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Abstract

This paper consider the GLS detrending procedure advanced by Elliott et al. (1996)
for unit root tests against alternative hypotheses where the time series data under
investigation follow either globally stationary SETAR or STAR processes with deter-
ministic components being present. It is found that the proposed testing procedures
have considerable power gains against both the standard Dickey-Fuller unit root tests
and existing nonlinear unit root tests recently proposed by Kapetanios and Shin (2002)
and Kapetanios et al. (2003). The empirical application to DM and Yen bilateral real
exchange rates against a number of other currencies also confirms that nonlinear unit
root tests based on GLS detrending will be more powerful than linear ones. Interest-
ingly, we find that the DM dataset seems to produce more rejections of the null using
the GLS detrending-based SETAR tests than using the GLS detrending-based STAR
tests, whereas the number of rejections of both tests are similar for the Yen dataset.
The different results may arise from the respective liquidity of the DM and Yen Forex
markets.
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1 Introduction

The earlier literature on univariate analysis of nonstationarity against stationarity has fo-
cussed on the linear model, implicitly disregarding any possible nonlinearities in the series
under investigation. Recently, however, there has been increasing concern that the analysis
of a linear model in a single time series may be inappropriate to give satisfactory inferences
on important economic hypotheses. For example, the power of Dickey-Fuller (1979) unit
root test has been called into question. Theoretical models of nonlinear adjustments have
also been proposed in many areas. For instance, in the context of asset markets, the extent
of arbitrage trading in response to return differentials is limited by transaction costs, and
these costs may lead to a nonlinear relationship between the level of arbitrage activity and
the size of the return differentials. Therefore, the speed with which the returns differential
reverts towards zero is an increasing function of the size of the returns differential itself. See
Sercu et al. (1995), Koop et al. (1996) and Michael et al. (1997). As a response applied
economists increasingly turn to nonlinear dynamics to improve estimation and inference.
In this regard, Balke and Fomby (1997) have proposed a joint analysis of nonstationarity
and nonlinearity in the context of threshold cointegration, where the threshold cointegrating
process is defined as globally stationary such that it follows a unit root in the middle regime,
but is geometrically ergodic in outer regimes. A growing number of studies have emerged
along this line of research, see for example Enders and Granger (1998), Caner and Hansen
(2001) and Lo and Zivot (2001).
In particular, Kapetanios and Shin (2002) and Kapetanios et al. (2003) analyse the

implications of the existence of a particular kind of nonlinear dynamics for unit root tests, and
thus provide alternative frameworks for testing the null of a unit root against the alternative
under which the time series of interest follow globally stationary processes. More specifically,
Kapetanios and Shin (2002) consider self-exciting threshold autoregressive (SETAR) models
and Kapetanios et al. (2003) examine nonlinear smooth transition autoregressive (STAR)
models. Their Monte Carlo experiments clearly show that these types of nonlinear unit root
tests are generally more powerful than the standard Dickey-Fuller unit root tests when the
data follow either globally stationary SETAR or STAR processes.
However, demeaning or detrending of the data based on OLS estimation causes a signif-

icant loss of power of the tests as is the case in Dickey-Fuller unit root tests obtained from
linear regression models. Elliott et al. (1996) investigate the issue of efficient detrending
in the context of linear unit root tests and attempt to derive a point optimal test against
specific local alternative hypotheses. It is shown via stochastic simulations that the unit root
test obtained after using the GLS detrending procedure is more powerful than the standard
Dickey-Fuller test based on OLS detrending. It is therefore important to examine whether
GLS detrending procedure is also useful for unit root tests derived in nonlinear models.
In this paper we consider the issue of efficient detrending in the context of unit root

tests against particular nonlinear alternatives considered by Kapetanios and Shin (2002)
and Kapetanios et al. (2003). In general, it is far more complicated to explicitly take into
account the nonlinear nature of the alternative hypothesis and derive the appropriate GLS
detrending formula. As a result we simply apply the method advanced by Elliott et al.
(1996) to the nonlinear case and develop the nonlinear unit root test procedure based on
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the GLS detrended data. We first derive the associated asymptotic distributions analogous
to those in Elliott et al. (1996), Kapetanios and Shin (2002) and Kapetanios et al. (2003).
Via Monte Carlo simulations we then provide evidence that the power of the GLS detrended
nonlinear unit root tests outperforms that of existing nonlinear tests against either STAR
or SETAR alternatives, and that it also dominates the linear Dickey-Fuller unit root tests
in many cases where the nonlinear adjustment mechanism would be judged a priori to be
more important.
We illustrate the usefulness of our proposed tests by examining the stationarity proper-

ties of bilateral real exchange rates for Yen and Deutsche Mark against a number of other
currencies. The empirical application confirms our idea that nonlinear unit root tests based
on GLS detrending will be more powerful. Interestingly, we find that the DM real exchange
dataset seems to produce more rejections of the null using the GLS detrending-based SETAR
tests (rejecting the null of a unit root 24 times out of 31 cases considered) than using the
GLS detrending-based STAR tests (rejecting the null only 13 times), whereas the number of
rejections of both tests are similar for the Yen real exchange rate dataset. These different
results for SETAR versus STAR-based tests may arise from the respective liquidity of DM
and Yen Forex markets. This may imply that a more liquid DM Forex market may make
adjustments more sudden as compared to the Yen.
The plan of the paper is as follows: Section 2 describes the underlying models and

develops the theoretical results. Section 3 investigates the small sample performance of the
suggested tests via Monte Carlo experiments. Section 4 presents the empirical illustration.
Section 5 concludes.

2 Theoretical Framework

Elliott, Rothenberg and Stock (1996, hereafter ERS) investigate the issue of efficient de-
trending in the context of unit root tests in linear models following the previous works by
King (1980, 1988) and Dufour and King (1991). Mainly motivated by asymptotic local power
considerations, they derive a point optimal unit root test against a sequence of specific local
alternative hypotheses. Consider the univariate regression model of the form:

xt = α+ βt+ yt, t = 1, ..., T, (2.1)

yt = ρyt−1 + ²t, (2.2)

where ²t is assumed to be an iid process with zero mean and finite variance σ
2. Focussing on

the sequence of local alternative hypotheses, the autoregressive parameter ρ can be expressed
as

ρ = 1− c/T, c > 0. (2.3)

In particular, ERS consider testing the null hypothesis of a unit root H0 : ρ = 1 against a
local alternative of the form,

Hc̄ : ρ = ρ̄ = 1− c̄/T, (2.4)

where c̄ is a positive constant under which tests are constructed.
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The point optimal log-likelihood ratio test can then be obtained by

LR = min
θ
{` (ρ̄,θ)− ` (1,θ)} , (2.5)

where
` (ρ̄,θ) = (xρ̄ − zρ̄θ)0Σ−1 (xρ̄ − zρ̄θ) , (2.6)

is the log-likelihood function obtained under the local alternative hypothesis,
xρ̄ = (x1, x2 − ρ̄x1, . . . , xT − ρ̄yT−1)

0, z0ρ̄ = (z1, z2 − ρ̄z1, . . . , zT − ρ̄zT−1), zt = (1, t)0, θ =

(α, β)0, Σ is the covariance matrix of (²1, . . . , ²T )
0, and similarly for ` (1,θ). The term

(xρ̄ − zρ̄θ)0Σ−1 (xρ̄ − zρ̄θ) may be viewed as a weighted sum of squared residuals obtained
from a constrained GLS regression with the value of ρ̄ being imposed. More specifically, ERS
suggest a two-step testing procedure. First, one carries out the GLS detrending estimation
of (2.1) and get the detrended residuals,

ỹt = xt − α̃− β̃t, (2.7)

where α̃ and β̃ are the GLS estimates of α and β obtained from a regression of xρ̄ on zρ̄.
Then, one applies the Dickey-Fuller unit root test to the detrended residuals, ỹt. Though
no rigorous theoretical proof is made on the point optimal property of the test, it is shown
mainly via stochastic simulations that the GLS-based unit root test is more powerful than
the Dickey-Fuller unit root test based on OLS detrending. It is further shown that the
GLS-based unit root test has local power which is practically indistinguishable from that of
an optimal test. Based on these simulation findings, ERS suggest selecting the value of ρ̄
such that the asymptotic power of the test under the local alternative is equal to 0.5. For
example, when the regression (2.1) contains an intercept only, c̄ is set to −7, whereas c̄ is
set to -13.5 when the regression (2.1) contains both intercept and time trend.
Recently, Kapetanios, Shin and Snell (2003, hereafter KSS) and Kapetanios and Shin

(2002, hereafter KS) have suggested two alternative testing procedures to distinguish between
nonstationary unit root processes, and globally stationary nonlinear processes. KSS consider
the case where yt in (2.1) follows the STAR process under the alternative:

∆yt = γyt−1
n
1− exp

³
−θy2t−1

´o
+ ²t, (2.8)

where −2 < γ < 0. They then propose the testing procedure for the null hypothesis
H0 : θ = 0 against the alternative hypothesis H1 : θ > 0. Notice that under the null yt
follows a linear unit root process, whereas it is a globally ergodic STAR process under the
alternative. Since γ is not identified under the null, the direct test of this null is not feasible,
see Davies (1987). To overcome this problem they follow Luukkonen et al. (1988), and
derive a t-statistic for the null δ = 0 against the alternative δ < 0 in the following auxiliary
regression:

∆yt = δy3t−1 + ²t. (2.9)

KS consider the model where yt in (2.1) now follows the SETAR process under the alternative:

∆yt = φ1yt−11{yt−1≤r1} + φ2yt−11{yt−1>r2} + ²t, (2.10)
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where −2 < φi < 0, i = 1, 2, and 1{.} is an indicator function. Now, the null hypothesis of a
unit root isH0 : φ1 = φ2 = 0 while the alternative hypothesis of globally stationarity becomes
H1 : φ1 < 0 and/or φ2 < 0. KS suggest using the Wald statistic for testing the (joint) null
hypothesis of φ1 = φ2 = 0, but this test suffers from the Davies (1987) problem since the
unknown threshold parameters, r1 and r2, are not identified under the null. Therefore,
following Andrews and Ploberger (1994) and Hansen (1996), the three most commonly used
summary statistics are considered: the supremum, the average and the exponential average
of the Wald statistic. Monte Carlo simulation results reported in KSS and KS clearly show
that both testing procedures are more powerful than the standard Dickey-Fuller unit root
tests that ignore the specific nonlinear nature of the data under the alternative hypothesis
of either globally stationary STAR or SETAR processes.
In nonlinear models, the appropriate modelling of intercepts and trends is more com-

plicated. Conventionally, if one aims to derive asymptotically similar tests with respect to
intercepts or time trends, OLS demeaning or detrending is routinely applied to the data.
The tests derived in both KSS and KS follow this OLS-based demeaning or detrending pro-
cedure. However, demeaning or detrending of the data based on the OLS estimation is likely
to cause a significant loss of power of the tests like in linear models. As a result it would be
equally important to examine whether the GLS detrending procedures that have successfully
improved the power of unit root tests in the linear models may also be useful in the nonlinear
framework. Generally, it would be far more complicated to explicitly take into account the
nonlinear nature of the alternative hypothesis and derive the appropriate GLS detrending
procedure. For example, consider the STAR model (2.8), where a local alternative might be
constructed by

θ =
c

T
, c > 0. (2.11)

First, the T−1 rate involved in the construction of the local alternative is not necessarily
appropriate since θ enters the model exponentially rather than linearly, see also Park and
Phillips (2001). Second, it is not clear how to devise a generalised quasi-differencing scheme
without prior knowledge as to how to construct demeaned or detrended series comparable
to xρ̄ and zρ̄ for the linear case. Finally and, perhaps, more importantly, any detrending
taking account of the alternative nonlinear structure of the model would involve nuisance
parameters, such as γ for the STAR alternatives or r1 and r2 for the SETAR alternative. As
a result, we simply apply ERS’ method to the nonlinear case and develop a nonlinear unit
root test procedure based on GLS detrending. We note in passing that the linear local-to-
null alternative detrending approach may provide a useful approximation to the nonlinear
local alternative.
We now give more details of how to construct out proposed tests. Following the literature

we consider two cases of deterministic components, zt = 1 and zt = (1, t)
0. Let us denote the

GLS-based demeaned or detrended series by ỹµt and ỹ
τ
t estimated for a given value of c̄, where

the superscripts µ and τ denote demeaning and detrending, respectively. The GLS-based
unit root tests against an alternative of a STAR process, denoted tµSTAR or t

τ
STAR, are then

obtained as a t-statistic for δ = 0 in the following regression:

∆ỹjt = δ
³
ỹjt−1

´3
+ error, j = µ, τ. (2.12)
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Similarly, the associated unit root tests against an alternatives of SETAR process are given
by the Wald statistics for φ1 = φ2 = 0 in the regression,

∆ỹjt = φ1ỹ
j
t−11{ỹjt−1≤r1} + φ2ỹ

j
t−11{ỹjt−1>r2} + error, j = µ, τ. (2.13)

As mentioned earlier, to deal with the Davies problem, we consider the average and the
exponential average of the Wald statistics defined respectively by1

Wj
avg =

1

#Γ

#ΓX
i=1

Wj(i)
(r1,r2)

, Wj
exp =

1

#Γ

#ΓX
i=1

exp

⎛⎝Wj(i)
(r1,r2)

2

⎞⎠ , j = µ, τ, (2.14)

where Wj(i)
(r1,r2)

is the Wald statistic obtained from the i-th point of the nuisance parameter
grid, Γ and #Γ is the number of elements of Γ. For more details on the selection of the grid
of threshold parameters and its theoretical implications see KS.
We now derive the asymptotic distributions of the GLS-based tSTAR and W tests. First,

ERS show that under the local alternative hypothesis (2.4) it follows that

T−1/2ỹµ[rT ] ⇒ σWc (a) , a ∈ [0, 1] , (2.15)

T−1/2ỹτ[rT ] ⇒ σVc (a, c̄) , a ∈ [0, 1] , (2.16)

where

Wc (a) =
Z 1

0
ec(a−s)dW (s), (2.17)

Vc (a, c̄) =Wc (a)− a
∙
λWc (1) + 3 (1− λ)

Z 1

0
sWc (s) ds

¸
, (2.18)

λ = (1− c̄) / (1− c̄+ c̄2/3) and W (a) is a standard Brownian motion defined on a ∈ [0, 1].
Combining these asymptotic results with those in KSS, it follows that the asymptotic

null distribution of the t̃µSTAR and t̃
τ
STAR test statistics are given by

t̃µSTAR ⇒

n
1
4
W (1)4 − 3

2

R 1
0 W (a)2 da

o
qR 1

0 W (a)
6da

, (2.19)

t̃τSTAR ⇒

n
1
4
V0 (1, c̄)

4 − 3
2

R 1
0 V0 (a, c̄)

2 da
o

qR 1
0 V0 (a, c̄)

6 da
, (2.20)

where Vc (a, c̄) is defined in (2.18). Notice that the asymptotic properties of the GLS de-
meaned series, ỹµt , is the same as that of a random walk with no drift under the null (c = 0).
Therefore, the asymptotic distribution of the t̃µSTAR test obtained using GLS demeaning does
not depend on the specific value of c̄ and simplifies as shown in (2.19). For the detrended
case the asymptotic distribution of the t̃τSTAR test depends clearly on the particular value of
c̄. Following ERS we also select the value of c̄ such that the asymptotic power of the test

1KS find that the supremum of the Wald tests tend to overreject significantly in small samples. For this
reason we will not consider the supremum test.
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under the local alternative is equal to 0.5, which gives c̄ as −17.5.2 Hence, the associated
95% critical values for the t̃µSTAR and t̃

τ
STARt are obtained as -2.21 and -2.93, respectively.

Next, combining the asymptotic results in ERS and KS, we have

fWµ
avg ⇒ fWµ ≡

nR 1
0 1{W (s)≤0}W (s)dW (s)

o2
R 1
0 1{W (s)≤0}W (s)2ds

+

nR 1
0 1{W (s)>0}W (s)dW (s)

o2
R 1
0 1{W (s)>0}W (s)2ds

, (2.21)

fWτ
avg ⇒ fWτ ≡

nR 1
0 1{V0(s,c̄)≤0}V0 (s, c̄) dV0 (s, c̄)

o2
R 1
0 1{V0(s,c̄)≤0}V

2
0 (s, c̄) ds

+

nR 1
0 1{V0(s,c̄)>0}V0 (s, c̄) dV0 (s, c̄)

o2
R 1
0 1{V0(s,c̄)}V0 (s, c̄)

2 ds
,

(2.22)fWµ
exp ⇒ exp

³fWµ/2
´
, fWτ

exp ⇒ exp
³fWτ/2

´
. (2.23)

As described earlier, the asymptotic distributions of the fWµ
avg and

fWµ
exp tests do not depend

on the specific value of c̄, and their 95% critical values are 7.48 and 42.09, respectively. On
the other hand, the 95% asymptotic critical values of the fWτ

avg and
fWτ
exp tests obtained by

setting c̄ = −13 (which is selected to give the asymptotic local power equal to 0.5) are 8.81
and 81.86, respectively.

3 Finite Sample Performance

In the first set of experiments we construct the null model by

xt = α+ βt+ yt, t = 1, ..., T, (3.1)

yt = yt−1 + εt, t = 1, ..., T, (3.2)

where εt is drawn from the standard normal distribution. Without loss of generality we set
the values of α and β to zero since all the tests considered are asymptotically similar.
Secondly, in order to evaluate the power performance against the alternative model where

the process follows globally stationary STAR processes, we generate the DGP by

∆yt = γyt−1
h
1− exp

³
−θy2t−1

´i
+ εt, t = 1, ..., T, (3.3)

where εt ∼ N (0, 1), and we choose a broad range of parameter values for γ = {−1.5,−1,−0.5,−0.1}
and θ = {0.01, 0.05}.
The third set of experiments examines the power performance of the tests against the

alternative of globally stationary SETAR processes, where the data is generated by

yt =

⎧⎪⎨⎪⎩
φ1yt−1 + εt if yt−1 ≤ r1
yt−1 + εt if r1 < yt−1 ≤ r2
φ2yt−1 + εt if yt−1 > r2

, t = 1, ..., T, (3.4)

where εt ∼ N (0, 1). We examine the case of asymmetric adjustments with φ1 = 0.85
and φ2 = 0.95, and select five different sets of threshold parameter values, (r1, r2) =

2Local power is evaluated via stochastic simulations which generate the random processes of T = 1000
observations to discretely approximate the functionals of Brownian motions with 5000 replications.
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{(−0.9, 0.9) , (−1.65, 1.65) , (−2.4, 2.4) , (−3.15, 3.15) , (−3.9, 3.9)}. For each case the grid of
either lower or upper threshold parameter comprises of eight equally spaced points between
the 10% quantile (lower threshold) or the 90% quantile (upper threshold) of the sample and
the mean of the sample.3

For each of experiments we have computed the rejection probability of the null hypothesis.
The nominal size of each of the tests is set at 0.05, the number of replications at 1000 and
the sample size is set to T = 100, 200. We consider both versions of the OLS detrending-
and the GLS detrending-based nonlinear unit root tests: the former denoted by t̂jSTAR,

cWj
avg

and cWj
exp, j = µ, τ , and the latter by t̃jSTAR,

fWj
avg and

fWj
exp, j = µ, τ .4 For comparison

purpose we also consider the following tests obtained using the linear models: the standard
Dickey-Fuller unit root tests obtained using the OLS detrending denoted as t̂jDF , j = µ, τ,
and those obtained using the GLS detrending, denoted by t̃jDF , j = µ, τ .
Simulation results are presented in Tables 1 - 3. As a benchmark, Table 1 gives the

empirical size of the tests when the underlying DGP is the random walk process. As shown
in ERS, the tests based on GLS demeaning and detrending tend to slightly over-reject espe-
cially when T = 100. Therefore, in evaluating power performance, we use the size-adjusted
empirical critical values for the GLS-based tests that are obtained from the size experiments.
For all power experiments, 200 initial observations are discarded to minimise the effect of
initial conditions. It is clear from Tables 2 and 3 that the GLS detrending procedure applied
to the nonlinear unit root tests against either STAR or SETAR alternatives outperform the
existing nonlinear tests. They also dominate linear unit root tests in cases where the non-
linear adjustment mechanism is judged a priori to be more important. For example, our
proposed tests are more powerful than linear counterparts when the corridor regime is large
when the DGP follow the SETAR processes.

Tables 1− 3 abouthere

4 Application to Real Exchange Rates

It has been argued that the existence of transaction and transport costs in traded goods
and Forex markets may be a reason for the violation of the purchasing power parity (PPP)
in the short run and for the persistence of real exchange rates, see Sercu et al. (1995).
Taking the commodity arbitrage view of PPP (rather than the money homogeneity view)
suggests that the extent of goods arbitrage and hence the amount of disequilibrium PPP
relationship is inversely related to shipping costs and to a Forex spread. There is no reason
to suppose a priori that there should be a linear relationship between these costs and the
extent of arbitrage. Quite the opposite may be true in fact. Large transactions are likely
to be processed on less favorable terms than for smaller ones because of the existence of
adverse selection effects on spreads, see Kyle (1985). A further complication is that spreads

3We find that the processes have spent at least 10% of the time in each of the outer regimes even for the
largest threshold parameter values considered.

4To compute the GLS-demeaned tests t̃µSTAR and
fWµ
avg

³fWµ
avg

´
, we find that the relevant values of c̄ for

the demeaned STAR test and the demeaned SETAR test are -9 and -12, respectively.
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themselves narrow following large trades, e.g., such as those that may be initiated by goods
arbitrage. Without developing what would be a very complex theoretical model of the
relationship between arbitrage, transactions costs and the resulting dynamic adjustment of
real exchange rates, we would conjecture that such dynamic adjustments are intrinsically
nonlinear.
We now apply our proposed tests to investigate stationary properties of Yen and Deutsche

Mark real exchange rates. The bilateral real exchange rate against ith currency at time t,
denoted qit, is constructed by

qit = sit + pht − pit, h = Germany, Japan,

where sit is the nominal exchange rate defined as the price of foreign currency in terms
of home currency, pht the domestic price level and pit the price level of the foreign country.
Thus, a rise in qit implies an appreciation of the home currency against the ith currency. The
bilateral nominal exchange rates against currencies other than the US dollar are computed
using the US dollar rates. The price levels are consumer price indices for Yen and wholesale
price indices for the DM. All the data are (seasonally non-adjusted) quarterly observations
over 1960Q1 to 2000Q4, are measured in natural logarithms, and are obtained from the
International Monetary Fund’s International Financial Statistics in CD-ROM. We consider
a very large pool of countries in order to make the empirical analysis more comprehensive.
To accommodate possibly serially correlated errors, we follow KSS and KS and use the

following augmented models of (2.12) and (2.13):

∆ỹτt = δ
³
ỹτt−1

´3
+

pX
j=1

ρj∆ỹ
τ
t−j + error, (4.1)

∆ỹτt = φ1ỹ
τ
t−11{ỹτt−1≤r1} + φ2ỹ

τ
t−11{ỹτt−1>r2} +

pX
j=1

ρj∆ỹ
τ
t−j + error. (4.2)

For simplicity we fixed the lag length at 4 for quarterly data. Here we assume the presence of
a time trend under the alternative hypothesis. To make the comparison comparable to other
existing unit root tests we also consider the DF test based on both OLS and GLS detrending.
The size-adjusted empirical critical values obtained from Monte Carlo experiments in the
previous section will be used to minimise the impact of over-rejection of the GLS-based tests
under the null. In the empirical application we do not consider the average SETAR-based
test as the Monte Carlo analysis has shown that it is less powerful that the exponential one.
Test results are presented in Tables 4 and 5. For the Yen real exchange rates the nonlinear

unit root tests obtained using the STAR framework seem to reject the null of a unit root
more often than any other tests. Looking at the results in Table 4, t̂STAR and t̃STAR tests
reject the null 22 and 26 times respectively out of 37 countries considered, while cWexp andfWexp tests reject the null 15 and 26 times, respectively. On the other hand, t̂DF and t̃DF
tests reject the null only 13 and 15 times, respectively. Turning to the DM real exchange
rates and looking at the results in Table 5, the GLS-based fWexp test rejects for 24 out of the

31 countries considered, whereas the OLS-based cWexp test reject the null only 9 times.
5 The

5There are fewer countries for the DM application due to data unavailability
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number of rejections of fWexp is almost double that of any other tests. This clearly provides
support for our idea that nonlinear unit root tests based on GLS detrending will be more
powerful. On the other hand, there seems less improvement of using GLS detreding in linear
Dickey-Fuller tests and the STAR-based tests; t̂STAR and t̃STAR tests reject the null 14 and
13 times, whereas t̂DF and t̃DF tests reject the null 10 and 11 times. Overall we find that
nonlinear unit root tests are far more powerful than linear ones.

Tables 4− 5 abouthere

Interestingly, we find that the DM real exchange dataset seems to produce more rejections
of the null using the GLS detrending-based SETAR tests (rejecting the null 24 times out
of 31 cases) than using the GLS detrending-based STAR tests (rejecting the null only 13
times), whereas the number of rejections of both tests are similar for the Yen real exchange
rate dataset. This may be taken to signify the possible presence of particular forms of
nonlinearity which are different between two datasets and which can perhaps be picked up
more accurately by one or the other classes of tests. In particular sudden step changes in the
dynamic evolution of real exchange rates may be better picked up by the SETAR-based tests
whereas smoother adjustments may be more amenable to investigation through the STAR-
based tests. The different results for STAR versus SETAR-based tests may arise from the
respective liquidity of the Yen and DM Forex markets. The more liquid the market (e.g.,
Germany), the less important are adverse selection effects on the spread. In the limit where
liquidity is infinite, the spread will be fixed and will exist only to compensate pure non-
information costs. We may tentatively conjecture in the limiting case of a fixed spread that
the SETAR model may capture the arbitrary PPP dynamics better than the STAR model.
On the other hand, This may partially explain to some degree the different results from the
two tests. This may imply that a more liquid DM Forex market may make adjustments more
sudden as compared to the Yen, while a reduced liquidity for Yen may make adjustments
more gradual relative to the DM. In any case, this difference in performance for the two tests
may indicate that the tests may be used complementarily in empirical analysis.

5 Conclusion

It is well-established that inefficient detrending may reduce the power of unit root tests
significantly in the linear framework. In this paper we extend the use of efficient GLS de-
trending mechanism advanced by Elliott et al. (1996) to recent works on testing for unit roots
against particular forms of nonlinear alternatives, mainly the SETAR alternative proposed
by and Kapetanios and Shin (2002) and the STAR alternative considered by Kapetanios et
al. (2003). We find via Monte Carlo simulations that the GLS detrending applied to the
nonlinear unit root tests can may improve the power performance of the existing nonlinear
tests. This finding is also borne out in the empirical application where Yen and DM real
exchange rates are examined.
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Table 1. The size of alternative tests.

T t̂DF t̃DF t̂STAR t̃STAR cWavg fWavg cWexp fWexp
Demeaned Tests

100 .046 .095 .066 .101 .048 .079 .040 .107
200 .041 .094 .064 .089 .040 .045 .060 .079

Detrended Tests
100 .053 .076 .064 .074 .044 .074 .068 .099
200 .060 .067 .048 .052 .047 .063 .066 .083

Table 2. The power of tests against STAR alternatives
Demeaned Tests Detrended Tests

T (θ, γ) t̂µDF t̃µDF t̂µSTAR t̃µSTAR t̂τDF t̃τDF t̂τSTAR t̃τSTAR
100 (.01,−1.5) .509 .635 .684 .709 .323 .354 .461 .552

(.01,−1.0) .336 .461 .466 .543 .237 .252 .286 .348
(.01,−0.5) .190 .265 .238 .303 .144 .140 .149 .205
(.01,−0.1) .105 .114 .106 .115 .083 .071 .082 .088
(.05,−1.5) 1.0 .980 1.0 .994 .999 .991 .987 .980
(.05,−1.0) .993 .935 .987 .957 .929 .936 .913 .917
(.05,−0.5) .729 .775 .751 .757 .432 .525 .530 .614
(.05,−0.1) .160 .177 .157 .176 .108 .110 .101 .120

200 (.01,−1.5) 1.0 .942 .988 .974 .955 .960 .959 .922
(.01,−1.0) .967 .885 .952 .933 .783 .857 .843 .833
(.01,−0.5) .618 .724 .720 .749 .349 .505 .461 .525
(.01,−0.1) .174 .243 .182 .261 .125 .143 .125 .132
(.05,−1.5) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(.05,−1.0) 1.0 .994 1.0 .999 1.0 1.0 1.0 .998
(.05,−0.5) 1.0 .967 .997 .994 .997 .992 .978 .957
(.05,−0.1) .394 .557 .429 .532 .228 .316 .237 .289
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Table 3. The power of tests against SETAR alternatives

T (r1, r2) t̂DF t̃DF cWavg fWavg cWexp fWexp
Demeaned Tests

100 (−0.9, 0.9) .271 .361 .219 .260 .204 .236
(−1.65, 1.65) .225 .296 .209 .256 .196 .241
(−2.40, 2.40) .175 .274 .189 .230 .185 .224
(−3.15, 3.15) .136 .211 .179 .222 .204 .230
(−3.90, 3.90) .106 .147 .136 .165 .150 .174

200 (−0.9, 0.9) .663 .676 .604 .703 .586 .670
(−1.65, 1.65) .619 .639 .564 .682 .569 .650
(−2.40, 2.40) .546 .586 .529 .635 .548 .624
(−3.15, 3.15) .433 .512 .512 .634 .552 .622
(−3.90, 3.90) .279 .386 .355 .512 .419 .524

Detrended Tests
100 (−0.9, 0.9) .167 .188 .130 .183 .126 .178

(−1.65, 1.65) .140 .155 .114 .165 .129 .174
(−2.40, 2.40) .128 .130 .117 .155 .124 .173
(−3.15, 3.15) .108 .124 .105 .155 .114 .167
(−3.90, 3.90) .084 .090 .087 .102 .093 .122

200 (−0.9, 0.9) .430 .466 .353 .453 .371 .430
(−1.65, 1.65) .384 .402 .327 .436 .352 .415
(−2.40, 2.40) .308 .357 .304 .407 .320 .395
(−3.15, 3.15) .294 .316 .292 .396 .332 .409
(−3.90, 3.90) .193 .193 .195 .257 .246 .278
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Table 4. Unit root test results for bilateral real exchange rate (Yen)
Augmented models with fixed lag of 4

Country t̂τDF t̃τDF t̂τSTAR t̃τSTAR
cWτ
exp

fWτ
exp

US −2.77 −2.67 −3.93∗ −3.59∗ 1074.2∗ 832.2∗

Germany −2.96 −2.95∗ −3.73∗ −3.61∗ 417.0 1131.7∗

France −3.12 −3.12∗ −3.95∗ −4.30∗ 6678.1∗ 3978.9∗

Italy −2.85 −2.88 −4.61∗ −4.40∗ 196.6 179.6∗

UK −3.05 −2.94∗ −3.99∗ −3.74∗ 342.3 795.2∗

Canada −3.75∗ −3.44∗ −3.85∗ −3.46∗ 96848.0∗ 279923.2∗

Australia −3.59∗ −3.61∗ −5.12∗ −5.13∗ 12583.7∗ 12518.4∗

Austria −1.55 −1.81 −2.67 −3.58∗ 443.6 57.0
Belgium −2.80 −2.82 −3.31 −3.18∗ 202.9 159.9∗

Czech −0.59 −1.50 −2.64 −2.75 93.0 894.0∗

Denmark −3.40 −3.42∗ −4.24∗ −3.97∗ 1295.7∗ 2149.0∗

Finland −3.95∗ −3.95∗ −3.46∗ −3.48∗ 2550.8∗ 4426.2∗

Greece −2.62 −2.49 −2.78 −2.79 22.7 28.5
Hungary −2.77 −2.48 −2.55 −2.39 25.5 113.3
Ireland −2.53 −2.57 −3.08 −3.16∗ 195.8 202.7∗

Korea −3.88∗ −2.68 −3.33 −2.48 98.7 3224.6∗

Mexico −1.68 −1.57 −4.01∗ −4.11∗ 15.7 43.7
Netherlands −2.87 −2.62 −2.92 −2.67 24.3 130.4
NewZealand −2.88 −2.63 −3.07 −2.62 24.8 55.9
Norway −3.80∗ −3.70∗ −4.71∗ −5.28∗ 2171362∗ 3031270∗

Portugal −2.77 −2.80 −3.59∗ −3.23∗ 82.5 59.3
Spain −3.94∗ −3.82∗ −4.75∗ −4.76∗ 1411.8∗ 2012.4∗

Sweden −4.03∗ −3.89∗ −5.96∗ −5.99∗ 21500.8∗ 32971.8∗

Switzerland −3.81∗ −3.64∗ −3.39∗ −3.68∗ 1239.3∗ 1405.9∗

Turkey −3.32 −1.88 −3.96∗ −3.16∗ 12.6 378.6∗

HongKong −2.03 −2.11 −4.23∗ −3.99∗ 15.4 21.8
Singapore −3.44∗ −3.12∗ −3.61∗ −3.54∗ 123.6 651.1∗

Malaysia −3.57∗ −3.58∗ −3.33 −3.39∗ 947.7∗ 1352.2∗

Indonesia −2.76 −2.47 −4.62∗ −3.90∗ 3794.3∗ 1062.7∗

Thailand −3.28 −3.31∗ −3.78∗ −3.78∗ 149.9 156.7∗

Philippines −4.22∗ −2.29 −5.04∗ −3.30∗ 37.0 42499.3∗

SriLanka −1.28 −1.46 −1.76 −1.87 5.9 6.0
Argentina −4.26∗ −4.36∗ −3.24 −2.87 1104925∗ 742.1∗

Bolivia −5.67∗ −1.28 −11.26∗ −3.34∗ 10238196∗ 26113851∗

Chile −2.00 −1.54 −1.99 −1.70 4.2 9.1
Colombia −2.34 −2.34 −2.94 −2.76 26.6 42.1
V enezuela −2.02 −2.33 −0.50 −1.84 715.9∗ 1656.0∗

# rejections 13 15 22 26 15 26
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Table 5. Unit root test results for bilateral real exchange rate (DM)
Augmented models with fixed lag of 4

Country t̂τDF t̃τDF t̂τSTAR t̃τSTAR
cWτ
exp

fWτ
exp

US −3.00 −2.98∗ −2.42 −2.56 631.4∗ 702.1∗

Japan −3.25 −2.49 −4.10∗ −3.52∗ 27.8 2943.9∗

Italy −2.24 −2.25 −3.32 −3.26∗ 22.7 29.3
UK −2.08 −2.08 −2.27 −2.1 13.2 8.7

Canada −3.29 −3.09∗ −2.56 −2.74 122.7 282.5∗

Australia −3.69∗ −3.71∗ −3.01 −3.34∗ 302.2 337.1∗

Austria −3.43∗ −3.14∗ −3.16 −2.81 218.0 422.5∗

Belgium −2.53 −2.75 −3.53∗ −3.84∗ 155.9 124.4
Denmark −3.53∗ −3.55∗ −3.54∗ −3.33∗ 3011.9∗ 2492.4∗

Finland −3.31 −3.33∗ −4.21∗ −4.2∗ 1866.8∗ 1737.2∗

Greece −2.68 −2.74 −7.68∗ −7.62∗ 171.8 246.4∗

Hungary −1.74 −1.79 −2.28 −2.29 40.1 43.0
Ireland −2.63 −2.65 −3.54∗ −3.56∗ 180.4 211.1∗

Korea −3.06 −1.86 −4.40∗ −1.92 6.8 225.7∗

Mexico −4.75∗ −4.71∗ −4.09∗ −4.09∗ 315031.4∗ 275743.3∗

Netherlands −2.57 −2.43 −2.38 −2.04 371.0 230.2∗

Norway −3.55∗ −3.65∗ −3.09 −2.92 1159.3∗ 878.8∗

Spain −2.83 −2.66 −3.45∗ −2.69 759.0∗ 1615.2∗

Sweden −3.88∗ −3.84∗ −4.18∗ −4.17∗ 1360.9∗ 1587.8∗

Switzerland −3.06 −2.94∗ −4.28∗ −3.62∗ 682.2∗ 1606.0∗

Turkey −2.26 −2.30 −2.02 −2.19 30.64 37.6
Singapore −2.43 −2.46 −2.10 −2.10 170.1 255.5∗

Malaysia −3.15 −2.35 −3.86∗ −3.57∗ 41.7 748.7∗

Indonesia −2.29 −1.64 −2.40 −1.82 64.0 229.4∗

Thailand −3.42∗ −3.23∗ −2.44 −2.22 849.0∗ 1688.4∗

Philippines −3.83∗ −1.85 −4.41∗ −1.99 59.831 5858.6∗

SriLanka −3.50∗ −2.77 −3.97∗ −2.85 250.6 4455.7∗

Argentina −5.70∗ −1.69 −2.97 −1.55 4.0 10064985∗

Chile −1.99 −1.83 −2.60 −3.54∗ 97.1 9551.0∗

Colombia −2.27 −2.29 −1.82 −1.85 28.0 27.4
V enezuela −2.22 −2.28 −2.21 −2.48 28.0 21.1
# rejections 10 11 14 13 9 24
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