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1 Introduction.

The analysis of economic ‡uctuations has been an important and enduring …eld of research in

macroeconomics. In particular, economists have searched for structural explanations of dif-

ferences between the short-run and long-run responses of economic aggregates to exogenous

impulses. Costly adjustment is one feature to which researchers commonly appeal; it provides

a structural propagation mechanism through which realistic sluggish responses may be gen-

erated. Recent advances have extended the analysis (of aggregate dynamics) to incorporate

non-convex adjustment costs at the individual level, leading to (S; s)-type adjustment rules,

Caplin (1985), Caballero and Engel (hereafter CE) (1991). The empirical models developed

in this literature typically involve estimating microeconomic parameters from aggregate data,

Bertola and Caballero (hereafter BC) (1990), CE (1993) and (1999).

Interest in this structural approach re‡ects the outstanding empirical performance of

the model, which stands in stark contrast to the ongoing failure of earlier models. This

is nowhere more true than in the literature on investment - the focus of this paper - see

for example Chirinko (1993). In particular, the aggregated (S; s) framework a) provides a

structural account of the non-linearities in investment expenditures; b) captures a channel

through which individual heterogeneity matters for aggregate dynamics; c) reconciles lumpy,

intermittent stock adjustment patterns at the individual level with smooth aggregate activity;

d) explains the presence of lagged quantity variables in investment equations.

Most recently, CE (1999) embed the aggregated (S; s) model in a formal statistical frame-

work. They impose su¢cient structure on the microeconomic problem to obtain an aggregate

model in which there is an invertible relationship between aggregate investment and the ag-

gregate (forcing) shocks. By making explicit distributional assumptions about these shocks,
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they are able to write down a likelihood function for the model. The structure of the like-

lihood function is close to that which would be obtained for a linear autoregressive model,

augmented with terms re‡ecting the nonlinear features of the economic model. Thus CE

(1999) estimate and make inference about the model parameters directly from the correla-

tion structure of aggregate investment data. They argue that these statistical foundations

dominate those of earlier models such as BC (1990), CE (1993), since the nonlinear univariate

scheme circumvents problems of constructing reliable measures of the cost of capital.1

In short, the aggregated (S; s)-model appears to be an unusually successful contribution to

the study of economic ‡uctuations with sound economic structure and statistical foundations.

Any structural model is only as good as its underlying economic and statistical assumptions.

However, analysis of the speci…cation of the aggregated (S; s) model has been limited. Until

CE (1999) provided a formal statistical methodology there had been no attempt to clarify

and test the statistical assumptions; moreover, their analysis of the such aspects of model

speci…cation is incomplete. Analysis of economic aspects of the model speci…cation has

until now been limited to discussion of the plausibility of the parameter estimates of the

microeconomic adjustment problem; other auxilliary assumptions made in constructing the

model are not considered. In particular, CE (1999) make assumptions about the nature

of …rms’ labour inputs; I therefore proceed to examine the behaviour of the labour input

resulting from the estimated aggregate (S; s) model of investment, and document a number

labour market puzzles that need to be solved. In short it appears that other frictions, besides

non-convex adjustment costs may have an important role to play in explaining aggregate

investment ‡ucuations.

The rest of the paper is organised as follows. In Sections 2 and 3 I outline a model of

a …rm and the aggregation framework. In Section 4 I replicate CE (1999)’s results with a

1 Below I document further statistical problems of the earlier empirical work on aggregated (S; s) rules.
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modi…ed data set, and analyse the statistical speci…cation of the model. In section 5 I derive

analytic expressions for labour input variables, and use these to analyse the labour market

performance of the model. Section 6 concludes.

2 Model.

Below I outline an aggregated (S; s) model. This follows CE (1993), (1999).

2.1 Microeconomic Framework.

In common with much of the literature on adjustment costs in factor demand, see Hamermesh

and Pfann (1996), the dynamic behaviour of capital stock, K, can be decomposed into a target

capital stock, K¤, and an imbalance variable, £. In logarithms2

µ ´ ln£ ´ ln
K

K¤ :

Fluctuations in investment activity depend on the behaviour of both the target and the

imbalance. The target level re‡ects the optimal long-run response of capital stocks to current

innovations - once the short run e¤ect of the frictions and rigidities such as adjustment

costs have died away. The elements of this decomposition can be computed from a …rm’s

optimisation problem and under certain assumptions can be identi…ed in the data.

Suppose a …rm has a Cobb Douglas production function in which output, Q, depends on

the quasi-…xed factor, capital, K, and the fully and costlessly ‡exible factor, labour, L, and

technology, A,

Qt = AtK
®
t L1¡®t ; ® 2 (0; 1) :

Assume the …rm faces a downward sloping demand curve, in which output price, P , is a

constant elasticity function of output and an index of economic conditions, Z:

Pt =

µ
Zt
Qt

¶ 1
´

; ´ 2 (1;1) :

2 To avoid cumbersome wording, I call the log-imbalance variable, µ, the ’imbalance’.
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Then current net operating revenues are given by

¼ (At; Kt; Lt; Zt; wt) = max
K;L

fPtQt ¡ wtLt ¡ (r + ±)Kt ¡ ­g (1)

where w represents wages, r is the interest rate, ± is the rate of depreciation, ­ represents

the …xed cost incurred by adjusting capital stock: It = 0 ) ­ = 0, It 6= 0 ) ­ > 0.3

The target capital stock, K¤, can be derived by setting adjustment costs at zero and

maximising the operating revenues with respect to L & K. The target can be expressed in

terms of the exogenous variables At; Zt and wt and the parameters r, ±, ®, ´:

K¤
t =

�
®

(1 ¡ ®) (r + ±)

¸1+®(´¡1) �
(1 ¡ ®)

(´ ¡ 1)

´

¸´
A
(1¡®)(´¡1)
t w

¡(1¡®)(´¡1)
t Zt: (2)

In this expression long-run target capital stock is decreasing in interest rates, wages, and

the rate of depreciation and increasing in technology and demand. Assumptions about the

processes driving the forcing variables, A, Z, w will carry through to K¤. Speci…cally, if

these variables follow geometric random walks then K¤
t inherits this property.

In principle the e¤ects of individual driving processes on the target variable could be

estimated directly - this is the strategy in BC (1990) and CE (1993). In contrast, CE (1999)

argue that their univariate framework is superior to the earlier two-step approach to estimat-

ing aggregate (S; s) models since no measure of the cost of capital need be constructed to

estimate the shocks. Moreover, this univariate framework only requires that a distinction be

drawn between aggregate and idiosyncratic shocks to K¤- the precise origin of the shocks (to

technology, wages etc.) is of no consequence. Denote the statistically independent aggregate

and idiosyncratic shocks to target capital stock as vt and "t respectively. For any …rm the

3 CE (1999) use a reduced form for net operating revenues (absent adjustment costs): R (K;¥) = ¥K¯ ¡
(r + ±)K : ¯ < 1; their Equation (1). Revenues are determined by capital stocks and a variable, ¥,
representing the combined e¤ect of technology, demand and wages. The functional forms assumed in the text
generate CE’s Equation (1) and are given in their footnote 7. Under such assumptions their variable µ (here

¥) equals
h

´
(1¡®)(´¡1)

i ¡´
1+®(´¡1)

h
1+®(´¡1)
(1¡®)(´¡1)

i
A

(1¡®)(´¡1)
1+®(´¡1)

t w
¡(1¡®)(´¡1)

1+®(´¡1)

t Z
1

1+®(´¡1)

t , while ¯ = ®(´¡1)
1+(´¡1) .
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target capital stock is given by K¤
t = K¤

t¡1e
vt+"t : In the absence of adjustment actual capi-

tal stock falls at the rate of depreciation, Kt = Kt¡1e¡±, so the evolution of the imbalance

variable is given as ¢µt = ¢ln Kt
K¤
t

= ¡ (± + vt) ¡ "t:

2.2 Aggregating (S; s) Rules.

The implications for modelling aggregate dynamic behaviour under non-convex adjustment

costs are straightforward. Smooth aggregate activity can be reconciled with observed be-

haviour at the individual level only when …rms exhibit heterogeneity that leads their in-

vestment decisions to be imperfectly synchronised. Consequently the empirical framework

must abandon the representative agent approach. In the aggregated (S; s) model this is cap-

tured through a) heterogeneous imbalances across …rms, and b) heterogeneous inaction bands

across …rms. These are consistent with microeconomic evidence, see e.g. Eberly (1994).

Heterogeneous imbalances are captured through the cross-section density function, f (µ; t).

This represents the fraction of …rms, with accumulated shocks µ, in respect of which adjust-

ment has yet to occur. In other words it incorporates the history of such shocks. When

uncertainty is Markovian, the impact of history is entirely captured in the current realisation

of this density function. A tractable representation of heterogeneous adjustment triggers was

introduced by CE (1993), who assume that the probability that a unit, i, adjusts during a

given time period depends on the magnitude of the imbalance . This structure is represented

by an adjustment function, ¤j ´ ¤j (µ), (for all units j 2 (0; 1)), which determines the prob-

ability that unit i adjusts, during a given time interval, as a function of the imbalance, see

Figure (1), where, the probability of adjustment increases smoothly in the absolute value of

the deviation.4 When all …rms face the same adjustment function ¤j (µ) ´ ¤(µ) ; 8j 2 (0; 1),

4 CE (1999) develop explicit microfoundations for the adjustment function. They generalise the standard
(S; s) framework to encompass adjustment costs which are i:i:d: for individual …rms across time, according to
a gamma distribution. They show that the adjustment function for an individual …rm, ¤j (µ) is di¤erentiable
and increasing and limjµj!1 ¤j (µ) = 1.
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the latter represents the fraction of …rms (in the economy) which adjust as a function of the

imbalance. In what follows it is assumed that all …rms face the same adjustment function.5

Suppose that when a …rm adjusts it completely eliminates any capital imbalance: µ = 0

after any adjustment. Then, when a …rm, j, with imbalance µj = ¹µ, adjusts at time t, its

capital stock changes by Ij;t
¡¹µ

¢
= K¤

j;t ¡ Kj;t
¡¹µ

¢
=

³
e¡¹µ ¡ 1

´
Kj;t

¡¹µ
¢
: Expected investment

by …rm j, with imbalance ¹µ is

E
£
Ij;t

¡¹µ
¢¤

=
©
Ij;t

¡¹µ
¢ j Adjustment

ª
Pr (Adjustment) =

³
e¡
¹µ ¡ 1

´
Kj;t

¡¹µ
¢
¤j

¡¹µ
¢

Industry level investment, in industry i 2 f1; ::; Ng, by those …rms, j 2µ (0; 1) with imbalance

µj = ¹µ, is ¹Ii;t
¡¹µ

¢
=

R
j2

³
e¡¹µ ¡ 1

´
Kj;t

¡¹µ
¢
¤j

¡¹µ
¢
dj =

³
e¡¹µ ¡ 1

´
¹Ki;t

¡¹µ
¢
¤

¡¹µ
¢

where ¹Ki;t
¡¹µ

¢
is

the average capital stock of those …rms with imbalance ¹µ. Industry level investment activity is

computed using the adjustments undertaken by the proportion of agents at capital imbalance,

µ, by summing over all possible imbalances, µ 2 (¡1;1). Denote the proportion of agents

at any µ, at time t, immediately prior to adjustment by the industry cross-section density

function, ~fi (µ; t). Total investment in industry i is

Ii;t =

1Z

µ=¡1

³
e¡µ ¡ 1

´
¹Ki;t (µ) ¤ (µ) ~fi (µ; t)dµ

Assuming that the average capital stock is independent of the imbalance,6 the investment

capital ratio is given by the approximation

Ii;t
Ki;t

'
1Z

µ=¡1

³
e¡µ ¡ 1

´
¤(µ) ~fi (µ; t)dµ: (3)

2.3 Investment Dynamics

Equation (3) highlights the key role played by the cross-section distribution of capital im-

balances, f (µ; t), in determining the investment-capital ratio. As Froote et al. (2000) stress,
5 Since the adjustment function is assumed to be identical across agents, statements about probability of
action at the individual level translate into statements about fraction of agents undertaking action at the
aggregate level.
6 Using American …rm level data, Caballero, Engel and Haltiwanger (1996) con…rm that the average capital
imbalance, ¹Kt (µ), is largely independent of the extent of the imbalance, µ.
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non-convex adjustment costs and individual heterogeneity only a¤ect aggregate dynamics to

the extent that there is some mechanism to co-ordinate individuals’ actions. In the aggre-

gated (S; s) model, aggregate shocks perform this role by shifting the cross-section density,

f (µ; t) ; with respect to the adjustment function, ¤(µ) thereby changing the fraction of agents

who adjust.7 Fluctuations in investment depend on the evolution of this density function,

which in turn depends on the shocks, vi;t+"t and the magnitude and direction of adjustment

as prescribed by ¤(µ).

To track the evolution of the density function and ‡uctuations of the investment-capital

ratio in a discrete time framework, the following timing convention is adopted describing

the 3 events that occur within time period t. De…ne the end of period t ¡ 1 cross-section

density for industry i as fi (µ; t ¡ 1). The …rst event during period t is taken to be the

e¤ect of depreciation and the industry aggregate shock, vi;t. This alters the imbalance of

all …rms in the industry by ¡ (± + vi;t). De…ne the density function following these events

and immediately preceding adjustment as ~fi (µ; t). The next period t event is the adjustment

decision. The fraction of adjustments at each imbalance is determined by the adjustment

function ¤(µ). The …nal event in period t is that each unit is subject to an idiosyncratic

shock, ", drawn from the density function g" (¢). The end of period t density is de…ned

as fi (µ; t). Those units in industry i that end period t with imbalance µ can ’arrive’ at

that location regardless of whether or not they adjust during period t. In particular, since

adjustment results in the complete elimination of the imbalance, the density fi (µ; t) consists

of a) the fraction of units in the industry (across all µ) which do adjust during period t and

subsequently receive an idiosyncratic shock of ¡µ, plus b) the fraction of those agents which

do not adjust at imbalance µ + " and subsequently receive a shock of exactly ¡" to leave

7 Generally this feature only makes a noticeable di¤erence to aggregate behaviour for large aggregate shocks,
or around turing points. This explains why the aggregated (S; s) model outperforms linear models in brisk
expansions and contractions.
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them with end of period t imbalance of µ (summed over all realisations of shock "). This

timing convention is summarised in equations (4) and (5).

~fi (µ; t) = fi (µ + ± + vi;t; t ¡ 1) (4)

fi (µ; t) =

hR
¤(Á) ~fi (Á; t)dÁ

i
g" (¡µ)+

R
[1 ¡ ¤(µ + ")] ~fi (µ + "; t) g" (¡") d"

(5)

Putting equations (4) and (5) together, the evolution of the cross-section density from one

period to another and the expression for the industry level investment rate are, respectively

fi (µ; t) =
[
R

¤ (Á) fi (Á + ± + vi;t; t ¡ 1) dÁ] g" (¡µ)+

R
[1 ¡ ¤(µ + ")] fi (µ + ± + vi;t + "; t ¡ 1) g" (¡") d"

(6)

Ii;t
Ki;t

=
Z ³

e¡µ ¡ 1
´

¤ (µ) fi (µ + ± + vi;t; t ¡ 1) dµ: (7)

or Ii;t
Ki;t

= yi;t = yi;t (vi;t; fi (µ; t ¡ 1)). So conditional on knowing the initial cross-section

density of imbalances, fi (µ; 0), both ffi (µ; t)g and fyi;tg for industry i can be computed as

a function of the aggregate and idiosyncratic shocks and the adjustment function: yi;t =

yi;t (vi;t; :::vi;1; fi (µ; 0)).

3 The Econometrics of Aggregate (S; s) Rules.

Estimation of the model exploits the correlation patterns of aggregate investment rate data

to infer the parameters of the adjustment function using a maximum likelihood procedure.

In this section I outline assumptions that lead to a tractable likelihood function and dis-

cuss noteworthy features of the estimation procedure. An appendix describes computational

aspects of the implementation.

Following the literature, the ergodic density function limt!1 fi (µ; t) is used to approxi-

mate the initial cross-section distribution, fi (µ; 0).8 Assume that idiosyncratic shocks are

8 CE (1999) show that the Markovian nature of the process driving the density function ensures the existence
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NIID
¡
0; ¾2"

¢
across …rms and time. Idiosyncratic and aggregate shocks are assumed to be

independent: Let the adjustment function take the form9

¤(µ) = 1 ¡ e¡¸2µ
2

;2 (0; 1) ; such that ¸2 > 0: (8)

Aggregate shocks vi;t, i = 1; ::;N , t = 1; ::; T are assumed NIID (¹V ; C), where C is the

cross-industry covariance matrix and ¹V is the N £ 1 vector of industry average shocks, of

the column vector V : (v1;1; v1;2; ::::; v1;T ; ::::vN;1; :::::; vN;T )0. De…ning lT as a (T £ 1) vector

of ones, the joint probability density function for V is

q (V ) =
1

(2¼)
NT
2 jCjT2

exp

½
¡1

2
(V ¡ ¹V ­ lT )0

³
C¡1 ­ IT

´
(V ¡ ¹V ­ lT )

¾
(9)

The joint density function of the aggregate investment rate series can be derived from a

change of variables argument using equations (7) and (8). CE (1999) show that, if yi;t; ¤(µ)

and vi;t are de…ned as in equations (7), (8) and (9) respectively then @yi;t
@vi;t

¸ 0;8vi;t. It

follows that the transformation in equation (7) is one to one and hence invertible. The

density function of the aggregate investment series is:

J (Y ) =
1

(2¼)
NT
2 jCjT2

exp

½
¡1

2
(V ¡ ¹V ­ lT )0

³
C¡1 ­ IT

´
(V ¡ ¹V ­ lT )

¾
jJ j :

where J is the Jacobian of the transformation and Y = (y1;1; y1;2; ::::; yN;T ). The log-likelihood

function, L, is given by

¡L =
NT

2
ln 2¼ +

T

2
ln jCj +

1

2
(V ¡ ¹V ­ lT )0

³
C¡1 ­ IT

´
(V ¡ ¹V ­ lT ) +

NX

i=1

TX

t=1

ln

¯̄
¯̄
¯
@yi;t
@vi;t

¯̄
¯̄
¯

The estimation problem is further simpli…ed by concentrating the likelihood function with

respect to C and ¹V yielding

¡L =
T

2
(1 + ln2¼) +

T

2
ln

¯̄
¯̄
¯
(V ¡ ¹V ­ lT ) (V ¡ ¹V ­ lT )0

T

¯̄
¯̄
¯ +

NX

i=1

TX

t=1

ln

¯̄
¯̄
¯
@yi;t
@vi;t

¯̄
¯̄
¯ : (10)

of an ergodic density function. They also show that the choice of initial density function has little e¤ect on
the results as it washes away within 3 periods (years) in their data. Below, the …rst 3 periods are excluded
from the computation of the likelihood function. This is done to allow the e¤ects of imposing the ergodic
density function as the initial value to wash away without impacting on the parameter estimates.
9 CE (1999) assume ¤ (µ) = 1¡ e¡¸0¡¸2µ

2
: ¸0; ¸2 > 0. I set ¸0 = 0 to reduce the computational burden of

the grid search procedure.
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Thus the log-likelihood function consists of three components, a constant, a term measur-

ing the variance of the aggregate shocks, and the Jacobian terms. The latter can be viewed

as measuring the sensitivity of current investment in industry i to current shocks in that

industry - and thus varies over time with the history of shocks captured in f (µ; t).

A discussion of how the components of the likelihood function vary as ¸ varies is useful

in what follows. This discussion is most easily understood using Figure (2) which illustrates

the relationship between investment and aggregate shocks described by equation (7) when

the cross-section density is in steady state. As ¸ rises the mean and variance of the aggregate

shocks fall. This is because a rise in ¸ raises the probability of adjustment (at all levels

of imbalance), therefore a) a lower (average) shock is required to generate a given level of

investment and b) aggregate shocks have to be less volatile in order to generate a given degree

of volatility in aggregate investment. Since the volatility of the shocks declines as ¸ rises, the

variance term declines which raises the value of the likelihood function, while the sensitivity

terms rise, which reduces the value of the likelihood function. This is illustrated in Figure

(3).

4 Results For US Manufacturing Data.

In this section I replicate CE’s (1999) study with revised capital stock data and consider

statistical aspects of the model speci…cation. The data used in this study are Bureau of Eco-

nomic Analysis industry level annual capital stock data for 21 US manufacturing industries

over the period 1947-97. A model-consistent treatment of depreciation is one of a number

of features of the revised data that make it more attractive than that used in CE (1999).

Further details of the dataset are described in the appendix.

Table (1) displays the maximum likelihood estimates of microeconomic adjustment pa-

rameters of the aggregated (S; s)model. These results con…rm the insight of the generalised
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(S; s) model that adjustment is increasingly likely as the extent of the capital imbalance

increases. Figure (1) illustrates the estimated adjustment function. Adjustment behaviour

is clearly nonlinear: some 10% of …rms adjust when the (absolute) imbalance reaches 0:225,

50% adjust when the imbalance reaches 0:55 and 90% adjust when the imbalance reaches 1:05.

Tests of statistical misspeci…cation revolve around the assumed properties of the aggre-

gate shocks, in particular the assumptions of normality and of temporal independence. The

second property appears particularly important, since the Markovian property of the shocks

was crucial in obtaining a convenient form for the empirical implementation of the model -

otherwise it would have been necessary to use more information than is available in the cur-

rent cross-section density, f (µ; t). Surprisingly, CE (1999) pay scant attention to temporal

independence, and implicitly accord non-normality greater importance.10

With regard to the assumption of temporal independence, Table (2) reports industry

level Box-Ljung Portmanteau Statistics for the aggregate shock data in levels and in squares.

Statistically signi…cant values for the latter would indicate presence of ARCH type e¤ects in

the aggregate shock data. Results are presented for correlations at four lags (years), other

lags led to qualitatively similar results but are not reported for brevity. For only 3 of the

21 industries does aggregate shock data, in levels, display temporal dependence, at the 5%

signi…cance level. Five industries exhibit statistically signi…cant temporal dependence in

the squared values of the shocks at the 5% level. As Box-Ljung Portmanteau tests have

notoriously low power, I also test directly for …rst order serial correlation of the shock series.

It turns out that none of the 21 industry level …rst order serial correlation coe¢cients is

statistically signi…cant at the 5% level (2/
p

T ' 0:283) these results are documented in

Table (3). Finally exploiting the panel nature of the shock data, I estimate the model

10They do make reference to an earlier working paper version of their article. There they document ”very
little” (sic !) serial correlation in the aggregate shock processes at industry level.
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vit = ®i + Áivi;t¡1 + »it for each industry i and use the mean-group estimator of Pesaran

et al. (1996). This estimator does not impose a common degree of serial correlation across

industries.11 No statistically signi…cant evidence of temporal dependence is found using this

approach either. The results are displayed in Table (4). Since temporal dependence is not

widespread, this evidence is taken as broadly supportive of the aggregated (S; s) model.

Due to the presence of contemporaneous cross-industry correlation, tests of normality of

the aggregate shocks may be better undertaken at the industry level, rather than presenting

statistics which average across industries as CE (1999) do.12 Industry level skewness and

kurtosis statistics are presented in Table (5).13 It is possible to reject the null hypothesis

of an absence of skewness at the 5% level for 9 out of 21 industries, and to reject the null

hypothesis of no excess kurtosis for 12 out of 21 industries. Moreover, if aggregate shocks

for a particular industry exhibit skewness they are also likely to display excess kurtosis.

One problem with moment based tests is that they have relatively poor power properties,

Verbrugge (1997), yet this is likely to bias the results against rejecting normality. Clearly,

this is compelling evidence of non-normality, but may not invalidate the model since, given

the number of observations, desirable asymptotic properties of MLE may hold anyway.

5 The Economic Implications of (S; s) Rules

While a test of statistical misspeci…cation is an important check on the internal consistency,

it amounts to comparing the model against a rather arbitrary norm. It may be standard to

assume that disturbances are normally distributed and temporally independent, but these

11The mean-group estimator ÁMG is obtained by runs OLS regressions vit = ®i + Áivi;t¡1 + »it separately

for each i 2 N and averaging across groups, Á̂MG =
P

i

Á̂i
N . Under the assumption » » NID

¡
0; ¾2»

¢
the

parameters Ái are independently distributed across groups. The variance of this estimator is consistently

estimated across groups as V̂
¡
Á̂MG

¢
= 1

N(N¡1)

hP
i

¡
Á̂i ¡ Á̂MG

¢2i
.

12They reject the hypothesis that aggregate shocks are skewed (for equipment and structures separately), but
are unable to reject the hypothesis that shocks exhibit excess kurtosis, at the standard 5% signi…cance level.
13The skewness statistics are standardised skewness measures. The p-values are associated with the squares
of these …gures, which under the null hypothesis are distributed as Â2 (1), and indicate the probability that
values greater than the square of the observed statistic could be obtained.
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assumptions primarily ensure tractability of the likelihood function, while their violation

principally a¤ects the properties of the parameter estimates of adjustment costs, rather than

casting doubt on the economic content of the model. The invest / wait / scrap behaviour at

the individual level and the smoothing properties of aggregation would be unlikely to break

down simply because the aggregate shocks fail to obey these distributional assumptions. In

short, these distributional assumptions have little economic rationale. The most interesting

speci…cation issues surround the economic content of the model, which is the subject of this

Section. Performance along two dimensions is considered: a) the model’s account of aggregate

investment ‡uctuations; and b) the implied labour market behaviour.

5.1 Aggregate Investment Dynamics

Consistent statistical speci…cation and plausible microeconomic parameter estimates are en-

couraging, but the real content of the aggregated (S; s) model must come from its ability to

account for aggregate ‡uctuations. Inability of the model to explain investment ‡uctuations

would suggest a role for other frictions, beyond costs of adjusting capital equipment. This

issue can be addressed using the (within-sample) forecast of investment.14 With a regression

equation for a linear AR(1) model this would involve computing ŷi;t = â0+ â1yi;t¡1, since, as

a condition of estimation, the residual terms sum to zero. As the aggregated (S; s) model is

nonlinear, and has a non additive error term, estimation does not require that the aggregate

shocks sum to zero. The shocks are chosen, without restriction as to their average value, by

inverting equation (7). The within sample forecast of the aggregated (S; s) model is

ŷi;t =
Z ³

e¡µ ¡ 1
´³

1 ¡ e¡
^̧
2µ
2
´

fi (µ + ± + Et¡1 [vi;t] ; t ¡ 1) dµ: (11)

14CE (1999) …nd that the mean square error of the out-of-sample 1-step ahead forecast is lower for the
aggregated (S; s) model than a linear (AR(2)) alternative. However, this is unsurprising since nonlinearities
in aggregate investment are well documented. It seems more appropriate to gauge the absolute performance
of the aggregate (S; s) model.
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This says that the predicted value re‡ects information contained in the cross-section density

function, which represents the history of shocks to which …rms have yet to adjust. A large

di¤erence between y and ŷ suggests that (the unexpected component of) aggregate innova-

tions play the key role in the good performance of the model, small di¤erences indicate that

the history of accumulated shocks described by the cross-section density function, f (µ; t),

are of principal importance in describing investment ‡uctuations. I use sample average of

aggregate shocks, ¹vi =
P
t
vit
T , as an estimate of Et¡1 [vi;t] in evaluating equation (11).15

With the predicted values in hand, I present two metrics of the model’s performance.

The correlation between actual and predicted investment capital ratio, ½y;ŷ, is presented

by industry in Table (6) along with the correlation of actual and predicted growth rates of

this ratio (ie the correlation of (ŷi;t ¡ yi;t¡1) =yi;t¡1 and (yi;t ¡ yi;t¡1) =yi;t¡1), which I denote

½gy;gŷ . The (industry level) correlations are not particularly high, at around 0:6 and those

for growth rates is more variable suggesting that the model does not experience universal

success in explaining the direction of movement of the investment capital ratio. Nonetheless,

the results suggest that the aggregated (S; s) model goes a good deal of the way towards

capturing investment ‡uctuations.16

The results of Table (6) put in perspective the extremely high goodness of …t measures

which supported earlier studies, BC (1990) and CE (1993) and which initially fostered interest

in the aggregated (S; s) model and serve to highlight the statistical problems of this earlier

work. There the use of goodness of …t as the criterion for estimating the adjustment function

parameters may have lead to over…tting of the data even as the estimators fail to possess

15An alternative de…nition of Et¡1 [vi;t] is the estimate of the average shock corresponding, through equation
(7), to the (sample) average value of ¹yi =

P
t
yit
T

. This is not the same as the sample average of the aggregate
shocks, ¹vi =

P
t
vit
T , both because the relationship between the investment capital ratio and the aggregate

shock is nonlinear for a given cross-section density (this follows from Jensen’s inequality), and because the
cross-section density ‡uctuates over time. It is not clear that either of these de…nitions is wrong, but the
sample average of the realised shocks is simple to compute.
16Even so, if the prediction errors were forecastable using lagged values of the investment capital ratio and
other variables, this would suggest that …xed adjustment costs, through the aggregated (S; s) model provided
an incomplete account investment behaviour. This is the subject of ongoing research.
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desirable properties such as unbiasedness or e¢ciency. Related to this, the non-standard

statistical framework, and in particular the lack of knowledge of the sampling distribution

has prevented appropriate test statistics being devised and inhibited formal comparison with

alternative models.17

The statistics in Table (6) also highlight the fact that for all the structure of the model,

it is the unexpected component of the aggregate shocks which enable the model to provide

a successful account of investment ‡uctuations. It appears then that one way to assess the

economic assumptions in the model would be to analyse the determinants of aggregate shocks.

Aggregate shocks are assumed to be a combination of innovations in technology, demand and

wages: vi;t = b0 + b1¢lnAt + b2¢lnZt + b3¢lnwt, which are assumed exogenous but left

unmodelled. Unfortunately, it would be di¢cult to identify these components individually,

since neither technology nor demand are directly observable.

5.2 Labour Market Puzzles.

There are other key economic assumptions that are more amenable to examination. To

get some impression of how well the model captures …rms’ decisions one can examine its

implications for labour input ‡uctuations. The issue here is that the success of the account

of investment ‡uctuations may imply implausible labour input behaviour. To address this

one can exploit some of CE’s implicit auxilliary assumptions which were made explicit in

17An alternative approach, pursued by Caballero et al. (1996), is to construct aggregate dynamics directly
from microeconomic evidence on individual adjustments. They show that microeconomic adjustment is non-
linear in a manner which they argue is consistent with (S; s) rules and that this nonlinearity carries over to
aggregate dynamics. Unfortunately, the data they use exhibits so much heterogeneity that they are forced to
allow not only for heterogeneous trigger thresholds and heterogeneous imbalances, but also for heterogeneous
return-points. They attribute this return-point heterogeneity to noise, yet it could re‡ect other frictions, rather
than pure (S; s)-rule e¤ects - for example under investment might be due to …nancial constraints. A more
appropriate response, given the richness of microeconomic data, might have been to estimate the (S; s)model
at the microeconomic level and test its implications. As they neither estimate nor test the implications of an
(S; s) model using the microeconomic data, so it is unreasonable to attribute either individual or aggregate
behaviour purely to (S; s) rules. In addition, they assume both that adjustment frictions matter only for
investment, and not for other factors of production, and that the production and demand functions are
multiplicatively separable (in technology, demand, capital and labour). Thus they are likely to face the same
problems as outlined in Section (5.2).
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Section 2. In particular, it was assumed that there are two factors of production, that the

production function is of Cobb Douglas form and exhibits CRTS, that the demand function

is of constant elasticity form, and that the parameters of demand and production functions

are time invariant. These assumptions yield the convenient property that the expressions

for price and quantity in the revenue function are multplicatively separable in technology,

demand, capital and labour variables: this is required to generate CE’s equation (1): -

¼ (K; ¥) ¥K¯ ¡ (r + ±)K.

Using the structure of CE’s model (which follows from their Equation (1)), there are two

ways to proceed: either labour must be assumed to be a …xed factor of production, or it must

be perfectly ‡exible. Since labour input self evidently is not …xed over time, perfectly ‡exible

labour input is adopted.18 This would be justi…ed if i) in the annual data, observations

are su¢ciently infrequent that all necessary labour input adjustment occurs before the next

observation is made (this will hold if costs of adjusting employment are small); ii) hours per

worker can vary, so that even if there are costs of adjusting the number of workers, these do

not need to be incurred to adjust labour input.19

With these assumptions, it is possible to compute the demand for labour implied by the

model. From Equation (1) the …rst order condition for optimal labour input can be computed

as:

L¤t =

"µ
´

(´ ¡ 1) (1 ¡ ®)

¶¡´
w¡´t ZtA

´¡1
t K

®(´¡1)
t

# 1
1+®(´¡1)

: (12)

Using equation (2) to eliminate the unobservable A and Z terms gives

L¤t =
(1 ¡ ®)

®
(r + ±)

h
K¤
t K

®(´¡1)
t

i 1
1+®(´¡1)

wt
: (13)

18Were one modelling labour demand, it might be appropriate to consider capital stock …xed (at least as a
…rst approximation). In our case, perfectly ‡exible labour input is the least unacceptable approximation.
19I do not argue that costless adjustment is a characteristic of labour markets, but merely highlight what is
being assumed in the model in order the better to assess the model speci…cation.
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From the decomposition Kt = K¤
t £t, it follows that

L¤t =
(1 ¡ ®)

®
(r + ±)

K¤
t

wt
£

®(´¡1)
1+®(´¡1)
t

Taking logs, lagging and di¤erencing gives the following expression for the percentage change

in labour input as a function of aggregate shocks, vt and innovations in real wages ¢lnwt:

¢l¤t = ¢k¤t +
® (´ ¡ 1)

1 + ® (´ ¡ 1)
¢µt ¡ ¢lnwt;

= °0 + °1vt + °2¢lnwt (14)

where °0 = ¡ ®(´¡1)±
1+®(´¡1) , °1 = 1

1+®(´¡1) and °2 = ¡1.

A formal test of the assumptions of the model is obtained by regressing changes in labour

input on the aggregate shocks and wage innovations and testing the restrictions on °0, °1

and °2 implied by the theory.20 Rather than employment, an appropriate measure of labour

input is total hours worked (per annum), L¤t . Industry level data on hours worked and on

real wages, can be computed using the Bureau of Labour Statistics series for 19 industries.

As for the parameters ´, r I use the values adopted by CE (1999): (6:5; 0:06) : For ® and ±,

I use 0:3 and 0:8 respectively, re‡ecting the fact that the revised capital stock data refers to

equipment and (lower depreciation rate) structures jointly. Since vt is not directly observed,

but computed as v¤t , from equation (7), given an estimate of ¸, a regression of ¢l¤t on v¤t

and ¢lnwt is subject to a generated regressors problem, which interferes with inference. To

circumvent this I use an instrumental variables approach.

In Section 2 it was assumed that aggregate shocks, vt, represented innovations in wages,

technology and demand variables. Data is available on the …rst of these, but neither of the

others is directly or separately observable. However, demand and technology shocks will

be re‡ected in changes in industry output, Qt, suggesting that output and wages are theory

20An alternative, and more complex, approach would be to write down the likelihood function for the multi-
factor demand model, under the assumption that capital is quasi-…xed and labour input is ‡exible.
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consistent instruments for aggregate shocks. Finally, note that aggregate shocks are linked to

the investment capital ratio through equation (7). This suggests using i=k as an instrument.

However, current i=k will presumably be correlated with the disurbance term that arises

from the generated regressor problem. This, and the smoothness of aggregate investment

data suggests that lagged i=k would be a more appropriate instrument. Thus the …rst stage

regression of v¤ on instruments is v¤t = a0 + a1¢lnwt + a2¢lnQt + a3 i=kt¡1 + »t. The

predicted values from this regression v̂t are used in the second stage regression equation of

¢l¤t = °0 + °1v̂t + °2¢lnwt. Results, by industry, are presented in Table (7). The …rst

and second columns presents R2 statistics and F statistics for the joint signi…cance of the

instruments in the …rst stage regression. The third and fourth columns presents R2 statistics

for the second stage regression and F statistics for the (joint) restrictions °̂0 = ¡ ®(´¡1)±
1+®(´¡1) ,

°̂1 = 1
1+®(´¡1) and °̂2 = ¡1 The restrictions are rejected at the 5% level for all but …ve

industries. This suggests that one can reject the structural assumptions of the aggregated

(S; s) model with regard to the labour market.21

In order to understand why the model fails this speci…cation test, and to give direction

to attempts to remedy these ‡aws, I compare the behaviour of actual labour market data

with that implied by the model. In what follows I denote the actual labour input and labour

input implied by the model as Lt and L¤t respectively.

Note that the aggregated (S; s) model implies that labour input is

L¤t =
(1 ¡ ®)

®
(r + ±)

Kt

wt
£

¡1
1+®(´¡1)
t : (15)

Equation (15) states that, under the (auxilliary) assumptions of the (S; s) model, implied

21However …ve of the industries for which rejection of ‡exible labour market assumption occurs are those
where the instruments are only weakly correlated with v¤t . On the other hand inference from straightforward
OLS estimates of ¢l¤t on v¤t and ¢lnwt and a constant, overwhelmingly rejects the ‡exible labour market
restrictions in all but one industry. Nonetheless, these issues suggest that there may be merit in adopting a
systems approach such as estimating a multifactor demand model directly and testing the restrictions implied
when capital is quasi-…xed and labour costlessly ‡exible.
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labour input is an increasing function of captal employed (and interest rates and deprecia-

tion), but a decreasing function of wages and of the average capital imbalance. To understand

the last feature note that £ > 0 and that a small value of £ corresponds to a signi…cant

dearth of capital. In such a situation desired employment rises (to allow product demand to

be satis…ed).22 It is possible, therefore, to compare the properties of actual industry level

data on labour input with those implied by the model through equation (15). The results

of this approach suggest that the labour marlet behaviour implied by the model is widely at

variance with reality in both the short-run and long-run.

First compare the behaviour of the trend components of actual and implied data. Figures

(4) and (5) show that there is little or no trend in total hours in the actual labour input

data, yet the series implied by the model displays high growth. This is con…rmed in Table

(8) which documents the growth rate of actual and implied labour market data, L and

L¤, for the manufacturing sector as a whole. From equation (15) the aggregated (S; s)

model requires that labour demand is increasing in capital stock, and decreasing in wages

and the average capital imbalance. The data reveal that, consistent with the theoretical

assumptions, the latter is a stationary variable exhibiting no trend.23 Thus growth in the

real wage and capital stock drive growth in implied labour input. Since actual wages in US

manufacturing industry have grown substantially less quickly than actual capital stock, see

Table (8), implied labour demand has grown quickly. The features of this Table broadly

carry across to individual industries.

One explanation for these problems lies with the functional forms used. The (assumed)

CRTS Cobb-Douglas production function, with time-invariant parameters, implies constant

factor shares of income. Yet actual labour share (for the whole manufacturing sector) de-

22The term £t is simply the (exponent of the industry level) average cross-section capital imbalance at time t.
The density of imbalances is updated (in equation (6)) during estimation so £t is a by-product of estimation.
23In the data, the (time series) mean of the cross-section imbalance, ¹£ is 0:856. This varies between 0:839
and 0:878 across industries. Figures are available from the author on request.
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creases over the sample period, while implied labour share increases, see Figure (6). In short,

while this form of production function is analytically tractable it is unsuitable for use with

industry level data. However, suitable functional forms require a respeci…cation of the model

since the absence of multiplicative separability will mean that CE’s Equation (1) no longer

holds. The severe analytic complication is likely to mean that estimates of microeconomic

parameters are no longer recoverable from aggregate data.24

Next consider the cyclical components of the series. Implied labour input, L¤ may capture

the cyclical behaviour of the actual series, even though the average growth rates di¤er. To

obtain comparable series, by industry, I compute the percentage change (log-di¤erence) in

actual and implied series, Li;t and L¤i;t, at each point in time. Table (9) displays, by industry,

the ratio of the standard deviations of these log-di¤erenced series. These statistics show that

L¤i is, on average, less volatile than Li. This is somewhat surprising, as one might expect

the reverse result if absence of frictions allows L¤ to absorb the full e¤ect of innovations in

the capital imbalance. This result appears to compound the problems of misspeci…cation.

An alternative manifestation of the divergence of labour market assumptions in the model

from reality is that the implied series L¤ may react more quickly to shocks than does ac-

tual labour input L. This is consistent with the view that frictions prevent labour market

adjustment. It is possible to get some evidence on this issue by considering the correlation

structures of (the cyclical components of) both L¤t¡i and Lt¡iwith Lt.25 Table (10) doc-

uments the relatively low contemporaneous correlation of the cyclical components of L and

L¤. The cross-industry arithmetic average is 0.334. Figure (7) illustrates the positive serial

correlation present in actual labour input using industry level data. Table (11) shows that

24One of the barriers to the adoption of non-convex adjustment costs has been the lack of analytical tractabil-
ity. Since one major achievement of the aggregated (S; s) model lies in overcoming this hurdle, it seems
inappropriate to use analytical tractability as an argument for using an inappropriate production function.
25I use a Hodrick-Prescott …lter to decompose both actual and implied labour market data into trend and
cycle components before comparing their correlation structure. The smoothing parameter is set to 100 for
annual data.
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implied labour input leads actual labour input by some two years - a time frame consistent

with the impact of adjustment costs (or other frictions) on labour market input adjustment.

Figure (8) indicates that this feature is present at the industry level. The evidence on cycli-

cal behaviour suggests that economic mispeci…cation might be corrected by incorporating

frictions in adjusting labour input.

Taken together this evidence indicates that, there are substantive economic defects in the

aggregated (S; s) model as an explanation of US industry level factor demand dynamics, and

indicates directions in which the model should be extended to remedy these defects.

6 Conclusion.

This paper has examined the economic and statistical foundations of the aggregated (S; s)

model. Although the model does not fail a range of tests for statistical misspeci…cation, this

amounts to meeting requirements of internal consistency against a conventional, if somewhat

arbitrary statistical benchmark, selected with an eye to achieving a tractable computational

structure for the likelihood function. The economic content of the model should be of greater

interest in assessing its adequacy.

When economic aspects of the model are considered, its performance is less impressive.

Although the model does quite well at forecasting aggregate investment dynamics, it is possi-

ble to reject the aggregated (S; s) model’s assumptions about the nature of the labour market.

Two labour market puzzles were identi…ed. The long-run trend component of implied labour,

L¤, and of implied labour share are at variance with reality, suggesting that the functional

form for the production and/or the demand function, the constant factor shares parameteri-

sation or some other feature of the economic structure is inappropriate at the industry level.

Turning to the short-run, features of the cyclical component of the implied labour series

exhibit disrepancies from actual data. Since the aggregated (S; s) model implicitly assumes
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‡exible labour input, one might expect the volatility of the model generated data, to exceed

that of actual data. Although this does not appear to be the case, the model-generated

labour input leads actual labour input, which does appear consistent with the view that

actual labour input exhibits greater rigidity than is present in the aggregated (S; s) model.

In addition formal tests reject the restrictions imposed by the assumption that the labour

market can adjust costlessly. Extensions suggested by these defects are the subject of ongoing

research.
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Estimate

¸
2:469
(0:781)

Likelihood 3868.169

Table 1: Adjustment Function Parameters
Standard Errors in Parentheses,

computed by quadratic approximation.

Industry Qlevels
4 Qsquares

8 Industry Qlevels
4 Qsquares

4

Lumber 0:583 1:075 Food products 14:162¤ 35:561¤

Furniture 5:097 5:850 Tobacco products 5:602 15:770¤

Stone, Glass 0:203 2:775 Textile mill products 1:402 11:073¤

Primary Metal 2:837 2:238 Apparel/textile prods. 0:344 8:312
Fabricated Metal 0:142 7:221 Paper 0:622 4:291
Industrial Machinery 0:018 3:238 Printing & Publishing 0:622 22:682¤

Electronic Equipment 0:265 5:756 Chemicals 4:464 1:819
Motor Vehicles 0:727 2:902 Petroleum & Coal 3:164 3:490
Transport Equipment 12:132¤ 2:911 Rubber and Plastics 1:436 1:817
Instrumentation 4:835 3:817 Leather 22:919¤ 23:419¤

Miscellaneous Durable 7:724 4:239 - - -

Table 2: Temporal Dependence of Shocks by Industry.
Under the null hypothesis of no temporal

dependence, these Box Ljung Portmanteau Statistics
follow a Chi-square distribution with 4 degrees of freedom.
¤ indicates statistical signi…cance at the 5 percent level.

7
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Industry Serial Correlation Industry Serial Correlation
Lumber 0:052 Food products ¡0:206
Furniture ¡0:140 Tobacco products ¡0:140
Stone, Glass 0:0289 Textile mill products ¡0:077
Primary Metal 0:114 Apparel/textile prods. ¡0:036
Fabricated Metal 0:025 Paper 0:052
Industrial Machinery 0:009 Printing & Publishing 0:048
Electronic Equipment 0:035 Chemicals 0:147
Motor Vehicles ¡0:059 Petroleum & Coal 0:121
Transport Equipment 0:234 Rubber and Plastics ¡0:082
Instrumentation 0:149 Leather ¡0:271
Miscellaneous Durable ¡0:192 - -

Table 3: Serial Correlation Statsistics by Industry.

Statistic Estimate

ÁMG
¡0:00809
(0:0249)

Table 4: Dynamic Panel Model Estimates.
Standard errors in parentheses;
p-value for Hausman Statistic

Industry Skewness
Excess
Kurtosis

Industry Skewness
Excess
Kurtosis

Lumber ¡1:924 0:224 Food prods. ¡3:21¤ 7:767¤

Furniture ¡4:573¤ 7:420¤ Tobacco prods. ¡0:837 5:095¤

Stone, Glass ¡1:198 ¡0:161 Textile mill prods. ¡1:799 2:749¤

Primary Metal 2:042 1:720 Apparel prods. ¡0:205 1:166
Fabricated Metal 0:229 0:864 Paper ¡0:374 0:071
Industrial Machry. ¡0:010 2:263¤ Printing & Publish ¡3:851¤ 4:135¤

Electronic Equipmt. ¡3:925¤ 7:528¤ Chemicals 1:394 1:076
Motor Vehicles ¡4:321¤ 5:112¤ Petroleum & Coal 2:638¤ 3:927¤

Transport Equipmt. 0:399 0:370 Rubber & Plastics ¡2:977¤ 4:785¤

Intrumentation ¡1:849 0:046 Leather ¡2:897¤ 6:394¤

Misc. Durable 3:236¤ 7:445¤ - - -

Table 5: Normality Tests by Industry.
Standardised Skewness and Excess Kurtosis measures.

¤ indicates a statistically signi…cant rejection of normality at the 5 percent level.
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Industry ½y;ŷ ½gy;gŷ Industry ½y;ŷ ½gy ;gŷ
Lumber 0:614 0:462 Food products 0:542 0:849
Furniture 0:495 0:977 Tobacco products 0:599 0:886
Stone, Glass 0:651 0:478 Textile mill products 0:658 0:930
Primary Metal 0:656 0:351 Apparel/textile prods. 0:567 0:667
Fabricated Metal 0:610 0:441 Paper 0:633 0:489
Industrial Machinery 0:611 0:478 Printing & Publishing 0:643 0:681
Electronic Equipment 0:638 0:755 Chemicals 0:592 0:445
Motor Vehicles 0:561 0:999 Petroleum & Coal 0:571 0:434
Transport Equipment 0:701 0:466 Rubber and Plastics 0:591 0:676
Instrumentation 0:702 0:473 Leather 0:470 0:996
Miscellaneous Durable 0:346 0:758 - - -

Table 6: Correlation of Actual and Predicted Investment by Industry.
Industry level correlation coe¢cients for i) actual and predicted values
of the investment capital ratio, ii) actual and predicted values of the

growth rate of that ratio.

Industry R2 F R2 F

Lumber 0:434 10:980¤ 0:587 13:004¤

Furniture 0:361 8:092¤ 0:631 9:108¤

Stone, Glass 0:281 5:603¤ 0:434 10:803¤

Primary Metal 0:008 0:119 0:200 0:921
Fabricated Metal 0:395 9:369¤ 0:492 10:518¤

Industrial Machinery 0:116 1:881 0:731 0:864¤

Motor Vehicles 0:261 5:074¤ 0:480 11:183¤

Transport Equipment 0:062 0:946 0:071 6:294¤

Miscellaneous Durable 0:467 12:563¤ 0:032 25:461¤

Food products 0:277 5:497¤ 0:272 70:703¤

Tobacco products 0:048 0:717 0:018 34:321¤

Textile mill products 0:065 0:991 0:496 28:229¤

Apparel/textile prods. 0:074 1:147 0:044 17:182¤

Paper 0:160 2:737 0:456 31:302¤

Printing & Publishing 0:330 7:050¤ 0:228 22:766¤

Chemicals 0:080 1:253 0:096 21:588¤

Petroleum & Coal 0:175 3:036¤ 0:126 44:591¤

Rubber and Plastics 0:043 0:643 0:419 4:204
Leather 0:109 1:760 0:083 5:955

Table 7: Tests of Labour Market Assumptions.
Columns 1 and 2 : R2 and F-statistics, F (47¡ 1; 4), for joint signi…cance of instruments.

Columns 3 and 4: R2 for second stage regression and F-Statistics, F (47¡ 1; 3),
of the restrictions °0 =

¡±®(´¡1)
1+®(´¡1) ; °1 =

1
1+®(´¡1) ; °2 = ¡1 in the regresion

¢lt = °0 + °1 + °2¢lnwt + ut,
¤ indicates signi…cance at the 5 per cent level.
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Series Growth Rate
L 0.0023
L¤ 0.0258
Y 0.0176
K 0.0349
w 0.0087

Table 8: Annual Growth Rates for the Whole Manufacturing Sector

Industry Implied
Actual Industry Implied

Actual

Lumber 0.448 Food products 1.880
Furniture 0.491 Tobacco products 1.096
Stone, Glass 0.601 Textile mill products 0.489
Primary Metal 0.417 Apparel/textile prods. 0.877
Fabricated Metal 0.431 Paper 0.946
Industrial Machinery 0.405 Printing & Publishing 1.220
Motor Vehicles 0.391 Chemicals 1.244
Transport Equipment 0.449 Petroleum & Coal 0.810
Miscellaneous Durable 0.859 Rubber and Plastics 0.569
Sector Average 0.747 Leather 0.572

Table 9: Relative Volatility of Implied and Actual Labour Input

Industry ½ (Lt; L
¤
t ) Industry ½ (Lt; L

¤
t )

Lumber 0.246 Food prods. 0.342
Furniture 0.580 Tobacco prods. 0.277
Stone, Glass 0.350 Textile mill prods. 0.226
Primary Metal 0.059 Apparel prods. 0.234
Fabricated Metal 0.514 Paper 0.234
Industrial Machry 0.330 Printing & Publishing 0.477
Motor Vehicles -0.158 Chemicals 0.577
Transport Equipmt. 0.510 Petroleum & Coal 0.213
Misc. Durable 0.454 Rubber and Plastics 0.290
Sector Average 0.334 Leather 0.540

Table 10: Contemporaneous Correlations: Actual and Implied Labour Input Data

Lag ½ (Lt§i; Lt) ½
¡
L¤t§i; Lt

¢

-3 ¡0:201 0:092
-2 ¡0:076 0:339
-1 0:413 0:462
0 1:000 0:324
1 0:389 ¡0:074
2 ¡0:061 ¡0:184
3 ¡0:176 ¡0:162

Table 11: Averaged Correlation Structure of Labour Input
Column 2 (3): Correlation of lag actual (implied)

labour input with current actual labour input.
Arithmetic averages of industry level correlation structures.
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Appendix A

1 Computation of the Likelihood Function

Grid search over the parameters of the adjustment function is used for estimation.26 Follow-

ing CE (1999), for a given value of ¸2, the …rst step is to compute the ergodic distribution,

which is used to approximate the initial cross-section density of imbalances, f (µ; 0) : This

is achieved using equations (6) and (7) through the following steps. Assume that the er-

godic density function results from an in…nite investment rate sequence at the constant rate

determined by the sample industry mean: yi;¿ = ¹yi
³
´ 1

T

PT
t=1 yi;t

´
; 8¿ 2 ¡1; ::; 0. Then

starting from a prespeci…ed imbalance density, f (µ;¡¿), (for simplicity assumed distributed

N (0; 0:01)), use equation (6) to compute, by grid search, the aggregate shock that gives the

best approximation ŷ¡¿ ' ¹y. The aggregate shock, vi;¿ is allowed to vary with step size 0:01¢

¢µj . The estimated aggregate shock v¡¿ can be used to update the density function through

equation (7). Iterating forwards the density function is found to converge after some 10-15

iterations.

Finally, conditional on the estimate of the initial cross-section density function, the series

of aggregate shocks are computed, individually, from equation (6) by grid search over vi;t as

outlined in the previous paragraph. For each period the aggregate shock estimate v¤t is used

to update the density function, through equation (7), and also to compute the corresponding

Jacobian through @yi;t
@vi;t

.

26Given a parameter value, ¸2 = ¹̧2; elements of the likelihood function are computed directly. This procedure
makes extensive use of the equations (6) and (7) in updating the density function following each sequence of
shocks and adjustment. All computations are undertaken using Gauss 3.2.31. The state space of imbalances,
µ, is divided into a grid of 49 points. Because estimation requires that the evolution of the cross-section density
be modelled explicitly (using the updating equations), and because the location of the density function depends
upon the size and direction of aggregate shocks, it is vital that state space is su¢ciently broad that mass does
not ’escape’ from the cross-section density. For the values estimated for the adjustment function parameters,
the interval [¡40¾"; 40¾"] was used ¾" is set to 0:1.This was found su¢cient to prevent signi…cant loss of mass
at all but very low-values of adjustment cost. Note the grid used here is time invariant.
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2 Data

The capital stock data used in this study are Bureau of Economic Analysis, (BEA), annual

industry level data for US manufacturing (21 industries, since Motor Vehicles are separated

from Transport Equipment) over the period 1947-97. A number of di¤erences between this

dataset and that used by CE (1999), are worthy of note. i) Unlike CE (1999), the indus-

try level capital stock estimates are not decomposed into structures and capital equipment,

this turns out to be useful in examining the implied labour market behaviour - see Section

(4). ii) The extra …ve years data in the sample gives a further 105 more observations (1050

industry level observations in all). iii) Under the new BEA methodology, depreciation is

assumed to occur at a constant geometric rate, whereas the data used in CE’s study is con-

structed under the assumption that depreciation is of the straight line form with retirements

distributed around the mean retirement date according to a Winfrey distribution. Thus this

new methodology has the advantage that it is consistent with the theoretical treatment of de-

preciation adopted in the Section (2), and with the empirical evidence, which broadly favours

accelerated depreciation over straight line form, Jorgenson (1995). The previous methodol-

ogy captured disposals only through retirements, (estimated using the Winfrey distribution)

whereas the new methodology ignores disposals altogether. Both approaches are approxima-

tions. The model will be data consistent only as long as disposals are small (in value and

volume) in comparison with acquisitions. If this is the case, then recorded innovations in cap-

ital stock (acquisitions only in the new methodology; acquisitions less retirements in the old

methodology), will approximately equal actual net investment (acquisitions less disposals).

Industry labour market and output data used in Section (5.2) are also taken from the

BEA sources. Labour input used in empirical work is total hours worked per annum. This

is constructed from average weekly hours data and annual employment data. The wage rate
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used is the hourly wage which is computed from the weekly hours and weekly wage data. The

output and wage data are de‡ated using the (economy-wide) GDP de‡ator. Data is available

for 19 industries, however data for Electronic and other electric equipment and Instruments

and related products industries does not date back to 1947 and data for Other Transport

Equipment industry must be computed from the whole Transport Equipment industry and

Motor Vehicles Industry series using straightforward transformations.


