, the call auction o®ers lower costs
to the institutional investor.

These comparisons are relevant for understanding the role of competition between trading
systems and exchanges. Since October 1997, when the London Stock Exchange introduced
an order driven trading system to run alongside its dealership system, there have been
two competing trading mechanisms for FTSE100 securities. At the opening, traders can
choose whether to execute their trades on SETS (a call auction at the opening) or on SEAQ
(a dealership system). Traders submit limit orders in the pre-opening period, and at the
opening the limit order system closes for up to three minutes while an algorithm runs through
all the FTSE100 stocks to ¯nd amarket clearing price in each stock. During this three minute
period while the SETS system is "closed", the SEAQ system operates and traders can deal
sequentially with market makers.

Studying the liquidity of secondary equity markets is also important from the viewpoint
of economic e±ciency because it fundamentally a®ects the incentives for institutional in-
vestors to accumulate controlling stakes in companies and hence to monitor and improve
their performance. Holmstrom and Tirole (1993), Bolton and von Thadden (1998), Pagano
and Roell (1998), and Maug (1998) have focused on the advantages of a large shareholder
in terms of the incentives that they have to monitor management, but the disadvantages of
large blocks because of their reduced liquidity. In fact Bhide (1993) suggests that the deep
liquidity of equity secondary equity markets in the US are to the detriment of the monitoring
responsibilities of shareholders.

Our model evaluates and compares the institutional investor's trading costs on a call
1The recent changes on the London Stock Exchange and the introduction of an auction (SETS) trading

system in the most liquid securities alongside the SEAQ dealership system in October 1997, illustrates the
importance of lobbying from the users of the trading systems, through the ¯nancial regulators [Securities
and Investments Board (1994, 1996)].

2According to Martin Dickson writing in the Financial Times on 4th May 2000, a proposed strategic
alliance between London and Frankfurt in 1998 fell apart because the separate exchanges could not agree on
an appropriate trading platform.

3Paragraph (5.81) of the Myners' Report (2001) notes that institutional investors acting on information
they have received from meetings with management does not make an institution an insider
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auction and dealership systems. Papers by Madhavan (1992), Biais (1993), Pagano and Roell
(1992, 1996) and Shin (1996) have all examined di®erent characteristics of alternative trading
mechanisms. Madhavan (1992) argues that the di®erences in the two systems lie in the
sequence of trading, which leads to di®erences in the information provided to the players and
therefore in the strategic nature of the game. In the quote-driven system competition between
market makers in setting quotes ensures that price quotes are competitive, and market
makers make zero pro¯ts, whereas in the order-driven system competition between dealers
takes the form of competition in demand schedules. Pagano and Roell (1996) emphasise the
di®erences between alternative trading systems in terms of transparency about the history
of the order °ow, and compare the price formation process in four alternative market trading
systems, where the transparency of the current order °ow de¯nes the trading systems. Biais
(1993) compares price formation in fragmented and centralised markets, with no asymmetric
information about asset payo®s. In his model, the di®erence between these two regimes is
that a fragmented market is by de¯nition less transparent than a centralised one, so that
agents have di®erent information about the behaviour of their competitors. Shin (1996)
points out that a distinctive feature of these two systems is the move order and consequent
information available to the traders when they take there respective actions. The auction
market requires that all traders take their actions simultaneously, whereas in the dealership
market the price setters move ¯rst and the buyers (sellers) take their actions after observing
the price quotes of the sellers (buyers).

Our set up is allied to that of Madhavan (1992), but in Madhavan's model the auction
market includes dealers who act as intermediaries and make positive pro¯ts, and this has
implications for the properties of the two markets in terms of market e±ciency. In contrast in
our model both markets have intermediaries who earn zero pro¯ts, and we compare the two
systems in terms of the ex ante expected trading costs to the traders of participating in these
markets.4 In our model when liquidity shocks force the institution to trade, adverse selection
concerns on the part of the exchange's intermediaries, mean that the institutional investors
face unfavourable prices and high trading costs. In the call auction the institution's ability
to exploit informational advantages is restricted by the competition between institutions
when they simultaneously submit their orders, and this lowers aggregate trading costs. On
the other hand, in the dealership market, competition between traders is absent but trades
occur in sequence so that (unlike the call auction) private information is revealed by observing
the °ow of successive orders, and this information revelation also reduces trading costs in
aggregate. The net e®ects on institutional investor's trading costs are evaluated, and we
¯nd that the relative costs to the institutional investor of trading on the two systems hinges
on a key parameter that measures the relative importance of asymmetric information to
liquidity shocks. Where asymmetric information is more prevalent, the dealership system is
preferred, and when liquidity shocks are more important, the call auction o®ers lower costs
to the institutional investor.

The layout of the paper is as follows. In Section 2 we outline a model of institutional
4Madhavan (1992) models competition between dealers in the auction market as competition in demand

schedules, and these dealers earn rents which shrink to zero as the number of dealers increase. Whereas
we assume that in our two systems the market's intermediaries make zero pro¯ts at all times. Hence a
comparison of our results and those of Madhavan will be valid when the number of dealers is large.
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investors (traders) and dealers. Sections 3 examines the circumstances (parameter values)
under which one system dominates another in terms of the institutions' aggregate pro¯ts.
Section 4 examines the e®ects of changing the correlation structure of liquidity shocks and
changing the batch auction mechanism to one where only non-price contingent trades are
allowed. Section 5 provides a summary and conclusion.

2 The Model
Our model follows the approach taken in Madhavan (1992), who compares a quote driven
mechanism with competing dealers, with an order driven mechanism organised as a call
auction with °oor traders, who are responsible for ensuring market clearing. In the current
paper the dealer market is modeled as a series of sequential trades, so that traders act as
monopolists, independent of subsequent trades. In contrast in the auction market all trades
occur at the same time, so that traders act strategically with respect to rival traders, when
submitting their demands. In our model there are n traders in the market trading in a
security, and they trade for two reasons. Trader i observes the true value of the security v
and is able to trade on the basis of this information in the secondary market. Each trader
also faces a liquidity shock ui, which is the second motive for trading. These traders are taken
to be large risk-neutral institutional investors who discover the true value of the security v
which is distributed v » N(¹v; ¾2v) after monitoring the company on account of their large
stake. The institutional investors trade xi in the secondary market, following Seppi (1992)
to maximise

¼ijv; u = [v¡ p]xi ¡
'
2
(xi ¡ ui)2 i = 1; 2:::n (2.1)

The objective function (6.30) shows that traders generate income for each unit of stock
that they hold, by trading at price p when the true value of the security is v. In addition
these traders face a liquidity shock ui resulting in losses which are quadratic in the di®erence
between their holdings of the asset xi and the liquidity shock. The relative importance of the
trading pro¯ts and the liquidity shock in the investors' objective function is controlled by the
parameter ': Clearly the higher is ' the greater is the weight placed on the liquidity shock.
The advantage of the speci¯c objective function is that we are able to obtain straightforward
closed-form solutions for the expected pro¯ts to an institution from trading under the two
alternative microstructure systems outlined below.5

The institutional investors may be thought of as insurance companies who are gener-
ating premium income outside the model. A negative liquidity shock is interpreted as an
unexpected insurance cash claim which must be met by the company by either selling the
security or by borrowing. Under this interpretation the quadratic term (xi ¡ui)2 represents
increasing marginal borrowing costs. A positive liquidity shock may be interpreted as unex-
pected premium income and in this case costs are incurred by failing to invest this income
in equities whose return exceeds that on liquid assets. In fact these costs are more likely to
be linear in (xi- ui), but allowing for asymmetric costs would make our model analytically

5Bernhardt and Hughson (1997) (Proposition 2) show that these quadratic preferences can be interpreted
as the reduced-form preferences of a rational agent with exponential utility who receives a liquidity shock
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intractable.. The quadratic term in (6.30) therefore, must be viewed as approximating actual
costs.

Market makers who are the only other market participants, and set prices p are not able
to infer exactly the value of the security from the trading behaviour of the institutions since
these institutions also trade because of liquidity shocks, which are distributed ui »N (0; ¾2u):
Note that if market makers also observed the value v , then they would set prices equal to the
true value of the security, and traders could then set their demands equal to their liquidity
shock to ensure no worse than zero pro¯ts. However because market makers do not observe v
directly, but infer it from the trading volumes, they set prices to reduce the adverse selection
problem from informed institutions trading against them, and we shall see that this raises
the trading costs of the institutions.

Our framework is an extension of the insider trading model developed by Kyle (1985),
in which market makers set prices allowing for the likelihood that the aggregate demand
will re°ect informed trading by an insider. However rather then a single informed trader
placing his order in with a batch of liquidity orders, the model considered here allows for a
di®erent market microstructure in which a trader deals directly with the market maker, but
the market maker is unable to identify which components of trades are liquidity motivated
and which are information motivated.

2.1 Periodic Call auction
A number of stock markets, such as the NYSE, London SETS and the Paris Bourse open
their daily markets with a call auction. In the call auction considered here, each institutional
investor simultaneously submits price contingent orders to the market, and the price is set
such that market makers earn zero expected pro¯ts.6 Aggregate trading volume is X =Pn
i=1 xi, and in this oligopoly call auction we recognise that each institutional trader knows

that both their own trades and their rival's will have an impact on prices. To ¯nd the
equilibrium solution to this model we make the conjecture that the aggregate trading volume
is a linear function of the information and the liquidity shocks, and competitive market
makers set price as a linear function of the aggregate trading volume

X = ¯(v ¡ ¹v) +
nX

i=1
°iui (2.2)

and
p = ¹v + ¸X (2.3)

To ¯nd the optimal trading volume of each strategic institutional trader i substitute the
conjectured price function (6.30) into the objective function (6.30). The reaction function
for the ith investor under the Cournot assumption that each investor's demands do not a®ect
the demands of the rival, is given by

xi =
v ¡ ¹v
2¸ +'

+ 'ui
2¸+ '

¡ ¸(X ¡ xi)
2¸+ '

(2.4)

6Following Pagano and Roell (1996) we use the term market maker to denote any speculator involved in
the provision of liquidity in an auction market.
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The optimal demands for trader i would appear to depend inter alia on the total order
°ow X which is unobserved by the traders. However, rearranging (2.4) and substituting for
X using (6.30 ) gives demands that are linear in the price (and in observable shocks)7. Hence
allowing institutional traders to submit price contingent demands is equivalent to allowing
them to submit demands conditional on the unobserved total order °ow X as in (2.4).

All institutions face the same problem and since aggregate trading volume is simply the
sum of the n institutions' trades, summing over i = 1 to n in (2.4) and rearranging gives the
aggregate trading volume as

X = n(v ¡ ¹v)
(n +1)¸ + '

+ '
(n + 1)¸+ '

nX

i=1
ui (2.5)

which is indeed a linear function of the information and the liquidity shocks. Comparing
coe±cients in (6.30) and (6.30) yields

¯ =
n

(n + 1)¸+ '
; °i = ° =

'
(n + 1)¸+ '

(2.6)

We assume that the market maker acts competitively and sets prices as the expectation
of the terminal value of the asset v conditional on the aggregate trading volume X so that
prices are

p = E[v j X = ¯(v¡ ¹v) + °
nX

i=1
ui] (2.7)

To compute this expectation we need to make assumptions about the correlations between
the liquidity shocks. Initially we assume the liquidity shocks are independent. This could
arise for example if the insurance market was divided into several niches, and each niche
being identi¯ed with an independent source of risk and with a ¯rm insuring against that
risk. An assumption at the other extreme would be that the liquidity shocks are perfectly
correlated i.e. identical for all institutions. This would arise if all insurance companies fully
diversi¯ed their risks in a secondary market so that they were only exposed to economy-wide
systematic risk. Because our institutions are assumed to be risk neutral and therefore have
no incentive to diversify risks the uncorrelated shocks assumption seems more appropriate
and we take this as our main case. We examine the e®ect that the assumption of identical
shocks has on our results in Section 4 below.

Joint normality of the models' variates guarantees that E [vjX ] and hence p is linear in
X which con¯rms the conjecture for prices in equation (6.30). Taking the liquidity shocks
to be iid and using the standard formula for the conditional expectation of normal variates
gives ¸ in (6.30) as

¸ = ¯¾2v
¯2¾2v + n°2¾2u

(2.8)

7Explicitly, we would have
xi = v

¸+' + 'ui
¸+' ¡ p

¸+'
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We now have three equations in (2.6) and (2.8) and three unknowns ¯, ¸ and °. Solving
for the unknowns we may write the conjectured coe±cients as

¸ =
'¾2v

'2¾2u ¡¾2v
; ¯ =

n['2¾2u ¡ ¾2v ]
'['2¾2u + n¾2v ]

; ° =
['2¾2u¡ ¾2v ]
'2¾2u + n¾2v

(2.9)

Note that the second order condition for maximisation of the traders' objective is that
'2¾2u > ¾2v . This condition indicates that a minimum amount of noise trade variability is
required to ensure that equilibrium exists and that ¯ and ° are strictly positive.8

We may now compute the unconditional expected pro¯ts to each trader before they have
observed either the value of the asset or their liquidity shock. The optimal demands for each
trader are obtained by substituting (6.30) into (2.4) and rearranging. For each trader i we
have

xi =
¾2u'2 ¡ ¾2v

'(n¾2v + ¾2u'2)
(v ¡ ¹v) + ¾

2
u'2 ¡ ¾2v
¾2u'2

ui +
¾2v(¾2v ¡ ¾2u'2)
¾2u'2(n¾2v + ¾2u'2)

nX

j=1
uj (2.10)

Substituting (6.30) and (2.10) into the objective function (6.30), taking expected values
over the value of the asset and the liquidity shocks and multiplying by n (since before observ-
ing the liquidity shocks traders are identical) gives expected pro¯ts for the n institutional
traders participating in the auction as

nE¼auctioni = ¡ n¾2v
2'3¾2u

"
'4¾4u +'2¾2u¾2v + (n¡ 1)¾4v

'2¾2u+ n¾2v

#
(2.11)

where by abuse of notation we have used ¾4u and ¾4v to denote (¾2u)2 and (¾2v)2 respectively.
Equation (2.11) shows that expected pro¯ts are always negative. To see why this is so

note the objective function in equation (6.30) has two components. The ¯rst E(v ¡ p)xi
which we call trading pro¯ts represents pure expected gains or losses to the institution from
trading. The second ('=2)E(xi ¡ ui)2 which we call trading cost (cost because it enters
institutional pro¯ts with a minus sign) is always positive. It is easy to show that expected
trading pro¯ts are zero in aggregate by writing them as

nX

i=1
E[(v¡ p)xi] = E[(v ¡ p)X ]

Then noting that p = E [vjX] gives

nX

i=1
E [(v ¡ p)xi] = E[(v ¡ E [vjX ])X] = 0

Because liquidity costs are always positive, pro¯ts of each institution are always negative.
The intuition as to why trading pro¯ts are zero is because faced with the adverse selection
problem of trading with informed institutions, the market maker sets \fair" prices given

8As has often been pointed out, without noise trades, the market would collapse because no rational mar-
ket maker would trade with an informed market participant. This condition arises from such considerations.
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knowledge of the current order °ow i.e. he sets prices such that expected trading pro¯ts
conditional on trading volume are zero. Therefore the institutions can never o®set trading
costs with trading pro¯ts. Note that if there was no adverse selection problem [¾2v ! 0], then
expected trading costs to the institutional traders in equation (2.11) fall to zero. In this case
the market maker knows that he does not face an informed trader, and the institutions can
then trade to just o®set their liquidity shocks (i.e. they can trade an amount xi = ui at a
\fair" price). In the more general case [¾2v > 0], the institutions are forced to trade at a loss
because they are unable to credibly commit to the market maker that they are not trading
on information.

In Appendix A we discuss the e®ects of collusion on investors' pro¯ts (and hence on
trading costs because the two are again equivalent). When the n ¯rms act as a \multi-
plant" monopolist, trading costs are actually increased compared with the non-cooperative
situation. This is because the market maker knows that the colluding institutions are acting
strategically, and sets a higher mark-up which actually reduces the multi-plant monopolist's
pro¯ts. In contrast non-colluding investors trade too aggressively, and such trading reveals
more of their private information. Non-colliding investors bene¯t from this \forced" reve-
lation of their information, due to competition from other investors. The colluding case is
interesting because it illustrates that investors who act non-collusively bene¯t from being
able to commit to not using their information. The anomalous e®ect of competition in re-
ducing trading costs is an important feature of oligopoly call auctions. It is important to
bear this e®ect in mind when we compare this case with that of the sequential dealership
where serial monopoly exists and such competitive e®ects on trading costs are absent.9

2.2 Sequential dealer market
In the sequential dealer market each institutional investor trades separately with the mar-
ket maker, and therefore the market maker may o®er di®erent prices to di®erent investors.
In common with the existing literature, we assume that the investors approach the mar-
ket maker sequentially in random order.Unfortunately, as the model stands, traders incur
smaller trading costs if they defer their trades giving each trader a strong oncentive to wait
before submitting their orders. The assumption of random arrival/order-submission times
is a rather unsatisfactory solution to this problem and a weakness of the current analysis
However, in section 4.3 and Appendix C below, we extend the model to allow for endogenous
arrival times In this extension, we add the assumptions that traders incur penalties for not
executing their orders within the market period (the time period taken to e®ect the call
auction) and that these penalties are su±ciently large to induce trade within the period.
The solution to the extended model yields an identical form for expected trading costs as
that given by the exogenous arrival/order-execution assumption currently employed.

Dealer markets are to be found in less-liquid stocks on the London Stock Exchange, on
the foreign exchange markets and NASDAQ. As before, the ¯rst investor maximises (6.30),
but this time we conjecture that the trading volume of the individual investor is a linear

9We also show in Appendix A that collusion raises trading costs to investors so much, that they will
always prefer to trade in the sequential dealership market regardless of the values of the parameters that
a®ect their pro¯ts/costs.
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function of the information, and the market maker sets price as a linear function of the
individual investor's trading volume

x1 = ¯1(v ¡ v) + °1u1 (2.12)

and

p1 = v+ ¸1x1 (2.13)

The ¯rst investor now acts as a monopolist and therefore does not have to worry about
the e®ect of his rival's trading volume on prices. The optimal trading volume for the ¯rst
investor is

x1 =
v¡ v

2¸1 + '
+ 'u1

2¸1 + '
(2.14)

Market makers act competitively and set prices to the ¯rst investor as the expectation
of the terminal value of the asset v conditional on the ¯rst investor's trading volume x1.
Under this assumption ¸1 is analogous to the ¸ of the previous section and is given as
¸1 = cov(x1; v)=var(x1). Equating coe±cients as before yields

¸1 =
'¾2v

'2¾2u ¡¾2v
; ¯1 =

['2¾2u ¡ ¾2v ]
'['2¾2u+ ¾2v ]

; °1 =
['2¾2u ¡ ¾2v ]
'2¾2u + ¾2v

(2.15)

Again we want to obtain an expression for expected trading costs (trading pro¯ts are
zero as before) for the trader. Using (2.14) and the coe±cients in (2.15), we may write the
optimal trades of the ¯rst investor as

x1 =
'2¾2u¡ ¾2v
'('2¾2u + ¾2v)

[v¡ ¹v + 'u1] (2.16)

Substituting (2.16) and (2.13) into (6.30) and taking expected values, we obtain the
expected trading costs of the ¯rst institutional trader in the dealer market10

E¼dealer1 = ¡¾
2
v

2'
(2.17)

Now consider the next investor's trading strategy. This investor also trades as a mo-
nopolist and does not have to worry about the strategic implications of his rivals' trading:
his objective function is given by (6.30) which does not directly depend on previous trades.
Once more we assume that the market maker sets \fair" prices ie. sets prices equal to the
expectation of v conditioned on knowledge of x1 and x2. This would imply the market maker
setting p2 as the linear (least squares) projection of v on x1 and x2: However to expose the
recursive structure of the problem and to simplify the solution, we taking an indirect route
to the setting of prices by the market maker.

10Note that equation 2.17 can be obtained by setting n = 1 in equation 2.11, which illustrates that the
¯rst phase of the sequential dealer market coincides with the single-trade case of the auction model.
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First, we conjecture that in equilibrium, optimal trades in the second period are uncor-
related with those of the ¯rst. Then, following the ¯rst trade, the market maker computes
an updated distribution for v given by v » N(¹v1; ¾2vj1) where

¹v1 = E [v jx1] = ¹v +
'¾2v

'2¾2u ¡ ¾2v
x1 = p1 and ¾2vj1 = var[v jx1] =

'2¾2u¾2v
'2¾2u + ¾2v

(2.18)

He then sets prices to the second trader in an analogous way to the ¯rst trader, p2 =
¹v1 + ¸2x2;where, ¸2 is analogous to ¸1in (2.13) above and is given by ¸2 = cov[x2; (v ¡
v1)]=var[x2jx1]. Using the conjecture for prices in the objective function gives optimal de-
mands for the second monopolist as x2 = ¯2(v¡ ¹v1)+ °2u2 which clearly shows that optimal
demands in the second period x2, are indeed independent of those in the ¯rst x1, (and are
also normally distributed). The independence of equilibrium trades now implies that, prices
in the second period satisfy

p2 = ¹v1 + ¸2x2 = E(vjx1) + ¸2x2 = p1 + E(vjx2) = E [vjx1; x2] (2.19)

where the last equality con¯rms that the conjectured prices are indeed fair. Solutions for
¯2; ¸2 and°2 may be computed as in (2.15).

It is easily seen that the recursive solution to the problem given above for the ¯rst
two trades may be generalised to trade j . Solutions for ¯j , ¸j, and E¼dealerj , ¹vj and
¾2v j jf= var(v jx1; x2::::xj)g may be obtained from equations (2.15) to (2.18) respectively by
replacing the right hand side terms ¾2vjj¡1and ¹vj¡1with ¾2v and ¹v respectively. Adapting
equation (2.15) in this way to give solutions for ¯j and ¸j

¸j =
'¾2vjj¡1

'2¾2u ¡ ¾2vjj¡1
; ¯j =

['2¾2u ¡ ¾2vjj¡1]
'['2¾2u + ¾2vjj¡1]

(2.20)

The solution shows clearly that ¸j is increasing in ¾2vjj¡1 and that ¯j is decreasing in
¾2vjj¡1. Similarly we may adapt equations (2.17) and (2.18) to give

E¼dealerj = ¡¾
2
v j j¡1
2'

j ¸ 2 (2.21)

¾2v j j =
'2¾2u¾2v j j¡1
'2¾2u + ¾2v j j¡1

(2.22)

respectively. Given the initial condition ¾2v j 0 = ¾2v , Equations (2.21) and (2.22) may be
solved recursively to give an explicit form for the jth trader's pro¯ts for j = 2; 3:::n. To get
a closed form for expected pro¯ts for the jth trader, rearrange (2.22) to give

(¾2v j j)¡1 = (¾2v j j¡1)¡1 + ('2¾2u )¡1 = (¾2v )¡1 + j:('2¾2u )¡1 (2.23)
Using (2.23) on the right of (2.21) gives aggregate expected pro¯ts and hence trading

costs for the n institutional traders as

nX

i=1
E¼dealeri = ¡

nX

j=1

'¾2u¾2v
2('2¾2u + (j¡ 1)¾2v)

(2.24)
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Note that because j̄ is decreasing in ¾2vjj¡1 and ¸j is increasing in ¾2vjj¡1 [see (2.20)] and
because ¾2vjj¡1 is decreasing with j (see (2.22))then j̄ increases and ¸j declines with j. The
jth trader trades more aggressively than the j ¡ 1th because the updated variance of v has
fallen and because the covariance of the underlying value of the asset and the order °ow
has also fallen the market maker set a lower mark-up to the jth trader. The information
revelation that occurs as successive institutions trade, reduces the trading costs of successive
traders as is clear from (2.24),. 11 This is an important e®ect in a sequential dealership
market that is absent from a \one-o®" call auction where each trader's expected trading
costs are the same. As noted in the previous section however, the fact that each institution
acts as a monopolist works to increase the institutions' costs. We examine the net impact
of the two e®ects of competition and sequential information revelation in the next section.

3 Comparison of the two alternative market mecha-
nisms

To compare the expected trading costs under the auction and dealer markets given in (2.11)
and (2.24) we ¯rst take the case of two ¯rms (i.e. the cases of duopoly and two sequential
monopolists respectively) and then generalise to n ¯rms. The following theorem which is
the main result of the paper, states that whether one market mechanism is preferred to
the other depends on the relative values of the uncertainty about the fundamental, and the
importance of the liquidity shocks.

Theorem 3.1 De¯ne the quantity

c = ¾2v
'2¾2u

In comparing the expected trading costs to the institutional investors from trading in an
auction or dealer market

(i) For n > 2 a su±cient condition for auction markets to yield lowest expected trading
costs than the dealer market is

0 < c <
p
1 + n¡ 1
n

(ii) For n = 2 this condition is both necessary and su±cient for auction markets to yield
lowest expected trading costs than the dealer market
Proof.

For n = 2 comparing (2.11) with (2.24) shows that trading costs will be smaller in the
dealer market as

"
'¾2u¡ ('2¾2u ¡ ¾2v)('2¾2u + ¾2v)2

'3¾2u('2¾2u +2¾2v)

#
>
¾2v
2'

+
'¾2u¾2v

2('2¾2u + ¾2v)
11So that without the assumption of random arrival times, which is common in models of sequential

dealership markets, arrival times would be endogenous and the solution to the model would change.
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This condition simpli¯es to

'4¾4u ¡ 2'2¾2u¾
2
v ¡ 2¾4v > 0

Rearranging and solving this inequality for c, dealer markets are preferred as c >
p
3¡1
2 .

Recall from the parameter solutions in (2.9) and (2.20) that for equilibrium we require that
¾2v < '2¾2u i.e. that ¾2v

'2¾2u
= c < 1. In the range

p
3¡1
2 < c < 1 the dealer market will be

preferred by these institutional traders. Therefore in the range 0 < c <
p
3¡1
2 the auction

market will yield the lowest expected trading costs to the traders. This establishes (ii)jj
To prove (i), de¯ne the di®erence in trading costs between the two trading systems as a

function of n
¼d(n) = nE¼auctioni ¡

nX

i=1
E[¼dealeri ] n ¸ 2

De¯ne also the increment to ¼d(n) as n increases by one as a function of n

¢¼d(n) = ¼d(n) ¡ ¼d(n¡ 1) n ¸ 2

"Di®erencing" (2.11) and (2.24) and subtracting the latter \di®erence" from the former gives
incremental pro¯t di®erences as

¢¼d(n) = ¡(n¡ 1)¾4v
n¾4v + 2'2¾2v¾2u ¡ '4¾4u

2'3¾2u[(n¡ 1)¾2v + '2¾2u][n¾2v + '2¾2u]
n ¸ 2

Clearly ¢¼d(n) < 0 if the numerator in the fraction is positive. Dividing this term by the
positive quantity '4¾4u gives the expression

nc2 + 2c¡ 1

which can be factorised as

nc2 + 2c ¡ 1 = n(c+
p
1 + n+ 1
n

)(c¡
p
1 + n¡ 1
n

)

Hence ¢¼d(n) < 0 i® c >
p
1+n¡1
n , and for n ¸ 2 this condition is su±cient to ensure

¢¼d(n) < 0. Noting that

¼d(n) ´ ¼d(2) +
nX

j=3
¢¼d(j) (3.25)

we see that if c >
p
1+n¡1
n is satis¯ed, all terms on the right hand side of (3.25) are negative.

Also note that for n ¸ 2; ¢¼d(n) > 0 i® c <
p
1+n¡1
n , and all terms on the right of (3.25) are

positive which proves (i). jj
It was established above that in the call auction, expected trading costs to the institutions

are reduced by the presence of competition between traders (since traders bene¯t from being
able to commit to revealing their private information) but impaired by the inability of trades
to reveal information sequentially, whereas the opposite is true in the dealer market where

[11]



expected trading costs are reduced by the sequential revelation of information, but harmed
by the lack of competition. In the Theorem, c measures the ratio of information volatility to
that of (normalised) noise trade volatility. Hence when c is high, asymmetric information is
prevalent, whereas if c is low, liquidity e®ects are more important. The fact that when c is
high dealer markets yield lower trading costs shows that the size of the information revelation
e®ect is more sensitive to the degree of inside information than is the competition e®ect. In
other words, in markets where inside information has a relatively large in°uence on stock
price movements the value of sequential trading in revealing information to the market and
so reducing ¯nancial institutions' trading costs is high. In markets where liquidity trading
is the predominant source of stock price volatility then the value of competitive bidding in
reducing ¯nancial institutions' trading costs is high.

4 Sensitivity analyses
In this section we brie°y discuss a) what happens when liquidity shocks are perfectly cor-
related (instead of independent), b) the e®ect of allowing traders to submit market orders
rather than price-contingent trades, and c) an extension to the model that allows the arrival
time of institutional investors to the dealer market to be endogenous. Derivations for a)
are obvious and suppressed, while those for b) can be found in Appendix B, and for c) in
Appendix C.

4.1 Perfectly correlated liquidity shocks
In the analysis above, our institutions were perceived as insurance companies in a segmented
market where ¯rm i o®ers insurance against idiosyncratic risk ui. It may be however, that
these insurance companies pool their risk in a secondary insurance market so that the only
risk encountered is systematic risk. This assumption is the polar opposite of the one used in
above because instead of liquidity shocks being uncorrelated, they would become perfectly
correlated i.e. identical. The analysis is much more simple under this assumption and we
suppress derivations here to give just the main results. The institutions' trading costs (again
these are the same as pro¯ts) under the auction and dealership markets are now respectively

E(¼)Auction = ¡¾
2
v(¾2v + n2¾2u'2)
2n'(¾2v + '2¾2u)

(4.26)

and

E(¼)Dealer = ¡¾
2
v

2'
(4.27)

The di®erence between the trading costs from the two market systems is

E(¼)Auction ¡ E(¼)Dealer = (n¡ 1)¾2v(c¡ n)
2n'(c+ 1)

< 0 (4.28)

Equation (4.28) shows that in the case of identical liquidity shocks, the dealership always
yields lower trading costs. The intuition is that the sequential revelation of information has
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now become very powerful because the market maker will be able to infer the value of v
exactly after only two trades. Hence, trading costs to all except the ¯rst institutional trader
in the dealership are zero. No amount of competition between traders in the call auction,
where only the single observation of aggregate trading volume is available to the market
maker, can generate such low trading costs.

4.2 Non-price contingent batch auction

In the call auction traders submit price contingent demands or limit orders. We now examine
the e®ect of disallowing limit orders and con¯ning traders to submit market orders to the
auction. The problem in this case is the analytical complexity arising from the asymmetric
information that investors have about each other's liquidity shocks and the resulting Bayes-
Nash solution to the problem. For the n = 2 case, however, we show in Appendix B that
trading costs are uniformly lower in the market order auction than in either the limit order or
in the sequential dealership. We also show that the market depth parameter ¸ is uniformly
lower in market order versus limit order auction.

The results in Appendix B show that in contrast to the price contingent auction, the
pure call auction with market orders is unambiguously preferred by institutional investors.
The intuition behind the reduced trading costs for the pure call auction lies in the fact
that allowing investors to condition bids on total order °ow is equivalent to knowing your
rivals' liquidity shocks. In turn, knowing your rivals' liquidity shocks generates a response
that amounts to increased \collusion" in aggregate. This situation is similar to the results
on \sharing of information" in Shapiro's (1986) model of oligopoly.12 Analogous to Shapiro
where oligopolists share information aboutmarginal costs of production, in the current paper,
the institutional investors are able to share information about their liquidity shocks, although
this takes place only implicitly through the ability to submit price contingent demands.
Unlike the standard oligopoly set up however, increased collusion in the form of information
sharing in our batch auction is recognised by the market maker and leads to higher mark ups
(¸) and increased trading costs (see the multi plant monopolist case in Appendix A). Hence
our result on information sharing is the complete reverse of that of Shapiro. The crux of this
reversal lies in the fact that in Shapiro's goods market, the consumer demand curve is ¯xed
so that increased \agressiveness" of reaction functions resulting from information sharing
suceeds in raising pro¯ts. By contrast, in our batch auction, the market maker's \demand
curve" is not ¯xed but shifts adversely against the institutional investors in response to
the more \aggressive" trading that information sharing generates. Once again, the extra
information implicitly granted by the ability to submit price contingent trades is a curse in
the same way that the information about v is a curse in the sense that investors would bene¯t
if they could credibly commit to not using it [see the discussion above after Equation (2.11)].
In the pure call auction with market orders, investors do not know anything about their

12In Shapiro (1986) oligopolists have private information about their own costs, and Shapiro considers the
two equilibria where the oligopolists choose to share and not to share their cost information. Shapiro shows
that oligopolists will prefer to share information, because low cost ¯rms can induce their rivals to reduce
their output, by making their own relatively agressive reaction functions known, and hence raise aggregate
oligopoly pro¯ts.

[13]



rivals' liquidity shocks and there is no implicit or explicit mechanism for credibly sharing
information. Disallowing limit orders therefore reduces trading costs and investors would
prefer to trade on the pure call auction market than limit order auction market.

Finally we note that appendix B additionally establishes that for n = 2 trading costs
in the pure call auction are also uniformly lower than in the sequential dealership. This is
in contrast to the comparison between the limit order auction and the sequential dealership
where the preferred system hinged on parameter values and serves to reinforce how powerful
is the e®ect on trading costs of disallowing information sharing during an auction.

4.3 Endogenising arrival times in the dealer market

In the analysis of the dealer market we made the standard assumption that traders arrive
in random order. [See, for example Glosten and Milgrom (1985), Glosten (1989), Madhavan
(1992), and Shin (1996)]. Without the assumption of random arrival times, all institutions
will wait until the last round of trading, since from (2.24) the trading costs of successive
traders is reduced. Though if everyone waits until the last round then either there is an
auction, or there is some probability of no trade.13 We now relax the assumption of exogenous
arrival times and allow institutional investors to choose when they trade. We assume that if
two or more traders submit at the same time then the market maker processes their trades in
a random order.14 Building on the idea that if agents wait too long there is some probability
of no trade and a resultant large ¯nancial penalty we can show that an equilibrium exists
where all traders choose to submit orders simultaneously. The trades are processed in a
random order by the market maker and hence the traders receive identical expected pro¯ts
In this equilibrium, no trader will incur the waiting costs and total expected pro¯ts of the
institutional investors has an identical form to that given in the analysis above.

Suppose that during the trading period the execution of orders submitted up to some
time T is guaranteed. However traders submitting after T face a probability of not having
their order processed. If an order fails to be processed, the trader incurs a penalty, the size
of which increases with the trader's optimal trade. In this case the objective function (6.30)
becomes

¼ijv; u = [v ¡ p]xi ¡
'
2
(xi ¡ ui)2 + ±wx¤2i i = 1; 2:::n (4.29)

where ±wx¤2i is a penalty from failing to trade. ± is a binary variable, which is zero
if trader i trades within the period in the ith sequential dealership market but is unity
otherwise, x¤i denotes optimal demands for a trader attempting to trade within the period in
market i, and w is the penalty cost The quadratic form of the penalty function is driven by
considerations of analytical tractability. However it does have the property of scaling the ¯ne
to the seriousness of the \transgression". Note that the weight ' used in the \penalty" term
'
2 (xi ¡ ui)2 is di®erent from w because the implications of not trading at all are assumed
to be far more serious than trading at least some amount. A failure to trade may mean

13Alternatively, institutions with large liquidity shocks will trade early, signalling that they have large
liquidity shocks: but this e®ect would require a di®erent modelling strategy.

14This could be taken as a metaphor for the physical system in existence where traders communicate their
orders by phone and the phones are answered sequentially.
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the wholesale breaking of a legally binding contractual obligation with the trader's client.
and such transgressions are likely to be of a di®erent order of seriousness to those involving
partial satisfaction of contractual obligations (as is the case when at least some amount of
trade is made to o®set the liquidity shock)

In Appendix C we demonstrate that if w is large enough then all traders in the sequential
dealer market will want to trade at the same time T . All institutions trading at the same
time forces there to be some random order to trading. In the equilibrium of our model, all
traders submit at time T and are processed by the market maker in random order. The
physical process that this could correspond to is one where traders phone the market maker
and are held in a "queue" at time T . Once the ith trader ¯nally gets through to the market
maker, he is o®ered a price schedule appropriate to the ith sequential market, and submits
the corresponding optimal demand.

5 Conclusions
In this paper we have examined two alternative secondary market microstructures: a se-
quential dealer market and a call auction, where institutional investors trade non-collusively
in the underlying security. The main result of this paper has been to identify the conditions
under which one market microstructure is preferred to another in terms of the expected
pro¯ts to the institutional investors, or conversely where trading costs are lowest. We estab-
lished that in the call auction, trading costs to the institutions are reduced by the presence
of competition between traders but increased by the inability of trades to reveal information
sequentially whereas the opposite is true in the dealer market. The paper is not without its
limitations since the formal modelling of the two alternative trading systems is restrictive,
and important aspects such as transparency, time and reputation are absent. Models that
account for one or more of these features is the subject of future research.

The main insight of this paper has been to demonstrate that the extent of information
revelation, and the inferences of market intermediaries di®ers across trading systems: so that
there is not a single optimal trading structure. The structure which yields the lowest trading
costs to the traders depends on parameter values which govern the relative importance of
liquidity shocks to information. Speci¯cally when asymmetric information is prevalent the
dealer markets yield higher pro¯ts because the size of the information revelation e®ect is
more sensitive to the degree of inside information than is the competition e®ect. In other
words, in markets where inside information has a relatively large in°uence on stock price
movements the value of sequential trading in revealing information to the market and so
reducing ¯nancial institutions' trading costs is high. In markets where liquidity trading is
the predominant source of stock price volatility then the value of competitive bidding in
reducing ¯nancial institutions' trading costs is high, in which case the auction market is the
preferred market microstructure.

We also compared a limit order auction market with a market order auction market and
demonstrated that an auction market with market orders yield lower trading costs, because
the ability to submit price contingent demands, is equivalent to allowing some degree of
collusion between traders, which in aggregate increases trading costs.

.
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6 Appendix A
6.0.1 The e®ects of collusion.

Consider equilibrium for a \multi-plant" monopoly institutional trader, with n liquidity
shocks who must choose optimal xi. We might think of this ¯nancial institution as an
investment bank with insurance company or pension fund subsidiaries, with each subsidiary
su®ering a liquidity shock. The trader maximises

¼jv; u =
nX

i=1
f[v¡ p(X)]xi ¡

'
2 (xi ¡ ui)

2g (A1)

To ¯nd the optimal trading volume of the ith institutional trader substitute the conjec-
tured price function (3) into the objective function (A1). The reaction function for the ith
subsidiary is

xi =
v ¡ v

2¸m +'
+

'ui
2¸m + '

¡ 2¸m(
Pn
j=1 xj ¡ xi)

2¸m + '
(A4)

and similarly for the second subsidiary, so that the aggregate trading volume is

Xm =
n(v¡ ¹m)
2n¸m + '

+
'

2n¸m + '

nX

i=1
ui (A5)

so that

¯m =
n

2n¸m + '
; °m =

'
2n¸m + '

(A6)

As before market makers act competitively and set prices as the conditional expectation
of the terminal value of the asset v conditional on the aggregate trading volume X. The
implicit value of ¸m is given by

¸m = fcov(v;X)=var(X) =g ¯m¾2v
¯2m¾2v + n°2m¾2u

(A8)

Solving for the three unknown coe±cients using (A6) and (A8), gives

¸m =
'¾2v

'2¾2u ¡ n¾2v
; ¯m = n

['2¾2u ¡ n¾2v ]
'3¾2u + n'¾2v

; °m =
['2¾2u¡ n¾2v ]
'2¾2u+ n¾2v

(A9)

We can now compare the values of ¯ and ¸ from (9) with their counterparts ¯m and ¸m
from (A9).
Proposition 6.1

¸ < ¸m and ¯ > ¯m

The proposition shows that competition between rival institutional investors means that
trading intensity is greater under the non-cooperative oligopoly than under monopoly, and
hence the mark-up of prices by the competitive market maker is less under non-cooperative
duopoly than under the collusive outcome. Combining these two e®ects we can examine the
overall impact on prices.
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Proposition 6.2 For a given sequence of realisations of ui and v

pm = p

The form of the price function in both the collusive and competitive cases depends on
the product of ¸ and ¯. Proposition A1 shows that the former is higher and the latter lower
under collusion and Proposition A2 shows that these two e®ects cancel to leave price exactly
the same under non-cooperative oligopoly as in the multi-plant monopoly.

Note that the comparative static properties from (9) and (A9) are that

d¸
d¾v
> 0 and

d¸
d¾u
< 0

and
d¯
d¾v
< 0 and

d¯
d¾u
> 0

which are exactly the same as in the Kyle model. When ¾u is high there is so much noise
in the system that the market maker cannot distinguish whether the insider is trading or
not and ¸ is insensitive to order °ow, likewise the informed trader can easily disguise his
trades in the liquidity trades and trading intensity is relatively high. When ¾v is high,
because the mm knows that the informed trader has strong reasons to trade, there is a
large covariance between the value of the asset and the order °ow, so that the order °ow is
relatively informative about the underlying value of the asset and market makers set a high
mark-up.

The value of expected pro¯ts for the multiplant monopolist E¼m is given by substituting
the parameter values from (A9) into (A4), the result and (A5) into the objective function
(A1) and then taking expectations over v and ui to give

E¼m = ¡n¾
2
v

2'
(A11)

We may compare (A11) with the sum of the expected pro¯ts of the oligopolistic traders in
the call auction given in equation (11). Surprisingly the expected pro¯ts of the multiplant
monopolist are lower. This is because the market maker knows that in the multiplant
monopolist case the trader is deliberately hiding his information through a less intensive
trading strategy, and the market maker's response (from Remark 1) is to increase the price
mark-up. This results in lower expected pro¯ts for the multiplant monopolist. We may also
compare the pro¯ts here with those of the sequential dealership monopolist. We may write
pro¯ts under the latter as

E(¼)Dealer = ¡[¾
2
v

2'
][ '2¾2u
'2¾2u + ¾2v

+ '2¾2u
'2¾2u +2¾2v

+ :::: '2¾2u
'2¾2u + n¾2v

] (A12)

The second term in square braces is clearly less than n so that dealership pro¯ts are less
than ¡n[¾2v2'] which is as we showed above are the pro¯ts under collusion in the call auction.
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6.1 Appendix B
6.1.1 Results for the non-price contingent auction case

Here we drop the assumption that institutional investors may submit price contingent orders
and consider a batch auction in its simplest and purest form where participants simply
submit quantities. Although this market mechanism does not exist in its purest form in the
real world, it has been examined in the theoretical literature and is therefore worth some
attention here also. In the batch auction mechanism considered in the paper, it did not
matter that investor i did not observe investor j 's liquidity shock because investor i could
submit a continuum of orders representing an optimal response to each and every possible
X value. Here however, investors will maximise expected pro¯ts given their information
because they may only submit a single quantity order. Hence we seek a Bayes-Nash solution
equilibrium for the game. As in the main model in the paper, price contingent trades are an
irrelevance in the sequential dealership market because there is only one trader submitting
orders to the market maker and each investor can work out in advance what equilibrium
price he/she will face.

Unfortunately, tractible analytical results are hard to obtain for the general n investor
batch auction case but we can make some headway for n = 2 . With regards to the batch
auction, the ¯rst order conditions for ¯rm i now become

xi =
v¡ v
2¸ + '

+
'ui

2¸ +'
¡ ¸E(xjjui)

2¸ +'
i; j = 1; 2 i 6= j (B1)

Following for example Shapiro(1986) we conjecture that in a symmetric Bayes-Nash equilib-
rium, optimal equilibrium strategies for all institutional investors may be written as

xi = ½(v ¡ v) +$ui (B2)

Using (B2) to compute E(xjjui) and substituting in to (B1) gives

xi =
v ¡ v
3¸ + '

+
'ui

2¸ +'
i = 1; 2 (B3)

Following now familiar procedures, we sum (B3) over i = 1; 2 and compute ¸ as cov(X; v)
divided by var(X). This gives an implicit (cubic) form for ¸ as

¸(3¸+ ')2 ¡ c(¸ +')(2¸ + ')2 = 0 (B4)

Now noting that as in the paper trading pro¯ts are once again zero15, ¯rm i's expected
pro¯ts are just ¡'2E(xi ¡ ui)2 which using (B3) may be written as

E(¼i) = ¡'
2

Ã
¾2v

(3¸+ ')2
+

4¸2¾2u
(2¸+ ')2

!
(B5)

15The unconditional expectation of total trading pro¯ts is Ef(v ¡ p)Xg. Substituting for p as E(vjX)
gives Ef(v ¡ E(vjX))Xg which is zero by de¯nition.
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Substituting for (3¸+')2 in (B5) using (B4) and manipulating the result gives a simpler
form for expected pro¯ts as

E(¼auctioni ) = ¡'
2
E(xi ¡ ui)2 = ¡ '¸¾2u

2(¸+ ')
(B6)

The term E(xi¡ui)2[= ¡ 2
'E(¼

auction
i )] is proportional to expected trading costs per

trader in the auction market, henceforth referred to as just "costs". For simplicity and
without losing generality we switch from comparing pro¯ts to comparing these \costs". We
compare costs in the current market order auction market with the sequential dealership
and with our earlier limit order auction market. Costs in the market order auction market
(Cmoa) are given by (B6) which may be written as

Cmoa =
¸¤¾2u

(¸¤+ 1)
(B7)

where ¸¤ = ¸
' . A form for costs in the sequential dealership market (Csd) is obtained by

setting n = 2 in equation (2.24) of the main text to get

Csd = 2'2¾2u¾2v + ¾4v
2'2('2¾2u + ¾2v)

= c(2 + c)
2(1 + c)

¾2u (B8)

where we have used and using c = ¾2v
'2¾2u

in deriving the second equality. The equivalent
form for the auction market with limit orders (C loa) is given by setting n = 2 in (2.11) to
get

Cloa =
¾2v
'4¾2u

:
'4¾4u +'2¾2u¾2v + ¾4v
'2¾2u+ 2¾2v

= c
1 + c+ c2

1 + 2c
¾2u (B9)

We now show that Cmoa lies below Csd and below Cloa for all admissible values of c (i.e.
8c 2 [0; 1]).

(B7) and (B9) imply that

Cmoa · Cloa if f
¸¤

1 + ¸¤
· c+ c

2 + c3

1 + 2c
; and (B10)

Cmoa · Csd if f ¸¤

1 + ¸¤
· c(2 + c)

2(1 + c)
(B11)

We deal with (B10) ¯rst.
We may rearrange the far right inequality in (B10) to give

Cmoa · Cloa iff ¸¤ · c+ c2+ c3

1 + c ¡ c2 ¡ c3 (B12)

We may rewrite the cubic that determines ¸ (B4) in terms of ¸¤ as follows

g(¸¤) = ¸¤(3¸¤ + 1)2 ¡ c(¸¤+ 1)(2¸¤ + 1)2 = 0 (B13)

We now show that all solutions to g(¸¤) = 0 lie to the left of ¸¤ = c+c2+c3
1+c¡c2¡c3 .
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If we evaluate g(¸¤) in (B13) at ¸¤ = c+c2+c3+±
1+c¡c2¡c3 for some ± ¸ 0 and simplify we get

g(c+ c
2+ c3 + ±

1 + c¡ c2 ¡ c3 ) = (1¡ c)¡3(1 + c)¡6
³
A+B± + C±2 +D±3

´

where A = c2 + 6c3 + 18c4 + 37c5 + 32c6 + 27c7 +10c8 +4c9;
B = 1+ 9c+24c2 +23c3 +48c4+ 17c5 + 14c6 ¡ c7;
C = 6+ 25c + c2 + 17c3 ¡ 4c4); and
D = 9¡ 4c

which is always positive for nonzero c and for any ± ¸ 0. Hence, all real positive solutions
for ¸¤ must lie to the left of c+c2+c3+d1+c¡c2¡c3 . This establishes that Cmoa · Cloa.

To show Cmoa · Csd we follow an identical procedure.
We may rearrange the far right inequality in (B11) to give

Cmoa · C sd iff ¸¤ · 2c+ c2

2 ¡ c2
Following familiar arguments we evaluate g(¸¤) above at ¸¤ = 2c+c2

2¡c2 and show that it is
weakly positive for all admissible c and for all ± ¸ 0. Substituting ¸¤ = 2c+c2

2¡c2 into g(¸¤) and
simplifying gives

g(2c+ c
2 + ±

2 ¡ c2 ) =
³
2¡ c2

´¡3
(E +F ± +G±2 +H±3)

where E = 12c2 + 40c3 +36c4 +14c5+ 2c6;
F = 4+ 28c +64c2+ 24c3 ¡ c5;
G = 12 + 38c¡ 3c2 ¡ 4c3; and
H = 9¡ 4c

which is always positive for nonzero c and for any ± ¸ 0. Hence, all real positive solutions
for ¸¤ must lie to the left of 2c+c2

2¡c2 . This establishes that Cmoa · Csd.
It is easily established that the mark up parameter ¸ in the market order auction is

always less than its counterpart in the limit order auction. It is easy to show that in the
limit order auction ¸loa = c'

1¡c : Hence all we need to establish is that

¸¤[=
¸
'
] · ¸¤loa[= ¸

¤loa

'
] =

c
1¡ c (B14)

We showed above that ¸¤ · c+c2+c3
1+c¡c2¡c3and it is easily veri¯ed that c+c2+c3

1+c¡c2¡c3 · c
1¡c = ¸

¤loa.
Hence, ¸ · ¸¤loa so that the markup in the limit order auction exceeds its market order
counterpart.

6.2 Appendix C
6.2.1 Justi¯cation for exogenous arrival time in the dealer market

We now consider an extension to the sequential dealer market that allows for a penalty
function ±wx¤2i if traders fail to trade before the market closes at time T . The objective
function is now given by
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¼ijv; u = [v ¡ p]xi ¡
'
2
(xi ¡ ui)2 + ±wx¤2i i = 1; 2:::n (C1)

We conjecture that provided w is su±ciently large, an equilibrium exists where all traders
submit (telephone) orders at time T . In the equilibrium of our model, all traders submit
at time T and are processed by the market maker in random order. To establish this we
compare the expected pro¯ts conditional on knowing u and v of a single trader who submits
at time T with those obtained from submitting after T . If the ¯rst exceeds the second
for any agent then there will be no incentive for any agent to deviate from the strategy of
submitting at time T and such a strategy will be an equilibrium one.

If all traders submit at time T they each have a 1
n chance of being processed ¯rst, a 1

n
chance of being processed second and so on. All such traders would be guaranteed order
execution so ± is zero in the pro¯ts functions. Using (C1) we may write expected pro¯ts for
a particular trader who has su®ered a liquidity shock u and who has observed v and who,
like all other traders, follows the equilibrium strategy of submitting at time T as

=
1
n

nX

i=1

µ
¯i(1¡ ¸i¯i) ¡ '

2

¶
(v+ 'ui)2 ¡ '

2
u2 (C2)

Now we compute the expected pro¯ts to this trader of deviating from this strategy and
waiting until after T to submit his order. This trader will have his order executed in market
n (the n¡ 1 other traders will already had their trades executed) with probability (1 ¡ q)
and will fail to trade with probability q: Expected pro¯ts from this strategy of deviating
from equilibrium are therefore

E(¼djv; u) = (1 ¡ q)
µµ
¯n(1¡ ¸n¯n) ¡ '2

¶
(v+ 'u)2 ¡ '2u

2
¶
+ q

µ
¡wx2n ¡ '2 u

2
¶

(C3)

Subtracting (C2) from (C3) gives the condition for no deviation as

E(¼ejv; u)¡ E(¼djv; u) =
1
n

nX

i=1

µ
¯i(1¡ ¸i ī)¡ '

2

¶
(v + 'u)2 ¡ (C4)

(1¡ q)
µ
¯1(1¡ ¸1¯1)¡ '

2

¶
(v + 'u)2 + q

³
¡wx2n

´
> 0

Now, using the fact that xn = ¯n (v+ 'u) and simplifying gives the condition in terms of w
as

w >
1
q¯2n

Ã
1
n

nX

i=1

µ
¯i(1 ¡ ¸i¯i)¡ '

2

¶
¡ (1¡ q)

µ
¯1(1 ¡ ¸1¯1) ¡ '

2

¶!
(C5)

In sum, provided that (C5) is satis¯ed the equilibrium described above exists. Note
that it is obvious that deviating from the equilibrium strategy by submitting before T is
dominated by submitting at T , so there is no need to analyse this possibility.

Finally w above was a commonminimum waiting cost. It is trivially true that the analysis
applies to the case where each trader has distinct waiting costs wi provided that wi ¸ w.
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