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1 Introduction

In many situations of economic interest, decision makers seek advice from better-informed

experts. Examples include lobbying, management consulting, and financial advice. In these

situations frequently the interests of experts and decision makers do not coincide. This

creates an incentive for the expert to use her information strategically, and for the decision

maker to interpret advice in light of the sender’s bias. The seminal analysis of strategic

information transmission between a biased expert and an uninformed decision maker was

provided by Crawford and Sobel [4] (henceforth CS). In their model a privately informed

sender sends a costless message to a receiver who takes an action that affects the payoff of

both parties.

In this paper we investigate strategic information transmission when there is communi-

cation error, which we refer to as noise. With some probability, independent of the message

sent, observed messages are drawn from a fixed error distribution; otherwise messages go

through as sent. Our main finding is that adding noise can improve welfare. In the uniform-

quadratic model, i.e. with quadratic preferences and a uniform type distribution, welfare can

be raised for almost every bias level by introducing a sufficiently small amount of noise. In

addition there exists a level of noise that makes it possible to achieve the best possible payoff

that can be obtained by means of any communication device.

As is the case with the CS model, all equilibria of the noise model are interval partitional:

The sender’s message reveals only in which of a number of intervals of the state space the

true state lies. But unlike in the CS model, in the noise model there may be infinitely many

actions (countable or uncountable) induced in equilibrium. Even restricting to equilibria

with a fixed number of intervals, once noise is introduced there is generally a continuum

of equilibria, each of which induces a different equilibrium outcome. This multiplicity is a

consequence of the fact that, unlike in the CS model, coding, the measure of the message

space used by each interval of the equilibrium partition of the type space, matters when there

is noise. Our welfare results are achieved with equilibria that induce a finite partition and

with a front-loading coding scheme: Types in the lowest interval of the equilibrium partition

randomize over almost all of the available messages; each other interval is identified with a

single distinct message, sent by all types in that interval. This front-loading construction

and consequently our welfare results extend to an environment in which noise levels are

correlated with messages, provided the function that maps messages into noise levels has

a sufficiently large range. Interestingly, in this environment the best payoff that can be

obtained by means of any communication device can be approximated to any desired degree

without manipulating the noise level, which is determined endogenously in equilibrium.

Communication errors have been studied in information theory, pioneered by Shannon

[18]. There the problem is faithful transmission of messages in the presence of some funda-
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mental source of noise, abstracting away from strategic considerations. In Shannon’s original

model, the only source of noise is in the channel through which signals (translated messages)

are passed from sender to receiver, but in a broader context we may think of errors as arising

also in the translation process. Suppose, for example, that Alice is trying to pass on some

information to Bob by means of verbal communication. Three sources of error are possible:

she may fail to choose appropriate words to express her thoughts; he may not hear correctly

what she says; or he may misunderstand the meaning of her words.1

The paper is structured as follows. In section 2, we describe the formal details of the

model and provide a partial characterization of the equilibrium set. Section 3 provides

a closer examination of the set of equilibria in the uniform-quadratic case. In section 4

we consider the welfare properties of noise equilibria, again in the uniform-quadratic case.

Section 5 examines some extensions of the model, and section 6 concludes.

1.1 Related literature

To our knowledge, the idea that noisy communication channels can improve information

transmission is first discussed by Myerson [16] (pages 285—288). He considers a two-state,

three-action cheap talk game; if player 1 is able to send a message to player 2 by means of

a carrier pigeon which arrives only half the time, then communication is possible when it

would have been impossible with direct, reliable messages. In the communicative equilibrium,

player 1 sends a message only in one of the two states. If the pigeon arrives, player 2 knows

that he is in that state; if not, he cannot determine whether the pigeon got lost or was never

sent. In this way, an outcome is achieved that is better for both players than would have

been possible in the absence of noise.

Also related to the current project is the extensive literature on general communication

devices (see e.g. Forges [6] and Myerson [15]). Such a device (often thought of as an impartial

mediator) receives inputs (messages) from each player, and transmits outputs according

to some matrix of transition probabilities. Forges and Myerson show that allowing the

players to use these devices can expand the set of equilibrium outcomes in games. Clearly,

a communication device could be used to replicate the noise mechanism considered here, or

to reproduce the effects of Myerson’s unreliable carrier pigeon. But communications devices

are much more general than noise mechanisms.

More recently, Goltsman et al. [8] investigate optimal communication devices (which they

call mediators) in the context of the uniform-quadratic version of the CS model. They derive

an upper bound on the receiver’s payoff in any equilibrium; we show in section 4.2.1 that

if the level of noise can be chosen appropriately, our front-loading equilibrium construction

1This final source of potential error is particularly important when the words used are vague. Vagueness is
a pervasive phenomenon in natural language – consider the use of terms such as “tall”, “red”, and “good”.
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achieves this upper bound. They also show that if the receiver is able to commit to using an

arbitrator to make decisions for him on the basis of messages received from the sender, he can

obtain a strictly higher expected payoff. (In a related paper, Kováč and Mylovanov [12] study

arbitration in a more general framework.) Ganguly and Ray [7] also analyze communication

devices in the uniform-quadratic version of the CS model. Their main result concerns devices

that are N-simple: They receive N messages and submit N recommendations. Such devices

cannot improve on the N-step CS equilibrium if the bias lies below some bound which

depends on N.

A paper by Krishna and Morgan [13] shows that allowing multiple rounds of (two-way)

communication in the CS framework can also result in equilibria that Pareto dominate those

of the original model.2 They consider a first round of communication, a meeting, in which

the sender and receiver exchange messages simultaneously, followed by a single transmission

from sender to receiver. During the meeting, the sender reveals in which of two elements

of the state space the true state lies, and the two agents also send random messages to

determine whether the meeting should be deemed a “success” or a “failure”. These random

messages effectively induce a lottery over outcomes such that neither agent can affect the

probability of success or failure. If the meeting was a success, then the sender reveals more

information about the true state during the second round of communication; otherwise no

more information is revealed. (Clearly this kind of communication could also be replicated

using a communication device: Ganguly and Ray show this formally.) Krishna and Morgan

establish the remarkable result that it is almost always possible to construct equilibria in

which, relative to the best CS equilibrium, the information gain when the meeting is a success

outweighs the information loss when it is a failure, leading to a Pareto improvement. This

kind of equilibrium is able to improve on the CS equilibria by leveraging the risk aversion of

the sender; in the face of risk about whether or not additional information will be conveyed

in the second round, she is willing to give up more information in the first round. In the

uniform quadratic case most commonly used in applications of the CS model, the welfare

results of Krishna and Morgan are similar to our own, although we show that the probability

of error can lead to welfare improvements for more extreme values of the sender’s bias. But

the underlying source of the welfare gain is very different.

Three recent papers introduce different kinds of perturbations into the CS model, and

should be discussed next. First, Kartik, Ottaviani and Squintani [11] (henceforth KOS) study

strategic information transmission when messages directly affect payoffs, either because the

sender faces a cost of lying or receivers are credulous. They show that with an unbounded

state space there are fully revealing equilibria. Unlike in their environment, in the noise

2Aumann and Hart [1] also examine games with multiple rounds of pre-play communication, and provide
a complete characterization of the set of equilibrium outcomes. Since they consider games with a finite set
of states, their results do not apply to the CS model.
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model analyzed here messages do not have an intrinsic meaning and therefore the notions

of deception and language inflation that play an important role in KOS have no content.

On the other hand, the issue of coding, i.e. how the message space is used by the various

sender types, that plays a crucial role in our analysis does not arise for KOS. Further, in

our model there are no fully revealing equilibria, regardless of whether we choose the state

space to be bounded or not. One parallel between the two papers is that in both there is a

sense in which sender types who separate themselves achieve their ideal points, on average

in the KOS model with heterogeneously sophisticated receivers and in the no-noise event in

the noise model.

Next, Kartik [10] looks at a perturbation of the CS model in which the sender has an

explicit convex cost of misreporting. He finds that only the most informative CS equilibria

can arise as limits of monotonic equilibria as the cost of misreporting converges to zero.

Finally, in a closely related paper, Chen [3] modifies the CS model by including a small

proportion of behavioral types, honest senders and naive receivers. Using an additional

monotonicity restriction, she shows that there is a unique equilibrium. This equilibrium

approaches the maximally-informative CS equilibrium in the limit as the proportions of

honest senders and naive receivers converge to zero. In contrast, in the noise model messages

have no exogenous meaning and so it is hard to make sense of the notion of honesty. From

a technical standpoint, in the noise model we obtain welfare results for a range of strictly

positive noise levels, not only in the limit as noise tends to zero; monotonicity of equilibrium

is not a significant constraint on the equilibrium set; and, monotonicity in conjunction with

the message space being a continuum does not pose existence problems (unlike in Chen’s

model).

We conclude this review section by mentioning two more variants of the CS model.

Olszewski [17] examines a model in which the receiver has private information, there is

positive probability that the sender is a behavioral type who always tells the truth rather

than being strategic, and the strategic sender prefers to be perceived as the honest type. If

the latter concern is sufficiently strong, there is a unique equilibrium which is fully revealing.

In Olsweski’s model the receiver can ask for more or less information; when the sender

cares about the receiver’s action, in addition to being perceived as honest, asking for more

information may create an incentive for lying. Both of these results are predicated on having

behavioral types and messages with intrinsic meanings. In our model, as already discussed,

messages acquire meaning only endogenously from the sender’s equilibrium strategy, and

there are no behavioral types. In Morgan and Stocken’s [14] variation of the CS model

the receiver is uncertain about the sender’s bias. They find equilibria in which there is

full separation on a portion of the type space: sender types whose preferences are perfectly

aligned with those of the receiver are able to perfectly reveal sufficiently low states of the

4



world. In contrast, in the noise model the possibility of an error in information transmission

ensures that the receiver never learns the sender’s type for certain, even in equilibria that

involve separation on a portion of the type space.

2 The Model

2.1 Setup

We investigate communication between a privately informed sender, S, and a receiver, R.

The agents’ payoffs depend on the sender’s information or type, θ ∈ T = [0, 1], and the

receiver’s action, a ∈ R. We assume that θ is drawn from a common-knowledge distribution
F with an everywhere positive density f on the support T. The payoff of a sender of type

θ when the receiver takes action a is US(a, θ, b), where b is a parameter measuring her

bias relative to the receiver. The payoff of a receiver who takes action a is UR(a, θ) when

the sender’s type is θ. The functions US and UR are assumed to be a twice continuously

differentiable. We assume that UR(a, θ) ≡ US(a, θ, 0) for all (a, θ).3 We use subscripts to

denote partial derivatives; e.g., US
12(a, θ, b) stands for the cross-partial derivative of U

S with

respect to its first and second argument, evaluated at (a, θ, b). We assume that for each

realization of θ and each value of b there exist an action a such that US
1 (a, θ, b) = 0 and

for each θ there exists an action a0 such that UR
1 (a

0, θ) = 0; US
11(a, θ, b) < 0 < US

12(a, θ, b)

for all a, θ, and b; and UR
11(a, θ) < 0 < UR

12(a, θ) for all a and θ. Thus, given the sender’s

private information θ and her bias b, a unique action, called her “ideal action" and denoted

aS(θ, b), maximizes her payoff; similarly, given θ, the receiver has a unique ideal action,

denoted aR(θ).4 Note that each player’s ideal action is increasing in θ. Finally, we assume

that US
13(a, θ, b) > 0 everywhere, so that an increase in b shifts the sender’s preferences further

away from the receiver’s. Henceforth we disregard the case where sender and receiver have

identical preferences, assuming without loss of generality that b > 0, so that aR (θ) < aS (θ, b)

for all θ.

The timing of the game is as follows. The sender observes the value of θ, and then sends

a message m ∈M = [0, 1]. The sender’s message is subject to error : with probability �, the

receiver observes a message m0 that is a draw from the error distribution G on the message

spaceM ; otherwise, the receiver observes the messagem sent by the sender. We assume that

he cannot distinguish between received messages that are the result of an error and messages

that were sent intentionally. The error distribution G is independent of the sender’s type

and of the message sent, and has a density g that is everywhere positive on M. Finally, the

3We make this assumption to maintain consistency with the Crawford and Sobel framework. Since we
are interested only in values of b 6= 0, there is no loss of generality.

4That is, aS (θ, b) = arg maxa U
S (a, θ, b) and aR (θ) = arg maxa U

R (a, θ) .
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receiver takes some action a ∈ R. We consider values of � ∈ (0, 1) , and refer to this game as
the noise model . In the degenerate case when � = 0, the game collapses to that of Crawford

and Sobel – the CS model .

2.2 Equilibrium

A behavior strategy for the sender σ : T → ∆ (M) specifies the distribution of messages

she sends for each value of θ; for the receiver, given the strict concavity of UR in a, it is

without loss of generality to restrict attention to pure strategies ρ : M → R that describe
what action he chooses for each message he might receive.

In a perfect Bayesian equilibrium (henceforth equilibrium) strategies are optimal given

players’ beliefs and beliefs are derived from Bayes’s rule whenever possible. For a sender of

type θ, this means that every messagem that she sends must maximize the weighted average

of her expected utility if the message is received as intended and her expected utility if there

is an error, i.e.

m ∈ argmax
m0

µ
(1− �)US(ρ (m0) , θ, b) + �

Z 1

0

US(ρ (m00) , θ, b)g (m00) dm00
¶

= argmax
m0

US(ρ (m0) , θ, b)

(The simplification is possible because the probability of an error, �, and the error dis-

tribution, g, are independent of the message actually sent.5) Now consider the receiver. Let

μ (θ | m) denote his beliefs about θ conditional on receiving message m. Since � > 0 and g is

everywhere positive, Bayes’ rule is always well-defined and gives us

μ (θ | m) = ((1− �)σ (m | θ) + �g (m)) f (θ)R 1
0
((1− �)σ (m | θ0) + �g (m)) f (θ0) dθ0

.

On receiving message m, the receiver chooses the (unique) action which maximizes his ex-

pected utility given these beliefs:

ρ (m) = argmax
a0

Z 1

0

UR(a0, θ)dμ (θ | m) .

Definition 1 A perfect Bayesian equilibrium of the noise model is a strategy for the sender,
σ : T → ∆ (M) ; a strategy for the receiver, ρ :M → R; and a set of beliefs for the receiver,
μ :M → ∆ (T ) , such that

1. for all θ ∈ T : m ∈ argmaxm0 US(ρ (m0) , θ, b), for all m ∈ supp (σ (· | θ)) ,
5We relax the first assumption in section 5.1.
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2. for all m ∈M : ρ (m) = argmaxa0
R 1
0
UR(a0, θ)dμ (θ | m) , and

3. μ (θ | m) = ((1−�)σ(m|θ)+�g(m))f(θ)
1
0 ((1−�)σ(m|θ

0)+�g(m))f(θ0)dθ0
.

For given parameter values, the set of equilibria is very large, and it is difficult to provide

a complete characterization. In this section we derive a number of results about the nature

of the equilibrium set; in the next section, we provide more results in the context of a specific

example (an extension of the well-known uniform-quadratic case of Crawford and Sobel).

We start by introducing some new notation and terminology. Since the sender can only

influence the receiver’s actions in the no-noise event, it is useful to define ω(σ, ρ, θ) as the

distribution of actions that is induced by type θ in the no-noise event when the sender uses

strategy σ and the receiver uses strategy ρ.We call two equilibria with corresponding strategy

pairs (σ, ρ) and (σ0, ρ0) outcome equivalent if for every sender type θ, ω(σ, ρ, θ) = ω(σ0, ρ0, θ);

and essentially outcome equivalent if ω (σ, ρ, θ) = ω (σ0, ρ0, θ) for all but an at most countable

set of types θ. We can now state our first result.

Proposition 1 In every equilibrium with strategy pair (σ, ρ), the set of types θ for whom

action a is in the support of ω(σ, ρ, θ) is an interval (possibly the empty set); if the interior of

that interval is nonempty, all types in the interior induce the same action, a. Furthermore,

every equilibrium is essentially outcome equivalent to an equilibrium in which each type θ

induces a single action.

The proof of all results in this section can be found in the appendix. According to

Proposition 1 almost every type induces precisely one action, and the set of types which

induce any given action is an interval of the type space. The types in this interval may,

however, be using different strategies. If we are concerned only with outcomes, Proposition

2 shows that it is without loss of generality to confine attention to equilibria in which these

types behave identically.

Proposition 2 Consider an equilibrium in which the type space is partitioned into intervals,
with types in any given interval inducing the same action and types in distinct intervals

inducing distinct actions. There is an outcome equivalent equilibrium in which for any non-

degenerate intervals I and I 0 (I 6= I 0) that are elements of this partition

1. all types in I use the same distribution over messages, and

2. this distribution is equal to the error distribution, G, restricted to a subset MI of the

message space, with MI ∩MI0 = ∅.
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We say that a message is unused if it is not in the support of any type’s distribution over

messages. Our next result shows that we can, without loss of generality, assume that the

entire message space is used.

Proposition 3 Every equilibrium is outcome equivalent to an equilibrium in which there are
no unused messages.

There is a close connection between Propositions 1 — 3 above and Theorem 1 of Crawford

and Sobel [4]; but there are also several differences between their results and ours. Their The-

orem 1 states that every equilibrium of the CS model is outcome equivalent to an equilibrium

in which types in the interior of a given element I of the equilibrium partition, (θi−1, θi) ,

randomize uniformly over messages in [θi−1, θi]; but the mixing distribution used is not im-

portant, nor is the set of messages used, as long as each partition element uses a distinct set

of messages. More precisely, one could construct an outcome equivalent equilibrium in which

types in (θi−1, θi) randomize over messages in some arbitrary setMI ⊆M, according to some

arbitrary distribution hI , as long as the message sets used by each interval are disjoint. On

the other hand, Proposition 2 describes an equilibrium in which types in a given partition

element I randomize according to the error distribution restricted to message set MI ; in

this case (as is evident from the proof) it is crucial that this particular distribution is used.

Intuitively, if a different distribution is used, then the receiver’s posterior probability of an

error, and hence his action, will depend on which message in MI is observed. Additionally,

the size of the set MI is important, in a sense that is made precise in Proposition 4 below.

LetM denote a finite orderedN-tuple (M1, . . . ,MN) of measurable sets that partition the

message space and let λG be the measure that the error distribution G induces onM. Define

ΛG(M) ≡ (λG(M1), . . . , λG(MN)) as the ordered N-tuple of probabilities of the components

ofM. We refer toM as a message-set vector and say that two message-set vectorsM and

M0 are G-distinguished if ΛG(M) 6= ΛG(M0). An equilibrium is adapted to M if there is a

partition of the type space into N intervals T1, . . . , TN such that for i = 1, . . . , N the mixed

strategy of each type in Ti is G restricted to Mi. Denote by O (M) the set of equilibrium

outcomes (joint distributions over types and actions) of equilibria that are adapted to M.

The following result highlights the importance of coding, which determines the measures of

the sets of messages Mi used by each element Ti of the equilibrium partition of the type

space.

Proposition 4 If M andM0 are G—distinguished, then O (M) ∩ O (M0) = ∅. Otherwise,
O (M) = O (M0) .

Our next result concerns the relationship between the set of equilibria of the CS model

and the set of equilibria of the noise model when the level of noise is low. This proposition
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requires an additional assumption, Crawford and Sobel’s monotonicity condition (M) (see

page 1444 of their paper).6 This condition is satisfied by all standard versions of their model

used in applications, such as the uniform-quadratic case; a precise definition can be found

in the appendix. We will call an equilibrium in which N actions are induced an N-step

equilibrium; if each action is induced by a set of types with positive measure, we refer to a

non-degenerate N-step equilibrium. For any non-degenerate N-step equilibrium with sender

strategy σ, P(σ) denotes the boundary points between the intervals of the corresponding
partition viewed as a point in RN−1.

Proposition 5 Assume, in the CS model, that condition (M) holds and that there exists a
non-degenerate N-step equilibrium with sender strategy σ. Then for all δ > 0 there exists

�̃ > 0 such that for all noise levels � ∈ (0, �̃) and for any N-element partition M of the

message space, there exists an equilibrium of the noise model with sender strategy σ� that is

adapted toM and satisfies |P(σ�)− P(σ)| < δ.

Proposition 4 tells us that, for fixed �, ifM andM0 are distinct, they cannot produce

the same equilibrium outcome. Together with Proposition 5, this implies that near any

non-degenerate N-step CS equilibrium there is an N − 1-dimensional set of equilibria of the
noise model all of which induce different equilibrium outcomes.

The final result of this section says that full separation of types is not possible in a

noise equilibrium. More precisely, consider a given noise equilibrium in which each type

induces precisely one action (by Proposition 1, every noise equilibrium is essentially outcome

equivalent to an equilibrium of this kind). Slightly abusing notation, let ω : T → R be

the outcome function, where ω (θ) is the action induced by type θ. Then we say that this

equilibrium is separating if ω is one-to-one.

Proposition 6 There is no separating equilibrium of the noise model.

It is worth noting that this result holds even if the state space is not bounded.

3 Equilibria in the uniform quadratic case

As noted earlier, it is difficult to give a complete characterization of the equilibrium set. In

this section we take a small step in that direction, concentrating on the well-known uniform-

quadratic case introduced by Crawford and Sobel [4]. The remainder of the paper focuses
6In the CS model, the boundary types that separate elements of the equilibrium partition solve a difference

equation with appropriate initial conditions. Condition (M) ensures that the solutions of this difference
equation vary monotonically with initial conditions. The proof strategy is to use condition (M) to find one
solution to the CS-difference equation in which the length of the first interval [0, θ1) is too small and another
where it is too large for an equilibrium. By continuity, the same will be true for the corresponding difference
equation in the noise model. The intermediate-value theorem then ensures that the noise model has a nearby
equilibrium.
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on this case, except where explicitly indicated otherwise. In the uniform quadratic case, the

sender’s type θ is drawn from the uniform distribution on the unit interval; the sender’s and

receiver’s utility functions are given by

US = − (θ + b− a)2 and

UR = − (θ − a)2

Notice that the ideal actions of the sender and the receiver are θ+ b and θ respectively. We

also assume that the message space M = [0, 1] , and the error distribution G is uniform on

[0, 1] .

In this section, we restrict attention to values of bias 0 < b < 1
2
, since for larger values no

communication is possible and every equilibrium is therefore outcome equivalent to pooling.

There are two key differences between the equilibria of the models with and without noise.

First, in the noisy case there can be a continuum of equilibrium outcomes of a given number

of steps (see section 3.1 below), while in the CS case, Crawford and Sobel show that every

N-step equilibrium (if any exist) yields the same outcome. Second, we show in sections

3.2 and 3.3 that, as long as the level of noise is high enough, there are equilibria with an

infinite and even an uncountable number of steps; in the CS case, on the other hand, every

equilibrium has a finite number of steps.

3.1 Two-step equilibria

As a starting point, we provide a characterization of the set of two-step equilibrium outcomes.

In a two-step equilibrium, two distinct actions a1 and a2 are induced; assume without loss of

generality that a1 < a2. By Proposition 1, the set of types inducing action ai is an interval

the state space, Ii (i = 1, 2). Let θ1 ∈ (0, 1) denote the boundary type between the two
intervals7, so I1 = [0, θ1) and I2 = [θ1, 1].8 Since we are interested only in outcomes, it follows

from Proposition 2 that we can restrict attention to equilibria in which types I1 randomize

uniformly over messages in M1 and types in I2 randomize uniformly over messages in M2,

for some M1,M2 ⊆ [0, 1] with M1 ∩M2 = ∅; further, by Proposition 3 we can assume that
M1 ∪M2 = [0, 1] . Finally, Proposition 4 tells us that the outcome is affected only by the

measure ofM1 andM2 (with respect to the error distribution), and not the exact composition

of these sets. Let λ1 denote the measure of M1, and therefore 1 − λ1 the measure of M2.

7If θ1 = 0 or θ1 = 1, then each interval induces the same action (see expressions for a1 and a2 below),
and we have a one-step equilibrium.

8Or I1 = [0, θ1] and I2 = (θ1, 1] ; or I1 = [0, θ1] and I2 = [θ1, 1] . The boundary type could belong to
either or both intervals, though by Proposition 1 all types in the interior of each interval induce only one
action. Henceforth we assume that the boundary type belongs only to the second interval; this assumption
does not affect the outcome for any other type.
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Then the actions chosen by the receiver on receiving messages inM1 andM2 are respectively

a1 =
(1− �) θ1

θ1
2
+ �λ1

1
2

(1− �) θ1 + �λ1
and

a2 =
(1− �) (1− θ1)

θ1+1
2
+ � (1− λ1)

1
2

(1− �) (1− θ1) + � (1− λ1)
.

Since a1 < a2, a necessary and sufficient condition for equilibrium is that the sender of type

θ1 is indifferent between a1 and a2, or

θ1 + b =
a1 + a2
2

. (1)

Let θ∗1 (b, �, λ1) denote the relevant solution
9 to this equation (and therefore the equilib-

rium boundary type), when it exists.

Case 1: b < 1
4
. A two-step equilibrium exists for all λ1 ∈ [0, 1] . The lower and upper

bounds on θ∗1 (b, �, λ1) are realized when λ1 = 0 and λ1 = 1 respectively, and are given by10

θ1 =
3− 4b+ 4b�−

q
(3− 4b+ 4b�)2 − 8 (1− 4b) (1− �)

4 (1− �)
= θ∗1 (b, �, 0)

θ1 =
1− 4b (1− �)− 4�+

p
1 + 8b (2b (1− �)− 1) (1− �) + 8�

4 (1− �)
= θ∗1 (b, �, 1)

(Notice that when � = 0, both of these expressions are equal to 1−4b
2
, the unique boundary

value for a two-step equilibrium in the CS model.) It can be shown that θ∗1 (b, �, 0) <

θ∗1 (b, �, 1) , and furthermore, θ
∗
1 (b, �, λ1) is continuous and strictly increasing in λ1. Thus any

value between these two bounds is attainable as an equilibrium boundary type for appropriate

choice of λ1, and allowing the first step of the equilibrium partition to use a larger proportion

of the message space shifts the boundary between the two steps to the right.

Figure 1 below illustrates the lower bound (dotted line) and upper bound (solid line) as

a function of the noise level when b = 1
10
.

9That is, θ∗1 (b, �, λ1) denotes the solution to equation (1) that lies strictly between 0 and 1.
10The deriviation of this and all other results in this section can be found in the appendix.
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Figure 1: Two-step equilibrium partitions, b = 1
10
.

Case 2: b ≥ 1
4
. A two-step equilibrium exists as long as λ1 6= 0. In this case the lower

bound on the set of equilibrium boundary values is 0, and θ∗1 (b, �, λ1) approaches this value

as λ1 tends to 0. The upper bound on θ∗1 (b, �, λ1) is given by the same expression as before,

and is again attained when λ1 = 1. As before, θ
∗
1 (b, �, λ1) (when defined) is continuous and

strictly increasing in λ1.

3.2 An infinite partition

We now show that, unlike in the CS model, there are equilibria of the noise model with

infinitely many steps.11 Such equilibria exist as long as the level of noise is high enough.

Proposition 7 If � ≥ 2b

(1+
√
2b)

2 , then there exists an equilibrium of the noise model with

infinitely many steps.

Note that the level of noise required is increasing in b, and tends to 0 as b tends to

0. The proof of Proposition 7 (in the appendix) is constructive. To give some flavor of

11A recent paper by Gordon [9] also demonstrates the existence of equilibria with infinitely many steps in
a framework that is based on the CS model. Gordon adopts a reduced-form approach in which the receiver’s
preferences are represented indirectly by a mapping from sets of types to actions; intuitively, this mapping
gives the receiver’s ideal action if the sender’s message indicates that her type is in a given set. (Note that
in the noise model (unlike the CS model), this mapping would depend on the coding of messages, and thus
could not be treated as exogenous.) Gordon’s Theorem 4 states that equilibria with infinitely many steps
exist as long as preference satisfy a moderate audience condition, which says that the lowest sender type
has a negative bias while the highest sender type has a positive bias. To establish their finiteness result,
Crawford and Sobel impose restrictions on preferences that rule out the moderate audience condition.
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the construction, here we describe the sender’s strategy. Consider the following (infinite)

partition of the type space:

{{0} , . . . , [θ−3, θ−2) , [θ−2, θ−1) , [θ−1, 1]} ,

where boundary types θ−1, θ−2, . . . form a (descending) geometric progression; since θi → 0

as i→−∞, the set does indeed partition [0, 1]). Types in each partition element, except the

final one [θ−1, 1] , randomize uniformly over a set of messages that is proportional to the size

of the element, while types in [θ−1, 1] randomize uniformly over the leftover messages.

3.3 Uncountable partitions

Proposition 7 states that, as long as the level of noise is at least some threshold value, there

is an equilibrium of the noise model with a countably infinite number of steps. If � is strictly

larger than this value, we can find an equilibrium of the noise model with uncountably many

steps. This can be shown using a construction similar to that used to prove Proposition

7, except that at the left hand end of the type space (i.e. for low values of θ) the sender

adopts a fully-revealing strategy, with every type sending a distinct message. For the sake of

exposition, however, we here present a weaker result (with a tigher constraint on the value

�) that can be proved by means of a simpler construction.

Proposition 8 If � > 2b, then there exists an equilibrium of the noise model with uncount-

ably many steps.

Again we relegate the details of the equilibrium construction to the appendix, describing

only the sender’s strategy here. Consider the following (uncountably infinite) partition of

the type space: n
{{θ}}θ∈[0,θ∗] , . . . , (θ−3, θ−2] , (θ−2, θ−1] , (θ−1, 1]

o
,

where boundary types θ−1, θ−2, . . . form a descending sequence that tends to θ
∗. The sender

strategy is given by:

• if θ ∈ [0, θ∗] , send message m = s (θ) where s (·) is a strictly increasing differentiable
function with s (0) = 0;

• if θ ∈ (θi−1, θi] (i ≤ 0), randomize uniformly over messages in (ζ (θi−1 − θ∗) + s (θ∗) ,

ζ (θi − θ∗) + s (θ∗)] , where ζ (1− θ∗) + s (θ∗) = 1.

Each of the singleton elements of the partition, then, sends a single message, while each

nondegenerate-interval element randomizes over some nondegenerate interval of the message

13



space. It is worth noting that each sender type in the fully revealing region, [0, θ∗] , induces

her ideal action.

4 Welfare results in the uniform quadratic case

The results of the previous section suggest a sense in which, if the information transmission

process is noisy, more communication is possible – we found noise equilibria in which the

sender’s messages partition the state space more evenly and into more elements than is

possible in any equilibrium of the CS model; furthermore, introducing noise allows us to

construct communicative equilibria for values of b that are so high that the only equilibrium

of the CS model is totally uninformative (specifically, b ∈
£
1
4
, 1
2

¢
in the uniform quadratic

case).

We call any changes in the agents’ utility resulting from changes in the equilibrium

partition the strategic effect of noise. What is the source of this effect? Recall that in a

equilibrium of the CS model communication is imperfect because the sender and the receiver

do not agree on what action should be chosen for any type. In the presence of noise, the

receiver has to take into account the possibility that a given message was received in error;

his expectation of the sender’s type is a weighted average of the expectation given that

the message was transmitted faithfully and the expectation given that there was an error.

Compared with the noiseless case, the receiver’s expectations are distorted towards the ex

ante mean. In particular, the meaning of a message that signals a low type is distorted

upwards; this implies that the receiver’s action will also be distorted upwards, and hence

closer to the ideal action of the sender (given positive bias). For low types, then, noise brings

the effective preferences of the sender and receiver into closer alignment. Even though the

opposite is true for high types, this allows us to construct more informative equilibrium

partitions – either with more elements or with elements that are more evenly spaced –

than is possible in the CS model.

We are some way from concluding that noise facilitates information transmission, how-

ever. There are two negative effects of noise, which mitigate the strategic effect. First, when

errors actually occur, there is a clear loss of information (the direct effect); second, since the

receiver does not observe whether or not a given message was sent in error, he has to trade

off the losses in each contingency (the distortion effect).

To analyze the trade-off between these three effects, we need a precise measure of the

informativeness of an equilibrium: we follow Crawford and Sobel in using the (ex ante)

expected utility of the receiver for this purpose. In the uniform quadratic case, which we

continue to focus on in this section, this is equal to the negative of the residual variance

of θ that the receiver expects to face after receiving his message. Further, it can be shown
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that (in equilibrium) EUS = EUR − b2, so this measure also gives us a Pareto ranking

of equilibria – one equilibrium is more informative than another if and only if it Pareto

dominates it. In example 1 below, we show how much of the receiver’s change in utility once

noise is introduced is due to each of the three effects described above.

Two questions naturally arise regarding the welfare properties of noise equilibria. First,

what does the most informative equilibrium of the noise model look like? And second, does

noise increase or reduce informativeness? We consider the second question first, and prove

two key results: (1) a small amount of noise is (almost) always a good thing; and (2) if the

bias is large, any amount of noise is a good thing. The first result is expressed formally in

Proposition 9.

4.1 The welfare effects of noise

4.1.1 Low noise

Proposition 9 If b < 1
2
and b 6= 1

2N2 for all integers N > 1, there exists an � > 0 such

that for all � ∈ (0, �) there is an equilibrium of the noise model that is Pareto superior to all

equilibria of the CS model.

The proof of this proposition can be found in the appendix. We construct an equilibrium

of the noise model and show that it is more informative than every equilibrium of the CS

model for small values of �. In this equilibrium, the sender adopts a front-loading strategy,

using up almost all of the messages in the first partition element.12. The following example

provides an illustration.

Example 1
Suppose that b = 1

10
. We compare the receiver’s expected utility in the Pareto optimal

equilibrium of the CS model and a three-step equilibrium of the noise model, with noise

� = 1
126
.

CS model

The Pareto optimal equilibrium of the CS model has two steps, with partition elements£
0, 3

10

¢
and

£
3
10
, 1
¤
, and resulting EUR = − 37

1200
= −0.0308

Noise model, � = 1
126

12The reader may recall from the characterization of two-step equilibrium in section 3.1 above that front-
loading (i.e. setting m1 = 1) maximizes the size of the first partition element. As long as the level of
noise is small, the first partition element is the smallest; increasing its size thus makes the equilibrium more
informative, ceteris paribus.
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Consider the partition
©£
0, 1

25

¢
,
£
1
25
, 8
25

¢
,
£
8
25
, 1
¤ª

. Suppose that the sender obeys the

following strategy:

If θ ∈
∙
0,
1

25

¶
, randomize uniformly on [0, 1] \ {m2,m3}

If θ ∈
∙
1

25
,
8

25

¶
, send message m2

If θ ∈
∙
8

25
, 1

¸
, send message m3

Given the sender’s strategy, if there is an error in message transmission, then with probability

one the message received coincides with one of the messages sent by that first partition

element. The receiver’s best response is to choose actions according to the following strategy:

If m ∈ [0, 1] \ {m2,m3} is received, choose a1 =
1

10

If m = m2 is received, choose a2 =
9

50

If m = m3 is received, choose a3 =
33

50

In each case, the action chosen is equal to the receiver’s expectation of θ given his information.

Notice that, for the second and third partitions elements, this is simply the midpoint of the

interval. This is because messages m2 and m3 are sent by error with probability zero, so the

receiver can be certain that the sender’s type is in the relevant interval. This eliminates the

distortion effect except for the first (and smallest) partition element.

To check that we have an equilibrium, we need to verify that the sender’s strategy is also

a best response. This amounts to checking that the boundary types θ1 = 1
25
and θ2 =

8
25

satisfy the indifference conditions:

θ1 :
1

25
=

a1 + a2
2

− b =
1
10
+ 9

50

2
− 1

10
=
1

25
X

θ2 :
8

25
=

a2 + a3
2

− b =
9
50
+ 33

50

2
− 1

10
=
8

25
X

The resulting expected utility for the receiver is EUR = − 36
1200

(see the appendix for the

calculation). As we can see, the additional information conveyed by the sender more than

compensates for the loss of information through noise, resulting in a Pareto improvement

compared to the equilibrium of the CS model.

Figure 3 provides a graphical illustration of these equilibria. The boundary points are

shown above the unit interval, and the actions chosen in each case are given below.
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Figure 2: Equilibria with b = 1
10

How much of this overall change in EUR is due to the three effects discussed above?

To calculate the strategic effect, we compute the receiver’s expected utility if there were no

noise, but his information partition is the same as in the equilibrium of the noise model©£
0, 1

25

¢
,
£
1
25
, 8
25

¢
,
£
8
25
, 1
¤ª
(of course, this is not an equilibrium). For the direct effect, we

take this value from his utility if he had this information partition in the no-noise event, and

no information in the noise event (so we are effectively assuming that he knows whether a

given message was sent in error or not). The remaining change is due to the distortionary

effect, which isolates the utility loss resulting because the receiver cannot in fact distinguish

messages sent in error from correct ones. Table 1 shows the size of each of these effects.

Table 1: Decomposition of change in EUR when noise is introduced

−0.0308 −→ −0.0280 −→ −0.0285 −→ −0.0300
strategic effect direct effect distortionary effect

(+0.0028) (−0.0004) (−0.0015)

The threshold level of noise, �, below which the front-loading equilibrium generates a

Pareto improvement over the best equilibrium of the CS model is shown in the diagram

below. High values of b are omitted for the sake of clarity; � rises from 0 to 1 as b goes from 1
8

to 1
4
, and � = 1 for b ∈

£
1
4
, 1
2

¢
(see also Proposition ?? below). Clearly, � is a non-monotonic

function of b. It turns out that whenever b = 1
2N2 (N = 2, 3, . . .), the most informative

equilibrium of the CS model is Pareto optimal in a very general class of communication
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protocols13, which includes noisy talk. When the bias is equal to these values, then, noise

cannot generate a Pareto improvement, and � = 0. For other values of b, however, a small

amount of noise can be beneficial. The further b is from these critical values, the more

potential there is for a Pareto improvement, and hence the larger the value of �. The peaks

of the graph are at b = 1
2N(N−1) (N = 2, 3, . . .).

0.025 0.05 0.075 0.1 0.125 0.15
b

0.01

0.02

0.03

0.04

0.05

eê

Figure 3: Maximum level of noise for a Pareto improvement

As already mentioned, the technique used to construct the equilibrium of the noise model

in example 1 is to have the sender employ a front-loading strategy, where the first partition

element uses almost all of the message space (a generalization of this construction is used in

the proof of Proposition 9 in the appendix). This strategy is effective because if the sender’s

type lies in any of the other partition elements, and her message is relayed faithfully, the

receiver can be certain that there was no error. An identical result could be achieved in

a framework where messages are simply lost (rather than garbled) with small probability.

To see how, suppose that types in the lowest partition element do not send any messages,

and all types in the other partition elements send distinct message. If the receiver observes

a message, he can be certain which partition element it came from, just as if he receives

message m2 or m3 in example 1; on the other hand, if he receives no message, he has to

13This result is implied by Lemma 1 of Goltsman et al. [8], discussed in more detail in section 4.2.1 below.
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balance the probability that no message was sent (and therefore the sender’s type is in the

lowest partition element) against the probability that a message was sent but it got lost (and

so her type is higher).

The role of risk aversion We have just seen that the introduction of a small amount

of noise into the information transmission process can result in welfare improvements. The

source of this welfare gain is the strategic effect: the presence of noise induces the sender

to reveal more information than she otherwise would. When � is low, this effect dominates

the direct effect of lost messages. This result is perhaps even more surprising when we

consider that our agents are risk averse: utility is a concave function of distance from their

ideal actions. In fact, risk aversion helps as well as hinders. Consider the position of the

receiver, faced with a message that may have been sent in error. To minimize his expected

loss, he adjusts his action toward the ex ante expectation of θ. The size of this adjustment

depends, of course, on the amount of noise, but also on the degree of risk aversion. Very

risk averse agents are more concerned about the small probability of being far from the

ideal action, and will therefore make a larger adjustment. This implies that the receiver’s

actions are less responsive to the different messages sent by the sender, who thus has less

incentive to exaggerate, so that more informative partitions are possible. It is easy to show,

however, that noise can generate a Pareto improvement even when the utility loss is a linear

function of distance from the ideal action (the risk neutral case). This contrasts with the

results of Krishna and Morgan [13]: they construct equilibria in which multiple rounds of

communication can be beneficial by leveraging the risk aversion of the sender.

4.1.2 High bias

While Proposition 9 states that a small amount of noise can generate a Pareto improvement

for almost any bias, the following observation notes that a Pareto improvement is possible

for any amount of noise if the bias is high.

Observation 1 For all b ∈
£
1
4
, 1
2

¢
and all � ∈ (0, 1) there is an equilibrium of the noise

model that is Pareto superior to all equilibria of the CS model.

To prove this result, we refer back to the characterization of the set of two-step equilibrium

outcomes in section 3.1 above. There we show that as long asm1 > 0, a two-step equilibrium

exists for all b < 1
2
and � ∈ (0, 1). On the other hand, for b ∈

£
1
4
, 1
2

¢
the unique equilibrium

outcome of the CS model is completely uninformative. Since the receiver is strictly better

off with some information rather than none, the result follows.

In the more general framework of section 2, the link between sender’s and receiver’s

utility is broken and equilibria cannot always be Pareto ranked. The finding that noise
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enables communication when it would otherwise not have been possible, however, seems

fairly robust. Suppose that Crawford and Sobel’s monotonicity condition (M) holds14, and

let b∗ be the lowest bias level for which the unique equilibrium outcome of the CS model is

pooling (i.e. b∗ is the level of bias that is just too high for communication to be possible).

Then we can show that there is some b∗∗ > b∗ such that, for b ∈ [b∗, b∗∗) , there exists a
two-step equilibrium of the noise model, for any level of noise.15 This equilibrium is better

for the receiver, but not necessarily for the sender, than the equilibrium of the CS model.16

A related result is obtained by Austen-Smith [2] in a rather different context. In his

model, the sender may or may not know the value of her type; the receiver is unable to

determine whether she is informed or not (there is receiver uncertainty), and the sender is

allowed to send a message if and only if she is informed. He shows that, for a given set-up, if

there is an informative equilibrium of the CS model then there is an informative equilibrium

of the receiver-uncertainty model; but there is a range of values of sender bias for which there

is an informative equilibrium of the receiver-uncertainty model only. In this sense, receiver

uncertainty, like noise, facilitates communication. From a formal standpoint, the equilibrium

construction used by Austen-Smith to prove this result resembles a two-step front-loading

noise equilibrium of our model: Informed sender types in the first partition element pool

with uninformed sender types, sending no message, in the same way that in a front-loading

equilibrium of the noise model sender types in the first partition element can be thought of as

pooling with types who suffered from the error event; on the other hand, types in the second

partition element guarantee self-identification by sending some message (for Austen-Smith)

or by sender a specific message that is received with zero probability in the error event (in

our equilibrium of the noise model).

4.2 Optimal noise equilibria

Proposition 9 and Observation 1 describe circumstances under which we can find noise

equilibria that Pareto dominate the best equilibrium of the CS model. But we would also

like to know, for given parameter values (b and �), what is the optimal equilibrium of the

noise model. We are able to provide only a very partial answer to this question. Specifically,

for given b, we are able to find the optimal equilibrium of the noise model if � is a choice

variable (section 4.2.1). For arbitrary b and arbitrary �, however, we do not know what

14See page 1444 of Crawford and Sobel [4], or the discussion preceding the proof of Proposition 5 in the
appendix below.
15Details are available from the authors upon request.
16Crawford and Sobel’s Theorem 5 states that (under condition (M)) the sender strictly prefers equilibria

with more steps to equilibria with fewer steps. This need not be true in the noise model: in a two-step
equilibrium, some sender types face the risk (in the noise event) of actions that are further away from their
ideal than can occur in an uninformative (one-step) equilibrium.
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optimal equilibria look like. We have been unable to solve this problem even if attention

is restriced to equilibria with a given number of steps. Further, unlike in the CS model17,

equilibria with more steps do not necessarily Pareto dominate equilibria with fewer steps.

First, equilibrium partitions of the noise model with more steps may nevertheless divide the

state space less evenly than equilibrium partitions with fewer steps, and hence provide less

information. Second, the coding of messages is also important: in general, the more messages

that are used by a given partition element, the more distortion is created, since it is harder

to distinguish whether such messages were sent by error or not. For a given partition, then,

a particular coding will minimize the distortion effect (perhaps having all of the messages

sent by the smallest partition element). But changing the coding changes the equilibrium

partition, and there might be a trade-off between the kind of coding which minimizes the

distortion effect and the kind of coding which generates the finest partition (i.e. maximizes

the strategic effect).

4.2.1 The optimal level of noise

Proposition 9 says that as long as the level of noise is low enough, we can find an equilibrium

of the noise model that Pareto dominates the best equilibrium of the CS model. We proved

this proposition by constructing a front-loading equilibrium in which the sender types in

the first element of the equilibrium partition used almost all of the message space. Now

suppose that we are free to choose the level of noise. Within this class of equilibria, it is

easy to compute the optimal level of noise, i.e. the level which maximize the receiver’s (and

sender’s) expected utility.

We show in the proof of Proposition 9 that the receiver’s expected utility in this kind of

equilibrium is given by

EUR = −4b
2 (N − 2) (N − 1)2N + 4b (N − 1)2 (2N − 1) θ1 + ((2N − 1) θ1 − 1)2

12 (N − 1)2
,

where N =
l

1√
2b

m
is the number of steps in the equilibrium, and θ1 is the boundary type

between the first and second partition elements (see page 43 below). The value of θ1, of

course, depends on the level of noise, �, and is given by equation 10 (page 42). Maximizing

EUR with respect to θ1 we obtain

θ∗1 =
1− 2b (N − 1)2

2N − 1 , and hence

�∗ =

¡
1− 2b (N − 1)2

¢
(1− 2bN2)

4 (N − 1)N (b+ b2 (N − 1)N − 1) .

17Again, restricting attention to the uniform quadratic case.
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Figure 7 below shows �∗ as a function of b. Values of b above 1
6
are omitted for the sake of

clarity. The function continues to rise for b > 1
6
, and �∗ (b) → 1

4
as b → 1

2
. Note that for

b = 1
2N2 (N = 2, 3, 4, . . .), the optimal level of noise �∗ = 0 – as Proposition 1 states, for

these values of b there is no equilibrium of the noise model that Pareto dominates the best

equilibrium of the CS model.

0.025 0.05 0.075 0.1 0.125 0.15
b

0.005

0.01

0.015

0.02

0.025
eê

Figure 4: �∗ as a function of b

Substituting the optimal value of θ1 into the the expression for the receiver’s expected

utility, we get

EUR = −1
3
b (1− b) .

This value of the expected utility is exactly the same as can be achieved by the very different

equilibrium construction considered by Krishna and Morgan [13], although their construction

is valid only for values of b < 1
8
. More significantly, Goltsman et al. [8] show that −1

3
b (1− b)

is an upper bound on the utility that the receiver can obtain in any mediated equilibrium18

(see their Lemma 1). A fortiori, it follows that the front-loading construction with noise

level �∗gives us the optimal equilibrium of the noise model.

18That is, in any equilibrium in which the sender can submit her message to an impartial mediator, who
then passes on a recommendation to the receiver according to some pre-determined and possibly stochastic
rule. Clearly such a mediator could reproduce the effect of noise in our model, so a noise equilibrium is a
special case of a mediated equilibrium.
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5 Comments and Extensions

5.1 Error probabilities that are correlated with messages

In this paper we have explored the impact of noise on communication, where the noise

mechanism takes a very specific form: both the probability of error and what happens in the

event of error are independent of the original message sent. We now consider what happens

if we relax the first assumption, allowing the probability of error to vary across messages;

relaxing the second assumption is left for future research.

Consider the uniform-quadratic model introduced in section 3, except that the probability

of error is a continuous function of the message, e : [0, 1] → (0, 1), so that when the sender

sends message m, with probability 1− e (m) the message is faithfully transmitted and with
probability e (m) the received message is a draw from the uniform distribution on M. Call

the resulting model the correlated-noise model. It turns out that in this framework, it is

possible to establish a result that is analogous to Proposition 9. First we show (Lemma 1)

that if there is an N-step front loading equilibrium of the noise model with noise level �,

then there is a N-step equilibrium of the correlated-noise model that is arbitrarily close to

it, as long as � is in the range of e. The welfare result (Proposition 10) follows easily from

this lemma.

Lemma 1 Consider the noise model with noise level �, and the correlated-noise model with
error function e, where e is continuous and includes � in its range. Suppose that there is an

N-step front-loading equilibrium of the noise model which yields expected utility EUR for the

receiver. Then for any η > 0, there is an N-step equilibrium of the correlated-noise model

that yields expected utility EU 0R for the receiver, where
¯̄
EUR −EU 0R

¯̄
< η.

The proof of Lemma 1 can be found in the appendix. We show that it is possible

to construct an N-step front-loading equilibrium of the correlated noise model where each

interval 2, . . . , N of the equilibrium partition uses a single message with noise level very

close to �, while the first interval randomizes over all remaining messages in such a way that

whichever of these messages is received, the receiver’s posterior probability of an error is

the same. It turns out that this probability depends only on the errors associated with the

messages sent by intervals 2, . . . , N, and is also very close to the corresponding probability in

the N -step equilibrium of the noise model. Hence the indifference conditions for boundary

types are very similar across the two models, and we can therefore find an equilibrium of

the correlated noise model with almost the same equilibrium partition, and almost the same

actions induced, as in the equilibrium of the noise model. Furthermore, it is easy to see

that this equilibrium induces an outcome (joint distribution over types and actions) that

is very close to that of the N-step noise equilibrium: Although types in the first interval
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send a range of messages associated with different noise levels, they induce some action a1

(where a1 is close to the corresponding value in the equilibrium of the noise model) with

probability one whether there is an error or not; and types in each other interval i induce

some action ai (again close to the corresponding value in the equilibrium of the noise model)

with probability close to 1− �, and action a1 otherwise. This gives the required result.

Proposition 10 follows immediately from Lemma 1.

Proposition 10 If b < 1
2
and b 6= 1

2N2 for all integers N > 1, then there exists an � > 0

such that if e (m) < � for some m, there is an equilibrium of the correlated-noise model that

is Pareto superior to all equilibria of the CS model.

As long as there are some messages associated with low enough error, then, we can find

“good” equilibria of the correlated noise model even if the error is very high for almost all

other messages. All of these unreliable messages will be sent by the first interval of types.

Finally, it is worth noting that if the range of the error function includes �∗, the optimal

level of noise derived in section 4.2.1 above, the same construction can be used to find an

equilibrium of the correlated-noise model that yields expected payoff for the receiver that is

arbitrarily close to its upper bound in any mediated equilibrium, −1
3
b (1− b) .

Proposition 11 Consider the correlated-noise model with error function e, where e is con-
tinuous and includes �∗ in its range, and let EUR denote the set of equilibrium payoffs that

are attainable for the receiver in this model. Then supEUR = −1
3
b (1− b) .

5.2 Noisy talk with common interest

Although the focus of this paper is on the interaction between noise and divergent interests,

it is instructive to consider the effects of noise in the common interest case, where b = 0.

Recall that an equilibrium is separating if every sender type induces a different outcome.

Without noise, there is a separating equilibrium where the sender follows the “natural”

strategy of sending message m = θ when her type is θ, and the receiver chooses action

a = m. But this is not an equilibrium when there is noise. The reason is that under this

sender strategy, the posterior probability of an error having occurred equals the prior, �.

Thus, following each message the receiver will attribute this probability to the event that

this message was the result of noise and therefore distort his response toward the pooling

response, choosing action a = (1− �)m + �1
2
. A rational sender would try to offset this

distortion by deviating from the rule m = θ. This illustrates nicely the distortionary effect

of introducing noise: Even in the common-interest game sender and receiver cannot simply

continue to use the strategies that “work” in the absence of noise. Our next result shows that

nevertheless a separating equilibrium does exist for any value of the error probability �. The
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fundamental idea underlying the construction of such an equilibrium is to have the sender

use only a small subset of the message space. Then whenever a message from this subset is

received, the posterior probability that it was not sent by error is high. As the size of the

set of used messages converges to zero, this posterior probability converges to one. Denote

the common expected payoff in a separating equilibrium of the common-interest game with

error probability � by Π (�). Note that the pooling payoff, Πp, is independent of the error

probability (in the uniform quadratic case considered here, Π (0) = 0 and Πp = − 1
12
, but

it is easy to see that the proof is easily extended to the more general model introduced in

section 2.1).

Proposition 12 The common interest game has a separating equilibrium. In this equilib-
rium the receiver learns with probability one whether or not a received message was sent in

error. Equilibria of this form are efficient in the common interest game and have a common

expected payoff

Π (�) = (1− �)Π (0) + �Πp.

Proof. Take any set M0 ⊂ [0, 1] that has the same cardinality as the set [0, 1] and at the
same time has (Lebesgue) measure zero (for example, M0 can be the Cantor set). Since M0

has the same cardinality as [0, 1], there exists a sender strategy that is a bijection from the

type space [0, 1] in to M0. At the same time, since the the error distribution has a density,

sets of (Lebesgue) measure zero have probability zero; it follows from Bayes’ rule that the

probability of an error following a message m ∈ M0 equals zero. Therefore, whenever he

receives a message in M0 the receiver knows that with probability one the message was

not sent in error. In that case, given that the sender’s strategy is a bijection, the receiver

correctly infers the sender’s type. Similarly, whenever he receives a message in [0, 1]\M0, the

receiver knows that with probability one the message was sent in error. Regarding efficiency,

it suffices to consider receiver payoffs. Conditional on each event, noise or no-noise, the

receiver maximizes his payoff. Therefore he maximizes his ex ante expected payoff. The fact

that the expected payoff Π (�) has the indicated form is a simple consequence of the receiver

taking the separating action in the no-noise event, and the pooling action in the noise event.

Finally, note that since all sender types receive their ideal action in the no-noise event and

cannot affect the action taken in the noise event, the sender has no incentive to deviate.

As an aside, we observe that Theorem 4 of Gordon [9] can be used to show that there

is an alternative, proportional-coding equilibrium (see example 2 in section 4.2 above) with

an infinite partition, in which types in partition element [θj−1, θj) randomize uniformly over

the interval [θj−1, θj) . These equilibria have the the intuitive property that types in a given

element of the equilibrium partition use only messages in the same set. Since these equilibria

do not make optimal use of the available information, however, unlike equilibria in which the
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set of used messages has measure zero, they are not Pareto optimal. Therefore, we have the

additional observation that in the common-interest game there are multiple Pareto-ranked

infinite-interval partition equilibria.

Returning to the construction used to prove Proposition 12, a referee has observed that it

relies on the message space being a continuum, so we can find an uncountable set of messages

that nevertheless has measure zero. In the finite case, separating equilibria may not exist

if the cardinality of the message space is close to the cardinality of the type space and the

level of noise is sufficiently high. But we now show that, as long as the message space is

large enough, separation can be achieved through a construction analogous to that used in

the infinite case.

Let K be a positive integer and consider the finite set of types T (K) = {θ ∈ [0, 1] |
θ = n× 1

K
for some n ∈ N0

ª
, each of which is equally likely. First, to show why separating

may be impossible, let the message space be identical to the type space19, and suppose the

error distribution is uniform. In a candidate separating equilibrium, the receiver’s response

to the message sent by the lowest type (θ = 0) would be the action a0 = (1− �) 0+ �1
2
, while

his best response to the message sent by the second lowest type would be a1 = (1− �) 1
K
+�1

2
.

For incentive compatibility, type θ = 1
K
must prefer a1 to a0, i.e.

−
µ
1

K
− a1

¶2
≥ −

µ
1

K
− a0

¶2
⇒ � ≤ 1

K − 1 .

If � is above this threshold, then, no separating equilibrium exists (in fact, this condition is

a necessary and sufficient condition for the existence of a separating equilibrium).

If we fix K and �, however, but increase the size of the message space, we can always

find a message space large enough that a separating equilibrium exists. Suppose that each

sender type sends exactly one (distinct) message. Then as the message space grows, the

receiver’s response to a message sent by type θ converges to θ for all θ ∈ T (K). Formally,

if the receiver observes the message sent by type θ, his best response is given by

aθ = (1− μ) θ + μ
1

2
,

where

μ =
� 1
|M |

(1− �) 1
K+1

+ � 1
|M |

19If the message space is smaller than the type space, separation is impossible for a trivial reason.
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is the receiver’s posterior probability that the message was sent in error. As |M | → ∞,

μ→ 0 and so aθ → θ. Hence, for a sufficiently large message space, each sender type strictly

prefers to send the message assigned to her then any message sent by the other types, or one

of the unsent messages (to which the receiver’s best response is action a = 1
2
).

6 Conclusion

In this paper we have examined two principal barriers to communication, misaligned pref-

erences and the possibility of misunderstandings, and their interaction. We find that while

each of these factors limits communication on its own, the possibility of misunderstandings

may help partially overcome the limitations due to divergent preferences. We have shown

that introducing a small amount of noise into information transmission can almost always

benefit communication. When noise levels continuously vary across a sufficiently large range

of messages, there are equilibria that approximate optimal mediated communication. In the

case of extreme biases, introducing noise may enable communication when it would otherwise

not have been possible.

A Proofs and calculations

Before proving Proposition 1, we start with two lemmas:

Lemma 2 If type θ induces actions a1 and a2 with a1 < a2, then there exists η > 0 such

that types in (θ − η, θ) induce action a1 and types in (θ, θ + η) induce action a2.

Proof. Concavity of the sender’s payoff function in a implies that a1 < aS (θ, b) < a2

(where aS (θ, b) denotes type θ’s ideal action). Continuity of the sender’s payoff function

and the single crossing condition (US
12 > 0) imply that there is a nonempty open set of

types (θ, θ + η1) such that for all θ
0 ∈ (θ, θ + η1) we have a

S (θ, b) < aS (θ0, b) < a2. Type

θ0’s payoff is decreasing to the right of a2 and by single crossing, θ
0 prefers a2 to all actions

a ∈ (−∞, a1) . No action a ∈ (a1, a2) is induced in equilibrium because otherwise type θ

would have an incentive to deviate. This shows that all types in (θ, θ + η1) must induce

action a2. An analogous argument shows that we can find a nonempty open set (θ − η2, θ)

such all types in that set induce action a1. Choose η = min{η1, η2}.

Lemma 3 In every equilibrium of the noise model, for every action a, the set of sender

types who induce action a is an interval. If this interval has a nonempty interior, then all

types in the interior induce only action a.
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Proof. If a is induced by only one type, the result holds trivially. If types θ and θ0 with θ < θ0

both induce action a, then types θ00 ∈ (θ, θ0) never induce an action a1 > a, because otherwise,

since US
12(a, θ, b) > 0, type θ

0 would strictly prefer a1 to a; similarly, types θ
00 ∈ (θ, θ0) never

induce an action a0 < a, because otherwise by single crossing type θ would strictly prefer a0
to a. Hence types in the interval (θ, θ0) induce only action a.

Proof of Proposition 1. The main result now follows easily: Lemma 2 implies immedi-

ately that there is at most a countable number of types who induce two actions and that the

receiver’s response is not altered if we have all such types switch to induce only one these

actions. With each type inducing exactly one action, Lemma 3 implies that each of these

actions is induced by an interval of types.

Proof of Proposition 2. For any interval I in the partition of types induced by the sender

strategy σ, let MI be the union of the supports of the distributions σ(·|θ) over all θ ∈ I.

Since types in distinct intervals induce distinct actions, I 6= I 0 implies MI ∩MI0 = ∅. The
receiver’s payoff from choosing action a conditional on observing message m ∈ MI is given

by Z 1

0

UR(a, θ)μ(θ|m)dθ.

Maximizing this expression with respect to a is equivalent to maximizingZ 1

0

UR(a, θ)((1− �)σ(m|θ) + �g(m))f(θ)dθ.

Since a(m) is a common maximizer for all m ∈MI , it also maximizesZ
MI

Z 1

0

UR(a, θ)((1− �)σ(m|θ) + �g(m))f(θ)dθdm

=

Z
I

UR(a, θ)(1− �)f(θ)dθ +

Z 1

0

UR(a, θ)�

Z
MI

g(m)dmf(θ)dθ

Maximizing the latter expression, however, is equivalent to maximizingZ
I

UR(a, θ)(1− �)
g(m)R

MI
g(m0)dm0f(θ)dθ +

Z 1

0

UR(a, θ)�g(m)f(θ)dθ,

which is exactly the problem that the receiver solves after receiving a message m ∈MI when

all types in I use the common distribution g(m)

MI
g(m0)dm0 on MI .

Proof of Proposition 3. First, assume that there is a type θ0 whose ideal action is the

pooling action, ap. Suppose there is a set M0 of unused messages that has positive measure.
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Whenever the receiver observes a message m0 ∈ M0, the receiver’s optimal reply a(m0)

satisfies

a(m0) = argmax
a

Z 1

0

UR(a, θ)f(θ)dθ.

By assumption a(m0) is the ideal action for type θ0. Since this type could induce this action

by sending one of the unused messages, he induces it in equilibrium. Consider first any

equilibrium in which the set of types, Θ0, who induce the same action a(m0) as θ0 has

positive probability. Using M(Θ0) to denote the set of messages used by Θ0, we have

a(m0) = argmax
a

Z
Θ0

UR(a, θ)(1− �)
g(m)R

M(Θ0)
g(m0)dm0f(θ)dθ +

Z 1

0

UR(a, θ)�g(m)f(θ)dθ.

Since a(m0) maximizes the second term of this expression, it must also maximize the first

term. Therefore, we also have

a(m0) = argmax
a

Z
Θ0

UR(a, θ)(1− �)
g(m)R

M0∪M(Θ0)
g(m0)dm0f(θ)dθ +

Z 1

0

UR(a, θ)�g(m)f(θ)dθ,

which is the receivers best response if we change the sender’s strategy so that types in Θ0

randomize over M0 ∪M(Θ0) according to the error distribution restricted to that set. Next

consider any equilibrium in which the set of types Θ0 has probability zero. Having all these

types randomize uniformly overM0∪M(Θ0) does not alter the receiver’s posterior after any
message and thus preserves equilibrium.

Now we deal with the case where there is no type whose ideal action is the pooling

action. Since b > 0 and US is continuous, every type’s ideal action must be larger than

ap (aS (θ, b) > ap for all θ ∈ T ). If the equilibrium under consideration is pooling, the

conclusion follows immediately. If not, then we can find two actions, a1 and a2, induced in

equilibrium with the property that a1 < ap < a2. It follows easily that there cannot be any

unused messages: sending an unused message would induce action ap, which is preferred by

every type to action a1.

Proof of Proposition 4. The result is immediate ifM andM0 have a different number

of elements; therefore let both have N elements. Consider an equilibrium of the noise model

that is adapted toM, where T1, . . . , TN are the elements of the equilibrium partition. Define

a (Ti,Mi) ≡ argmax
a

Z
Ti

UR (a, θ) (1− �) f (θ) dθ +

Z 1

0

UR (a, θ) �λG (Mi) f(θ)dθ.

Since types in Ti randomize with the error distribution over messages in Mi, the receiver’s

equilibrium response ai to a message m ∈Mi satisfies ai = a (Ti,Mi) . If λG(M 0
i) 6= λG(Mi),
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then a (Ti,M
0
i) 6= a (Ti,Mi) , unless we have

argmax
a

Z
Ti

UR (a, θ) f (θ) dθ = argmax
a

Z 1

0

UR (a, θ) f (θ) dθ.

This condition, however, can be satisfied for at most one Ti, while for any M0 that is G-

distinguished fromM, there must be at least two partition elements Tj and Tk, such that

the corresponding message sets satisfy λ (Mj) 6= λ
¡
M 0

j

¢
and λ (Mk) 6= λ (M 0

k) . It follows

immediately that O(M)∩O(M0) = ∅, as required. In contrast, for any twoM andM0 that

are not G-distinguished, we have a (Ti,M 0
i) = a (Ti,Mi) for all i, and therefore any outcome

of an equilibrium that is adapted toM can be reproduced as an outcome of an equilibrium

that is adapted toM0 and vice versa.

Before proving Proposition 5, we provide a formal restatement of Crawford and Sobel’s

monotonicity condition (M). In the CS model, let aCS (θi−1,θi) denote the receiver’s best

response to a message that indicates only that the sender’s type lies in (θi−1,θi) , i.e.

aCS (θi−1,θi) = argmax
a0

Z θi

θi−1

UR (a, θ) f (θ) dθ.

Consider the second-order difference equation

US (aCS (θi−1, θi) , θi, b) = US (aCS (θi, θi+1) , θi, b) . (2)

Then condition (M) says:

(M) Suppose (θ0, θ1, . . . , θN) and (θ00, θ
0
1, . . . , θ

0
N) are two solutions to equation 2, and θ0 = θ00

and θ1 > θ01. Then θi > θ0i for all i ≥ 2.

Proof of Proposition 5. Denote the boundary types of the N-step CS partition by

θ∗i , i = 1, . . . , N − 1. Let â(θi−1, θi,M, �) ≡ a(Ti,Mi), where Ti = (θi−1, θi), Mi is the

ith component of M and a(Ti,Mi) is as defined in the proof of Proposition 4 above (so

â(θi−1, θi,M, �) is the receiver’s best response to messages in Mi when types in (θi−1, θi)

randomize over messages in that set according to the error distribution and when � is the

level of noise). We can viewM as a point in the N−1 simplex∆N−1. Then, â is a continuous

function on the set {(θi−1, θi) | θi−1 ≤ θi} × ∆N−1 × [0, 1] (where in this instance (θi−1, θi)
denotes an ordered pair rather than an open interval); this follows from continuity of UR, the

theorem of the maximum and the fact â(θi−1, θi,M, �) is a singleton for all (θi−1, θi,M, �). It

follows from the singe-crossing condition, UR
12 > 0, that â (θi, θi+1,M, �) is strictly increasing

in its first two arguments.
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Next, define

V (θi−1, θi, θi+1,M, �, b) ≡ US (â (θi, θi+1,M, �) , θi, b)− US (â (θi−1, θi,M, �) , θi, b) .

Continuity of â and of US implies that V is continuous on the compact set

{(θi−1, θi, θi+1) | θi−1 ≤ θi ≤ θi+1}×∆N−1× [0, 1]×{b} (whatever the value of b). Therefore
V is uniformly continuous on this set.

V
¡
θ∗i−1, θ

∗
i , τ i+1,M, 0, b

¢
is a strictly decreasing function of τ i+1 in a neighborhood of θ

∗
i+1.

This follows from V
¡
θ∗i−1, θ

∗
i , θ

∗
i ,M, 0, b

¢
> 0, V

¡
θ∗i−1, θ

∗
i , θ

∗
i+1,M, 0, b

¢
= 0, â (θi, θi+1,M, 0)

strictly increasing in θi+1 and strict concavity of UR (a, θ) in a. This implies that there

exist τ 0i+1 and τ 00i+1 with τ 0i+1 < θ∗i+1 < τ 00i+1 such that V
¡
θ∗i−1, θ

∗
i , τ

0
i+1,M, 0, b

¢
> 0 >

V
¡
θ∗i−1, θ

∗
i , τ

00
i+1,M, 0, b

¢
. This and the uniform continuity of V on

{(θi−1, θi, θi+1) | θi−1 ≤ θi ≤ θi+1} × ∆N−1 × [0, 1] × {b} implies that there exists η1 > 0

such that for all τ i−1 ∈
£
θ∗i−1 − η1, θ

∗
i−1 + η1

¤
, for all τ i ∈ [θ∗i − η1, θ

∗
i + η1] , for all � ∈ [0, η1]

and for all M, we have V
¡
τ i−1, τ i, τ

0
i+1,M, �, b

¢
> 0 > V

¡
τ i−1, τ i, τ

00
i+1,M, �, b

¢
. Hence,

the intermediate value theorem implies that for all τ i−1 ∈
£
θ∗i−1 − η1, θ

∗
i−1 + η1

¤
, for all

τ i ∈ [θ∗i − η1, θ
∗
i + η1] , for all � ∈ [0, η1] and for allM, there exists τ i+1 (τ i−1, τ i,M, �) such

that V (τ i−1, τ i, τ i+1 (τ i−1, τ i,M, �) ,M, �, b) = 0.

Furthermore, from V
¡
τ i−1, τ i, τ

0
i+1,M, �, b

¢
> 0 > V

¡
τ i−1, τ i, τ

00
i+1,M, �, b

¢
, the fact

that â (τ i, τ i+1,M, �) is strictly increasing in τ i+1 and strict concavity of UR in its first

argument, it follows that τ i+1 (τ i−1, τ i,M, �) is unique. In conjunction with the continuity

of V, this implies that τ i+1 (τ i−1, τ i,M, �) is continuous for all τ i−1 ∈
£
θ∗i−1 − η1, θ

∗
i−1 + η1

¤
,

for all τ i ∈ [θ∗i − η1, θ
∗
i + η1] , for all � ∈ [0, η1] and for allM.

Iterating on i, this implies that there exists η > 0 such that for all M, for all θ1 with

|θ1 − θ∗1| ≤ η and � that satisfy � ≤ η, there exists a solution θi (θ1,M, �) for i = 0, . . . , N−1
to the difference equation

US (â (θi−1, θi,M, �) , θi, b) = US (â (θi, θi+1,M, �) , θi, b)

with initial values θ0 = 0 and θ1, and that the solution is continuous on this domain.

Define

W (θ1,M, �) ≡ US (â (θN−1 (θ1,M, �) , 1,M, �) , θN−1 (θ1,M, �) , b)

−US (â (θN−2 (θ1,M, �) , θN−1 (θ1,M, �) ,M, �) , θN−1 (θ1,M, �) , b)

The continuity of θi (θ1,M, �) implies that W (θ1,M, �) is continuous on the compact set

[θ∗1 − η, θ∗1 + η]× [0, η]×∆N−1 and therefore uniformly continuous on that set. This implies
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that for all ζ > 0 we can find � > 0 such that � < � implies |W (θ1,M, �)−W (θ1,M, 0)| < ζ

for allM and all θ1 ∈ [θ∗1 − η, θ∗1 + η] . Since W (θ1,M, 0) does not depend onM, we have

that for all ζ > 0 there exists � > 0 such that � < � implies |W (θ1,M0, �)−W (θ1,M, 0)| < ζ

for allM,M0 and all θ1 ∈ [θ∗1 − η, θ∗1 + η] .

Consider θ01 ∈ (θ∗1 − η, θ∗1), and θ001 ∈ (θ1, θ∗1 + η) such that θN−1 (θ
00
1,M, 0) < 1. Then

condition (M) implies that

W (θ01,M, 0) < 0 < W (θ001,M, 0)

for allM. Then it follows from our earlier argument that we can find �̃ > 0 such that � < �̃

implies that

W (θ01,M, �) < 0 < W (θ001,M, �)

for allM. Hence, by the intermediate value theorem, for all � < �̃ and for allM there exists

θ1 for which

W (θ1,M, �) = 0.

It is easy to see, for this θ1, that the boundary values θ1, θ2 (θ1,M, �) , . . . , θN−1 (θ1,M, �)

describe an equilibrium partition that is adapted toM.

Finally, if we denote the corresponding sender strategy by σ�, uniform continuity of

θi (θ1,M, �) on the set [θ∗1 − η, θ∗1 + η] × [0, η] × ∆N−1 implies that for any δ > 0 we can

choose �̃ such that for any � < �̃ we have |P(σ�)− P(σ)| < δ.

Proof of Proposition 6. Suppose that there is a separating noise equilibrium. Then by the
single-crossing condition (UR

12(a, θ) > 0), ω is strictly monotonic. Therefore ω is continuous

except at a countable number of types. Let θ be a point of continuity of ω and suppose that

ω (θ) 6= argmaxa US (a, θ, b) . Then we can find a type θ0 near θ such that both types either

prefer ω (θ) to ω (θ0) or prefer ω (θ0) to ω (θ) , violating incentive compatibility. It follows

that ω (θ) = argmaxa US (a, θ, b) at all θ at which ω is continuous. For any η > 0 we can find

θ such that 1− θ < η and ω is continuous at θ. Furthermore, we can choose η small enough

to ensure that the receiver’s optimal response to the message sent by type θ is less than

argmaxa U
R (a, θ) . This implies ω (θ) < argmaxa U

R (a, θ) < argmaxa U
S (a, θ, b) = ω (θ) ,

establishing a contradiction.

Derivation of two-step equilibria. Recall that we impose the following restrictions on
parameters: 0 < b < 1

2
; 0 < � < 1; 0 ≤ λ1 ≤ 1. We are interested in two-step equilibria

where types in the first interval, denoted [0, θ1) , randomize uniformly over messages in M1,

and types in the second interval, [θ1, 1] , randomize uniformly over messages in M2, where

M1∩M2 = ∅ andM1∪M2 = [0, 1] . Let λ1 denote the mesaure ofM1 according to the error

distribution, and therefore 1−m1 the measure of M2. The actions chosen by the receiver on
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receiving messages in M1 and M2 are respectively

a1 =
(1− �) θ1

θ1
2
+ �λ1

1
2

(1− �) θ1 + �λ1

a2 =
(1− �) (1− θ1)

θ1+1
2
+ � (1− λ1)

1
2

(1− �) (1− θ1) + � (1− λ1)

Equilibrium requires the sender to be indifferent between a1 and a2 when θ = θ1, i.e.

θ1 + b =
a1 + a2
2

(3)

Furthermore, since a1 < a2 for θ1 ∈ (0, 1) , equation (3) along with the condition that
0 < θ1 < 1 is sufficient for equilibrium. We use θ

∗
1 (b, �, λ1) to denote such a solution, when

it exists.

Rather than analyzing the set of equilibria for various values of b, as we did in section

3.1, it is more convenient to consider different values of λ1. The results below establish all

of the claims made in section section 3.1.

λ1 = 0: Substituting λ1 = 0 into the expressions for a1 and a2 and simplifying, we obtain:

a1 + a2
2

=
1 + θ1 − 2 (1− �) θ21
4 (1− (1− �) θ1)

We can then solve equation (3):

θ1 + b =
1 + θ1 − 2 (1− �) θ21
4 (1− (1− �) θ1)

⇒ (θ1 + b) 4 (1− (1− �) θ1) = 1 + θ1 − 2 (1− �) θ21

⇒ 2 (1− �) θ21 − (3− 4b+ 4b�) θ1 + 1− 4b = 0

⇒ θ1 =
3− 4b+ 4b�±

q
(3− 4b+ 4b�)2 − 8 (1− �) (1− 4b)

4 (1− �)

It can be shown that the relevant solution is the smaller one, which lies strictly between 0

and 1 if and only if b < 1
4
. Thus a two-step equilibrium exists for b ∈

¡
0, 1

4

¢
, with boundary

type

θ∗1 (b, �, 0) =
3− 4b+ 4b�−

q
(3− 4b+ 4b�)2 − 8 (1− �) (1− 4b)

4 (1− �)
.

If b ∈
£
1
4
, 1
2

¤
, there is no two-step equilibrium.
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λ1 = 1: Substituting λ1 = 1 into the expressions for a1 and a2 and solving equation (3), we

obtain:
a1 + a2
2

=
2�+ θ1 + 2 (1− �) θ21
4 (�+ (1− �) θ1)

We can then solve equation (3):

θ1 + b =
2�+ θ1 + 2 (1− �) θ21
4 (�+ (1− �) θ1)

⇒ (θ1 + b) 4 (�+ (1− �) θ1) = 2�+ θ1 + 2 (1− �) θ21

⇒ 2 (1− �) θ21 − (1− 4b (1− �)− 4�) θ1 − 2� (1− 2b) = 0

⇒ θ1 =
1− 4b (1− �)− 4�±

q
1 + 8b (1− �) + 16b2 (1− �)2 + 8�

4 (1− �)

It can be shown that the relevant solution is the larger one, which lies strictly between 0 and

1 all b ∈
¡
0, 1

2

¢
. Thus a two-step equilibrium exists for b ∈

¡
0, 1

2

¢
, with boundary type

θ∗1 (b, �, 1) =
1− 4b (1− �)− 4�+

q
1 + 8b (1− �) + 16b2 (1− �)2 + 8�

4 (1− �)
.

λ1 ∈ (0, 1): When λ1 ∈ (0, 1) , equation (3) reduces to a cubic and finding an analytic
solution is cumbersome . However, we can show that the equation has exactly one solution

that lies (strictly) between 0 and 1 for all b ∈
¡
0, 1

2

¢
. To see why, notice that at θ1 = 0,

θ1 + b < a1+a2
2

= 1
2
, while at θ1 = 1, θ1 + b > a1+a2

2
= 1

2
. Since both θ1 + b and a1+a2

2

are continuous in θ1, equation (3) is satisfied for at least one value of θ1 ∈ (0, 1) . To show
uniqueness, notice that

d

dθ1
(θ1 + b) = 1, while

∂

∂θ1

µ
a1 + a2
2

¶
=

1

2
− � (1− λ1) (1− �λ1)

(1− � (λ1 − θ1)− θ1)
2 −

� (1− � (1− λ1))λ1

(� (λ1 − θ1) + θ1)
2 <

1

2
.

Further, since a1+a2
2

is continuous in λ1 ∈ (0, 1) , the equilibrium boundary type θ1 (b, �, λ1)

is also continuous in λ1. To show that θ
∗
1 (b, �, λ1) is strictly increasing in λ1, note that (for

given θ1)

∂a1
∂λ1

=
(1− �) � (1− θ1) θ1

2 (� (λ1 − θ1) + θ1)
2 > 0, and

∂a2
∂λ1

=
(1− �) � (1− θ1) θ1

2 (1− � (λ1 − θ1) + θ1)
2 > 0,
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so
∂

∂λ1

µ
a1 + a2
2

¶
> 0.

Thus when we increase λ1, the left hand side of equation (3) is unchanged, while the right

hand side shifts up, for every value of θ1; since the right hand side intersects the left hand side

from above, the (unique) point of intersection must also increase. Intuitively, this means that

allowing the first step of the equilibrium partition to use a larger proportion of the message

space shifts the boundary between the two steps to the right.

Finally, we show that all boundary values between the lower bound of θ1 (b, �, 0) (if b < 1
4
)

or 0 (if b ≥ 1
4
) and the upper bound of θ1 (b, �, 1) can be achieved by appropriate choice of

λ1. First note that a1+a2
2

= a (λ1, θ1) is continuous in λ1 ∈ [0, 1] for all θ1 ∈ (0, 1) . So
limλ1→0 a (λ1, θ1) = a (0, θ1) and limλ1→1 a (λ1, θ1) = a (1, θ1) , for all θ1 ∈ (0, 1) , and hence
limλ1→0 θ1 (b, �, λ1) = θ1 (b, �, 0) if b < 1

4
and limλ1→1 θ1 (b, �, λ1) = θ1 (b, �, 1). It remains to

show that limλ1→0 θ1 (b, �, λ1) = 0 if b ≥ 1
4
. To see this, fix some θ̂1 > 0, and notice that

limλ1→0 a
³
λ1, θ̂1

´
= a (λ1, 0) . Further,

a
³
0, θ̂1

´
=

1 + θ̂1 − 2 (1− �) θ̂
2

1

4
³
1− (1− �) θ̂1

´
=

1

4

1− θ̂1³
1− (1− �) θ̂1

´ + θ̂1
2

<
1

4
+

θ̂1
2

< θ̂1 + b

It follows that for λ1 sufficiently close to 0, the (unique) relevant solution to equation (3),

θ1 (b, �, λ1) , must be less than θ̂1. Since θ̂1 was chosen arbitrarily, we have the desired result.

Proof of Proposition 7. The proof is constructive. Consider an (infinite) partition of

the type space of the following form:

{{0} , . . . , [θ−3, θ−2) , [θ−2, θ−1) , [θ−1, 1]} ,

where θi−1 < θi and 0 < θi < 1 for i ≤ −1, and limi→−∞ θi = 0 (so the set does indeed

partition [0, 1]). Suppose that type θ = 0 sends message m = 0; all types θ ∈ [θi−1, θi)
(i ≤ −1) randomize uniformly over messages in [ζθi−1, ζθi) ; and types θ ∈ [θ−1, 1] randomize
uniformly over messages in [ζθ−1, 1] (ζ is a constant whose value will be determined later).

Consider the receiver’s best response to this strategy of the sender. Conditional on receiving
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a message m ∈ [ζθi−1, ζθi) , the receiver’s posterior belief that the message was received in
error is given by

η =
�ζ (θi − θi−1)

(1− �) (θi − θi−1) + �ζ (θi − θi−1)
=

�ζ

(1− �) + �ζ
.

Thus the receiver’s optimal action, ai, solves

max
a
(1− η)

Z θi

θi−1

−(θ − a)2
1

θi−θi−1
dθ + η

Z 1

0

−(θ − a)2dθ

⇒ ai = (1− η)
θi + θi−1

2
+ η

1

2
(for i ≤ −1).

On receiving a messagem ∈ [ζθ−1, 1] , on the other hand, it is easy to verify that the receiver’s
optimal response is to choose action

a0 =
(1− �) (1− θ−1)

θ−1+1
2

+ � (1− ζθ−1)
1
2

(1− �) (1− θ−1) + � (1− ζθ−1)
.

Turning now to the sender’s strategy, we need each sender boundary type θi to be indifferent

between inducing action ai and action ai+1, i.e.

θi + b =
ai + ai+1

2
(for i ≤ −1).

Notice that each of these indifference conditions (except for θ−1) involves θi+1, θi and θi−1.

Solving for θi+1, we obtain the second-order difference equation

θi+1 =
2 + 2η

1− η
θi − θi−1 +

4b− 2η
1− η

(for i ≤ −2).

We have said nothing yet about the value of ζ. Let

ζ =
2b (1− �)

� (1− 2b) ,

so that η = 2b (Notice that ζ > 0 as long as 0 < b < 1
2
). Then a solution to this difference

equation is

θi−1 = θ−1

Ã
1−
√
2b

1 +
√
2b

!−i
(i = . . . ,−2,−1, 0).

As long as we choose a value of θ−1 ∈ (0, 1) , we have θi−1 < θi and 0 < θi < 1 for i ≤ −1,
and limi→−∞ θi = 0, as required.
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The remaining indifference condition fixes the value of θ−1:

θ−1 + b =
a−1 + a0

2

⇒ θ−1 =
1−
√
2b

1 +
√
�

For this construction to work, we need to make sure that the sender’s strategy described at

the beginning of this section is well-defined, i.e. there are some messages left over for the

final interval of sender types to send. This requires

ζθ−1 ≤ 1

⇒ � ≥ 2b³
1 +
√
2b
´2

Note that a very similar construction can be used to demonstrate the existence of an

N-step equilibrium for any finite N ≥ 3 (section 3.1 above deals with the case where N = 2)

To see how, consider the N-step partition

{[0, θ1−N) , [θ1−N , θ2−N) , . . . , [θ−2, θ−1) , [θ−1, 1]} .

Suppose that the sender adopts the same strategy as before, with types θ ∈ [θi−1, θi)

(i ≤ −1) randomizing uniformly over messages in [ζθi−1, ζθi) and types θ ∈ [θ−1, 1] ran-
domizing uniformly over messages in [ζθ−1, 1] . The indifference conditions for boundary

types θ1−N , . . . , θ−2 yield the same second-order difference equation as above. Solving this

equation, with the boundary condition θ−N = 0 and treating θ−1 as a parameter, we can

compute a−1 (the action corresponding to the penultimate step) as a function of θ−1. For

any given θ−1, the value of a−1 will be lower than in the infinite case, since the steps are

more spaced out. The final indifference condition, therefore, gives a lower value of θ−1, so

the threshold value of � required for this construction to work is strictly lower than before.

Proof of Proposition 8. Consider the following partition:n
{{θ}}θ∈[0,θ∗] , . . . , (θ−3, θ−2] , (θ−2, θ−1] , (θ−1, 1]

o
,

where θi−1 < θi and 0 < θ∗ < θi < θ0 = 1 for i ≤ −1, and limi→−∞ θi = θ∗. Suppose the

sender adopts the following strategy:

• if θ ∈ [0, θ∗] , send message m = s (θ) where s (·) is a strictly increasing differentiable
function with s (0) = 0;
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• if θ ∈ (θi−1, θi] (i ≤ 0), randomize uniformly over messages in (ζ (θi−1 − θ∗) + s (θ∗) ,

ζ (θi − θ∗) + s (θ∗)] , where ζ (1− θ∗) + s (θ∗) = 1.

(Note that we use intervals that are open on the left rather than on the right here merely

to simplify notation.) Now consider the receiver’s best response. Suppose he receives a

message m ∈ [0, s (θ∗)] ; the distribution of sent messages in this continuous portion of the
message space is given by s−1 (m) with density

1

s0 (s−1 (m))
.

Hence, conditional on receiving a message m ∈ [0, s (θ∗)] , the posterior probability that m
was received by error is given by20

μ(m) ≡ �

�+ (1−�)
s0(s−1(m))

.

The receiver then chooses the action a that maximizes

− (1− μ (m))
¡
a− s−1 (m)

¢2 − μ (m)

Z 1

0

(a− θ)2 dθ.

The maximum is achieved at

am = (1− μ (m)) s−1 (m) + μ (m)
1

2
.

Let θ = s−1(m). Clearly, if the receiver’s optimal response matches the sender’s ideal point

(θ + b), the sender will have no incentive to deviate from the specified strategy (for θ ∈
20Let m ∈ [m0,m00] ⊂ [0, s (θ∗)] and recall that the error distribution is G (m) = m. Then the probability

that a message was received in error, E, conditional on knowing that the message is in [m0,m00] equals

P (E| [m0,m00]) =
P ([m0,m00] |E)) �

P ([m0,m00] |E) � + P ([m0,m00] |¬E) (1− �)

=
(m00 −m0) �

(m00 −m0) �+ (s−1 (m00)− s−1 (m0)) (1− �)

=
�

� + s−1(m00)−s−1(m0)
m00−m0 (1− �)

Now consider the limit as m00 −m0 → 0
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[0, θ∗]).21 Formally:

am = θ + b

⇒ (1− μ (m)) θ + μ (m)
1

2
= θ + b

⇒ μ (m) =
2b

1− 2θ

which can be solved for

s0 (θ) =
2b (1− �)

� (1− 2b− 2θ) .

Using the boundary condition s(0) = 0, we obtain the sender’s strategy for types θ ∈ [0, θ∗]:

s (θ) = −b (1− �)

�
ln

µ
1− 2b− 2θ
1− 2b

¶
.

Next, suppose that the message received is in the interval (ζθi−1 + s (θ∗) , ζθi + s (θ∗)] (i ≤ 0);
then the receiver’s optimal action is given by

ai = (1− η)
θi + θi−1

2
+ η

1

2
,

where η is as defined in the previous section. As before, it follows that boundary types must

satisfy the difference equation

θi+1 =
2 + 2η

1− η
θi − θi−1 +

4b− 2η
1− η

(for i ≤ −1).

We need a solution of this difference equation that converges to θ∗ – this ensures that the

required indifference condition for the boundary type at θ∗ will be satisfied. Hence, θ∗ must

satisfy

θ∗ =
2 + 2η

1− η
θ∗ − θ∗ +

4b− 2η
1− η

⇒ θ∗ =
η − 2b
2η

⇒ θ∗ =
1

2
− b (1− � (1− ζ))

�ζ

21In fact, it follows from the proof of Proposition 6 that, in any equilibrium, almost all types that fully
reveal themselves must induce their ideal actions; thus there is no equilibrium in which the highest types
adopt a separating strategy.
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Solving for ζ, we obtain

ζ =
2b (1− �)

� (1− 2θ∗ − 2b) , so

η =
2b

1− 2θ∗ .

The difference equation becomes:

θi+1 −
2− 4θ∗ + 4b
1− 2θ∗ − 2bθi + θi−1 = −

8θ∗b

1− 2θ∗ − 2b.

With the boundary constraint θ0 = 1, the solution is

θi = (1− θ∗)

Ã
1− 2θ∗ + 2b−

p
4b (2− 4θ∗)

1− 2θ∗ − 2b

!−i
+ θ∗.

Finally, recall that we require that

ζ (1− θ∗) + s (θ∗) = 1,

so all messages are used in equilibrium. Can we find a θ∗ which solves this equation? Notice

that s (0) = 0, and s0 (θ∗) is strictly increasing for θ∗ ∈
£
0, 1

2
− b
¢
with limθ∗→ 1

2
−b = ∞.

Further, ζ (1− θ∗) is increasing in θ∗ (as long as b < 1
2
). So, by continuity, we can find a

solution to this equation if and only if ζ (1− θ∗) < 1 when θ∗ = 0. This implies that � > 2b.

Example 1, Three-step equilibrium, calculation of EUR

With an error of � = 1
126

, we showed that there is an equilibrium partition with elements£
0, 1

25

¢
,
£
1
25
, 8
25

¢
, and

£
8
25
, 1
¤
. In the event of no error, these elements induce actions a1 = 1

10
,

a2 =
9
50
, and a3 =

33
50
respectively. The expected utility of the receiver is given by:

EUR = (1− �)

ÃZ 1
25

0

− (θ − a1)
2 dθ +

Z 8
25

1
25

− (θ − a2)
2 dθ +

Z 1

8
25

− (θ − a3)
2

!

+�

µZ 1

0

− (θ − a1)
2 dθ

¶
= − 36

1200
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Proof of Proposition 9. Suppose that

1

2N2
< b <

1

2 (N − 1)2

for some integer N > 1.We show there exists an � > 0 such that for all � ∈ (0, �) , there is an
N-step equilibrium of the noide model that Pareto dominates the Pareto optimal equilibrium

of the CS model.22

Let the probability of error be �. Consider the partition {[0, θ1) , . . . , [θN−1, 1]} , and suppose
the sender obeys the following strategy:

If θ ∈ [0, θ1] , randomize uniformly on [0, 1] \ {m2, . . . ,mN}
If θ ∈ (θ1, θ2] , send message m2

...

If θ ∈ (θN−1, 1] , send message mN

The actions chosen in each step are, respectively

If m ∈ [0, 1] \ {m2,m3} is received, choose a1 =
(1− �) θ1

θ1
2
+ �1

2

(1− �) θ1 + �

If m = m2 is received, choose a2 =
θ1 + θ2
2

...

If m = m2 is received, choose aN =
θN−1 + 1

2

Solving the indifference conditions

θ1 + b =
a1 + a2
2

θ2 + b =
a2 + a3
2

...

θN−1 + b =
aN−1 + aN

2

22As an aside, it is worth noting that as � tends to 0, the equilibrium constructed here tends to the most
informative equilibrium of the CS model.
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gives

θ2 =
2θ1 (2b+ θ1) + � (θ1 − 1) (4b+ 2θ1 − 1)

� (θ1 − 1) + θ1
(4)

θ3 − θ2 = θ2 − θ1 + 4b (5)
...

1− θN−1 = θN−1 − θN−2 + 4b (6)

Now observe that
N−1X
i=1

(θi+1 − θi) = 1− θ1 (7)

and combining (5)—(6) we obtain

N−1X
i=1

(θi+1 − θi) =
(N − 1) (N − 2)

2
4b+ (N − 1) (θ2 − θ1) (8)

(7) and (8) give us

1− θ1 =
N (N − 1)

2
4b+ (N − 1) (θ2 − θ1)

⇒ θ2 − θ1 =
1− θ1
N − 1 − 2b (N − 2) (9)

Finally, solving (4) and (9) for θ1, we find

θ1 =
1 + 2bN − 2�N − 2b�N − 2bN2 + 2b�N2

2 (1− �)N

+

q
4� (�− 1) (−1 + 2b (N − 1))N2 + (1− 2�N + 2b (�− 1) (N − 1)N)2

2 (1− �)N
(10)

(4) gives us the position of the first boundary point, θ1, in an N step equilibrium of the

noise model. Solving for �, we can find the level of noise required to sustain a particular

equilibrium value of θ1:

� =
θ1 (−1− 2bN + 2bN2 +Nθ1)

N (1− θ1) (1 + 2b− 2bN − θ1)
(11)
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The expected utility of receiver is given by

EUR
noise = (1− �)

ÃZ θ1

0

− (θ − a1)
2 dθ +

Z θ2

θ1

− (θ − a2)
2 dθ + · · ·+

Z 1

θN−1

− (θ − aN)
2

!

+�

µZ 1

0

− (θ − a1)
2 dθ

¶
= (1− �)

Ã
−
θ1
¡
−2� (θ1 − 1) θ31 + θ41 + �2 (θ1 − 1)2

¡
3 + θ21

¢¢
12 (�+ θ1 − �θ1)

2 − 1

12

NX
2

(θi − θi−1)
3

!

+�

Ã
−�

2 − 2 (�− 1) �θ1 + 4 (�− 1)2 θ21 − 6 (�− 1)
2 θ31 + 3 (�− 1)

2 θ41
12 (�+ θ1 − �θ1)

2

!

Solving and substituting for � using (11), we can re-write the expected utility of the receiver

in terms of θ1:

EUR
noise = −

4b2 (N − 2) (N − 1)2N + 4b (N − 1)2 (2N − 1) θ1 + ((2N − 1) θ1 − 1)2

12 (N − 1)2

To see that this equilibrium Pareto dominates the Pareto optimal equilibrium of the CS

model for small �, we consider two cases.

Case 1:
1

2N (N − 1) 6 b <
1

2 (N − 1)2

The Pareto optimal equilibrium of the CS model has N − 1 steps, with resulting expected
utility

EUR
CS = −

1

12 (N − 1)2
−

b2
¡
(N − 1)2 − 1

¢
3

Notice that this equilibrium coincides precisely with the construction above when � = 0 ⇒
θ1 = 0. By introducing a small amount of noise, we are able to squeeze an extra step into

the equilibrium partition. We now compute the difference in the receiver’s expected utility
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in the two types of equilibrium.

EUR
noise −EUR

CS

= −4b
2 (N − 2) (N − 1)2N + 4b (N − 1)2 (2N − 1) θ1 + ((2N − 1) θ1 − 1)2

12 (N − 1)2

−
Ã
− 1

12 (N − 1)2
−

b2
¡
(N − 1)2 − 1

¢
3

!

= −
(2N − 1) θ1

¡
4b (N − 1)2 − 2 + (2N − 1) θ1

¢
12 (N − 1)2

> 0 for θ1 ∈
Ã
0,
2− 4b (N − 1)2

2N − 1

!

Substituting for θ1, we obtain EUR
noise −EUR

CS > 0 if

� ∈
Ã
0,

2
¡
1− 2b (N − 1)2

¢
(1 + 2b (N − 1)N)¡

(2N − 3)2 + 2b (2N − 3)2 (N − 1)− 8b2 (N − 1)3
¢
N

!

To see that the upper bound of this interval is strictly positive, we show that both nu-

merator and denominator are strictly positive. Consider first the numerator. Clearly

(1 + 2b (N − 1)N) > 0, and since b < 1
2(N−1)2 , we also have

¡
1− 2b (N − 1)2

¢
> 0 as re-

quired. For the denominator, suppose first that N = 2 (recall that N is an integer greater

than 1). Then the denominator simplifies to 2 (1− 2b (4b− 1)) > 0 since b < 1
2
. Now suppose

N > 3. We can rewrite the denominator as follows:

N
¡
(2N − 3)2 + 2b (2N − 3)2 (N − 1)− 4b (N − 1) 2b (N − 1)2

¢
> N

¡
(2N − 3)2 + 2b (2N − 3)2 (N − 1)− 4b (N − 1)

¢
= N

¡
(2N − 3)2 + 2b

¡
(2N − 3)2 − 2

¢
(N − 1)

¢
> 0 as required.

Case 2:
1

2N2
< b <

1

2N (N − 1)
In this case, the most informative equilibrium of the CS model has N steps, with resulting

expected utility

EUR
CS = −

1

12N2
− b2 (N2 − 1)

3

This equilibrium coincides precisely with the construction above when � = 0 and θ1 =
1−2b(N−1)N

N
. By introducing a small amount of noise, we increase the size of the first (and
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smallest) element of the equilibrium partition. As before, we compute EUR
noise −EUR

CS.

EUR
noise −EUR

CS

= −4b
2 (N − 2) (N − 1)2N + 4b (N − 1)2 (2N − 1) θ1 + ((2N − 1) θ1 − 1)2

12 (N − 1)2

−
µ
− 1

12N2
− b2 (N2 − 1)

3

¶
=

(2N − 1)
¡
−1 + 4b2 (N − 1)2N2 − 4b (N − 1)2N2θ1 − 2N3θ21 +N2θ1 (2 + θ1)

¢
12 (N − 1)2N2

> 0 for θ1 ∈
µ
1− 2bN (N − 1)

N
,
1 + 2bN (N − 1)
N (2N − 1)

¶
Substituting for θ1, we obtain EUR

noise −EUR
CS > 0 if

� ∈
µ
0,

2 (1 + 2b (N − 1)N) (2bN2 − 1)
(N − 1) (1 + 2 (1− b)N) (1 + 2N − 4bN2)

¶
.

It is easy to see that the upper bound is strictly positive, completing the proof.¥

Proof of Lemma 1. Suppose that the N-step equilibrium of the noise model has equi-

librium partition given by {[0, θ1) , [θ1, θ2) , . . . , [θi−1, θi) , . . . , [θN−1, 1]} . In the model with
correlated noise, consider anN-step partition

©
[0, θ01) , [θ

0
1, θ

0
2) , . . . ,

£
θ0i−1, θ

0
i

¢
, . . . ,

£
θ0N−1, 1

¤ª
.

Let m2,m3, . . . ,mN be a sequence of messages, with mi 6= mi0 for all i 6= i0 and e (mi) ≥
e (mi+1) for all i = 2, . . . , N − 1. Define M∗ ≡ ∪Ni=2{mi}. The sender adopts the following
strategy:

If θ ∈ [0, θ01) , randomize over M \M∗ with a distribution that has density φ

If θ ∈ [θ01, θ
0
2) , send message m2

...

If θ ∈
£
θ0N−1, 1

¤
, send message mN

(We define φ shortly.) The receiver’s posterior probability that the sender’s type is in [0, θ01)

conditional on receiving a message m ∈M \M∗ equals

P (θ ∈ [0, θ01) | m) =

³
(1− e (m))φ (m) +

R 1
0
e (λ)φ (λ) dλ

´
θ01³

(1− e (m))φ (m) +
R 1
0
e (λ)φ (λ) dλ

´
θ01 +

PN
j=2 e (mj)

¡
θ0j − θ0j−1

¢ .
And the receiver’s posterior probability that the sender’s type is in

£
θ0i−1, θ

0
i

¢
conditional on
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receiving a message m ∈M \M∗ equals

P
¡
θ ∈

£
θ0i−1, θ

0
i

¢
| m
¢
=

e (mj)
¡
θ0i − θ0i−1

¢³
(1− e (m))φ (m) +

R 1
0
e (λ)φ (λ) dλ

´
θ01 +

PN
j=2 e (mj)

¡
θ0j − θ0j−1

¢ .
Notice that if we can ensure that these posteriors do not vary with m ∈ M \M∗, then the

sender is indifferent among all messages in this set. This condition in turn is satisfied if there

is a constant c such that

(1− e (m))φ (m) +
Z 1

0

e (λ)φ (λ) dλ = c (12)

for all m ∈ M \M∗. Integrating equation (12) with respect to m shows that we must have

c = 1. The resulting integral equation is solved by the function φ that is defined by

φ (m) =
1R 1

0
1−�(m)
1−�(ν) dν

.

This implies that the receiver’s posteriors do not depend on the entire shape of the error

function e, but only on the specific values e (mi) for i = 2, . . . , N. (The resulting posteriors

are in fact the same as in a model where messages may get lost with probabilities e (mi),

i = 2, . . . , N that depend on the messages sent, and the lowest interval of types refrains from

sending a message.)

For all m ∈M \M∗ the receiver’s best response is given by

a01 = P (θ ∈ [0, θ01) | m)
θ01
2
+

NX
i=2

P
¡
θ ∈

£
θ0i−1, θ

0
i

¢
| m
¢ θ0i−1 + θ0i

2

=
θ01

θ01 +
PN

j=2 e (mj)
¡
θ0j − θ0j−1

¢ θ01
2
+

NX
i=2

e (mi)
¡
θ0i − θ0i−1

¢
θ01 +

PN
j=2 e (mj)

¡
θ0j − θ0j−1

¢ θ0i−1 + θ0i
2

;

(where θ0N = 1), and for mi ∈M∗ the receiver’s best response is

a0i =
θ0i−1 + θ0i

2
.

Then type θ’s payoff from sending message mi ∈M∗ equals

EUS (θ,mi) ≡ − (1− e (mi)) (θ + b− a0i)
2 − e (mi) (θ + b− a01)

2
.
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The payoff from sending some message m1 ∈M \M∗ equals

EUS (θ,m1) ≡ − (θ + b− a01)
2
.

(Henceforth, we use m1 to denote a generic message in M \ M∗.) Suppose that a02 > a01
(it follows from the expression for a0i above that a

0
i+1 > a0i for i = 2, . . . , N − 1). Since we

have assumed �(mi) ≥ �(mi+1), if any type θ is indifferent between sending messages mi and

mi+1, then any type θ
0 > θ strictly prefers mi+1 to mi and any type θ

00 < θ strictly prefers

mi to mi+1. Intuitively, sending message mi increases the risk of the “bad” action a01, so for

type θ to be indifferent between mi and mi+1, she must prefer action a0i to action a0i+1; for

a higher type θ0 this preference is weaker (and is reversed eventually), while the utility loss

from action a01 is higher, so mi+1 is strictly preferred. For lower types θ
00, on the other hand,

the preference for a0i over a
0
i+1 is stronger, while the utility loss from a01 is lower, so mi is

strictly preferred.

Therefore, if our partition is chosen such that a02 > a01 and each boundary type θi is indifferent

between messages mi and mi+1 (i = 1, . . . , N − 1), we have an equilibrium. The indifference
conditions for these boundary types are given by

EUS (θ01,m1) = EUS (θ01,m2)
...

EUS
¡
θ0N−1,mN−1

¢
= EUS

¡
θ0N−1,mN

¢
In the case where there are at least N − 1 messages that yield equal error probabilities of
exactly �, the result follows easily. Substituting � for e (mi) , i = 2, . . . , N, we see that these

indifference conditions are identical to the corresponding conditions in the noise model; thus

{[0, θ1) , , . . . , [θN−1, 1]} is also an equilibrium of the correlated noise model, with the same

induced actions a1, . . . , aN .

If we cannot find N − 1 such messages, a more intricate argument is needed.
Redefine a01 for arbitrary (�2, . . . , �N) as

a01 ≡
θ01

θ01 +
PN

j=2 �j
¡
θ0j − θ0j−1

¢ θ01
2
+

NX
i=2

�i
¡
θ0i − θ0i−1

¢
θ01 +

PN
j=2 �j

¡
θ0j − θ0j−1

¢ θ0i−1 + θ0i
2

.

Define

US,i(θ; �2, . . . , �N ; θ
0
1, . . . , θ

0
N) ≡ − (1− �i) (θ + b− a0i)

2 − �i (θ + b− a01)
2
.
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Define

V S,i−1,i(θ0i−1; �2, . . . , �N ; θ
0
1, . . . , θ

0
N) ≡ US,i−1(θ0i−1; �2, . . . , �N ; θ

0
1, . . . , θ

0
N)

−US,i(θ0i−1; �2, . . . , �N ; θ
0
1, . . . , θ

0
N)

Note that for N > 2, V S,N−1,N is a continuously differentiable function in an open neigh-

borhood of �2 = . . . = �N = � and θ0i = θi, i = 1, . . . , N. Also, at �2 = . . . = �N = � and

θ0i = θi, i = 1, . . . , N, the derivative with respect to θ0N equals −(1− �)(θN−1+ b− θN−1+θN
2

),

which is strictly positive. Therefore, by the implicit function theorem, the equation

V S,N−1,N(θ0N−1; �2, . . . , �N ; θ
0
1, . . . , θ

0
N) = 0

has a local solution

θ0N = fN(�2, . . . , �N ; θ
0
1, . . . , θ

0
N−1)

where fN is continuously differentiable.

For N − 1 > 2, substitute this solution into V S,N−2,N−1. The resulting function is con-

tinuously differentiable in an open neighborhood of �2 = . . . = �N = � and θ0i = θi, i =

1, . . . , N − 1. Its derivative at �2 = . . . = �N = � and θ0i = θi, i = 1, . . . , N − 1 with re-
spect to θ0N−1 is strictly positive and once again the implicit function theorem guarantees

the existence of a local solution

θ0N−1 = fN−1(�2, . . . , �N ; θ
0
1, . . . , θ

0
N−2)

where the function fN−1 is continuously differentiable.

As long as i > 2, we can recursively continue this procedure with V S,i−1,i. The case of

i = 2 requires slightly more attention. Let ² denote (�, . . . , �). We need to determine

∂

∂θ02
V S,1,2 (θ1; ²; θ1, θ2, f3(², θ1, θ2), f4(², θ1, θ2, f3(², θ1, θ2)), . . .)

=
∂

∂θ02
(1− �)

©
−(θ1 + b− a01)

2 + (θ1 + b− a02)
2
ª

= −(1− �)

½
−2(θ1 + b− a01)

∂a01
∂θ02

+ (θ1 + b− θ1 + θ2
2

)2
¾

The boundary values θ01, θ
0
2, . . . , θ

0
N (notice that θ

0
0 is excluded) satisfy the difference equation

θ0i+1 = 2θ
0
i − θ0i−1 + 4b.
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With θ01 and θ02 as parameters, the solution becomes

θ0i = 2θ
0
1 − θ02 + 4b+ (θ

0
2 − θ01 − 6b)i+ 2bi2.

Hence, ∂θ0N
∂θ02

= N − 1. Therefore,

∂a01
∂θ02

=
∂a01
∂θ0N

∂θ0N
∂θ02

=
∂a01
∂θ0N

(N − 1).

Finally,

∂a01
∂θ0N

=
1

2

½
−�θ21

(θ1 + �(1− θ1))2
+
2�(θ1 + �(1− θ1))− �2(1− θ21))

(θ1 + �(1− θ1))2

¾
> 0

Therefore

∂

∂θ02
V S,1,2 (θ1; ²; θ1, θ2, f3(², θ1, θ2), f4(², θ1, θ2, f3(², θ1, θ2)), . . .) > 0.

This means that our recursion extends to V S,1,2. Let −→� = (�2, . . . , �N). We have shown that
we can generate a series of function f2, . . . , fN that are locally continuously differentiable in

their arguments and which have the property that for θ01 in an open neighborhood of θ1 and
−→� in an open neighborhood O (²) of ² the values

θ01

θ02 = f2(
−→� ; θ01)

θ03 = f3(
−→� ; θ01, f2(−→� ; θ01))

...

θ0N = fN (
−→� ; θ01, f2 (−→� ; θ01) , . . . , fN−1 (−→� ; θ01, . . . , fN−2 (−→� ; θ01, . . .)))

solve the system of equations

V S,i−1,i(θ0i−1;
−→� ; θ01, . . . , θ0N) = 0, i = 2, . . . , N.

Notice that since e is continuous, regardless of how small we choose O (²), we can find
messages mi, i = 2, . . . , N with mi 6= mj for i 6= j, (e(m2), . . . , e(mN) ∈ O (²) , and e(mi) ≥
e(mi+1). In the sequel consider values of −→� with −→� = (e (m2) , . . . , e (mN)) .

Then, for equilibrium it remains to find a value of θ01 such that

fN(
−→� ; θ01, f2 (−→� ; θ01) , . . . , fN−1 (−→� ; θ01, . . . , fN−2 (−→� ; θ01, . . .)) = 1.
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To see that such a θ01 exists, first note that, evaluated at ², the indifference conditions for

boundary types θ2, . . . , θN are solved by

f2 (²; θ1) =
2θ1 (2b+ θ1) + � (θ1 − 1) (4b+ 2θ1 − 1)

� (θ1 − 1) + θ1
f3 (²; θ1, θ2) = 2θ2 − θ1 + 4b

...

fN (²; θ1, . . . , θN) = 2θN−1 − θN−2 + 4b

Furthermore,

df2
dθ1

(²; θ1) = 2 +
�

(�+ θ1 − �θ1)
2

df3
dθ1

(²; θ1, θ2) =
∂f3
∂θ2

df2
dθ1

+
∂f3
∂θ1

= 2

µ
2 +

�

(�+ θ1 − �θ1)
2

¶
− 1

= 3 +
2�

(�+ θ1 − �θ1)
2

...
dfN
dθ1

(²; θ1, . . . , θN) = N + (N − 1) �

(�+ θ1 − �θ1)
2 .

In particular, observe that dfN
dθ1
(²; θ1, . . . , θN) > 0. It follows that for sufficiently small β > 0

and −→� in a sufficiently small open neighborhood of ²,

fN (
−→� ; θ1 − β, f2 (

−→� ; θ1 − β) , . . . , fN−1 (
−→� ; θ1 − β, . . . , fN−2 (

−→� ; θ1 − β, . . .))) < 1 and

fN (
−→� ; θ1 + β, f2 (

−→� ; θ1 + β) , . . . , fN−1 (
−→� ; θ1 + β, . . . , fN−2 (

−→� ; θ1 + β, . . .))) > 1.

The existence of the required value of θ01 follows from the intermediate value theorem.

To complete the proof, observe that f2 (²; θ1) = θ2, f3 (²; θ1, θ2) = θ3, . . . , and each

fi(
−→� ; · · · ) converges to fi(²; · · · ) as −→� → ².
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