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Evaluating the Efficiency of Crop Index Insurance Products 
 
Abstract: 

Index crop insurance products can eliminate the asymmetric information problem 

inherent in farm-level multiple peril crop insurance. Purchasers of index insurance 

products are, however, exposed to basis risk. This study evaluates the efficiency of 

various index insurance products to reduce farm yield loss for representative corn farms 

in southern Georgia.  Index insurance products considered are based on county yields, 

cooling degree days, and predicted yields from a crop simulation model. 

 

Key words: Yield Index Insurance, Risk Protection, Efficiency, Certainty Equivalent, 
DSSAT, CSM-CERES-Maize 
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Introduction 

From its inception in 1938 the U.S. Federal Crop Insurance Program (FCIP) has provided 

Multiple Peril Crop Insurance (MPCI) policies that provide comprehensive protection 

against weather-related causes of loss and certain other unavoidable perils.  Since the 

mid-1980s, MPCI yield guarantees have been based on the actual production history 

(APH) yield for the insured unit.  In its most basic form, an APH yield is calculated as a 

rolling 4-10 year average of realized yields on the insured unit subject to no more than a 

10% annual reduction.  Under certain circumstances, the calculation of an APH yield 

becomes more complex.  For example, in some cases the policyholder has the option of 

using 60% of the so called “transitional yield” in place of very low historical realized 

yields for purposes of calculating an APH yield.1 

In recent years, various APH-based revenue insurance products have also been 

offered through the FCIP.2  For 2005, APH-based insurance products (APH-based yield 

insurance, MPCI, and the various APH-based revenue insurance products) accounted for 

almost 90% of FCIP premiums.  Several studies have noted that APH-based insurance 

products are subject to asymmetric information problem due to misclassification (adverse 

selection) and moral hazard problems (Just, Calvin, and Quiggin 1999; Coble et al. 1997; 

Smith and Goodwin 1996; Quiggin, Karaginannis, and Stanton 1994). In addition, APH-

based insurance products have high transaction costs related to establishing and verifying 

APH yields and conducting on-farm loss adjustment. 

Recent years have also witnessed increased discussion about index-based 

insurance products.  Unlike conventional APH-based insurance products, the indemnity 

on index-based insurance products is not based on actual farm-level yield or revenue 
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losses.  Rather, the indemnity is based on realizations of an index that is assumed to be 

correlated with actual farm-level yield or revenue losses.  Since the indexes are based on 

objective and transparent sources of data, it is unlikely that informational asymmetries 

exist that can be exploited by index insurance contract purchasers. Thus, the inherent 

insurance problems of adverse selection and moral hazard (and the high transaction costs 

of attempting to address these inherent problems) can be largely ameliorated. 

Area yield insurance is an example of an index-based insurance product that is 

less susceptible to many of the problems that plague APH-based insurance products.  

Area yield insurance is essentially a put option on the average yield for a production 

region.  Indemnities are triggered by shortfalls in the area average yield rather than farm-

level yields.  For this reason, area yield insurance requires no farm-level risk 

classification.  If the area is sufficiently large, area yield insurance is not susceptible to 

moral hazard problems since the actions of an individual farmer will have no noticeable 

impact on the area average yield.  Area yield insurance also has relatively low transaction 

costs since there is no need to establish and verify APH yields for each insured unit nor is 

there any need to conduct on-farm loss adjustment. 

Since 1993 an area yield insurance product called the Group Risk Plan (GRP) has 

been offered through the FCIP for selected crops and regions.  In recent years, an area-

based revenue insurance product called the Group Revenue Insurance Policy (GRIP) has 

also been offered for selected crops (all of which have exchange-traded futures contracts) 

and regions.  Both GRP and GRIP areas are defined based on county political boundaries.  

GRP policies (and the yield component of GRIP policies) settle based on National 

Agricultural Statistics Service (NASS) estimates of county average yields.  
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Weather-based index insurance products are currently not available to agricultural 

producers in the U.S.  However, potential agricultural applications have been discussed in 

the literature (Martin, Barnett and Coble 2001; Vedenov and Barnett 2004; Chen, Roberts, 

and Thraen 2003).  Outside of the U.S., AGROASEMEX in Mexico and AGRICORP in 

Canada have used weather-based index insurance products.  In addition, the World Bank 

has supported pilot programs in several developing counties. 

While index-based insurance products have advantages in reducing adverse 

selection and moral hazard, purchasers are exposed to some degree of basis risk.  For 

index-based insurance products, basis reflects the difference between the realized index 

and the farm-level yield. Because farm-level yields are not perfectly correlated with the 

insured index, purchasers of index-based insurance are exposed to some degree of basis 

risk. For instance, it is possible for the purchaser of an area yield insurance policy to 

experience production losses on his/her farm and yet not receive an indemnity because 

there has been no shortfall in the area average yield.  Similarly, it is possible for a 

policyholder to receive an indemnity on an area yield insurance policy when no farm-

level losses have occurred.  

This article examines the relative performance of three different index-based 

insurance products.  Specifically, the three indexes are based on:  1) area yields; 2) 

predicted yields from a model based on cooling degree days (CDD); and, 3) predicted 

yields from the Decision Support System for Agrotechnology Transfer (DSSAT) crop 

simulation model.  The index insurance products are evaluated based on risk reduction 

for representative corn farms in five counties in South Georgia. The performance of the 
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index insurance instruments is then compared with that of an APH-like 3 yield insurance 

product.  

The article is organized as follows.  The next section reviews literature on index-

based insurance. The next section describes the data and methods used to compare the 

risk protection generated by the three proposed index insurance products. Final sections 

discuss the empirical results and present concluding comments.  

Literature Review 

Miranda (1991) compared farm-level yield insurance (such as MPCI, the APH 

yield insurance) with area yield insurance for 102 soybean farms in western Kentucky. 

He found that on average, the purchase of optimal coverage area yield insurance reduced 

the variance of net yield more than the purchase of farm-level yield insurance.  

Smith, Chouinard, and Baquet (1994) compared farm-level yield insurance to 

three different area-level yield insurance contracts for a sample of 123 dryland wheat 

farms in Chouteau County, Montana.  Their overall findings indicated that the area-level 

yield insurance could provide effective risk protection for the farm producers.  

Barnett et al. (2005) compared farm-level and area-level yield insurance for 

66,686 corn farms in 10 states (Indiana, Illinois, Iowa, Kansas, Kentucky, Michigan, 

Minnesota, Nebraska, Ohio, and Texas) and 3,152 sugar beet farms in North Dakota and 

Minnesota.  For corn, the area yield insurance contract performed well for all states 

except Nebraska and Michigan.  For sugar beets, the area yield insurance contract did not 

perform well in the southern Red River Valley but did perform well in southwestern 

Minnesota. Results for the mid- and northern Red River Valley were mixed. 



 7

A number of empirical studies have also investigated potential agricultural 

applications of weather index insurance. Skees et al. (2001) found that a rainfall index 

insurance scheme could be feasible in Morocco and Argentina. AGROASEMEX, the 

state agricultural reinsurance company in Mexico has used weather index contracts to 

transfer part of its weather-related crop insurance risk into international capital markets.  

Martin, Barnett and Coble (2001) found that precipitation index insurance could provide 

effective protection against cotton yield and quality losses due to excess late-season 

precipitation in the delta region of Mississippi. Turvey (2001) examined the economics 

and pricing of weather index insurance in Ontario and suggested that temperature- and 

precipitation-based insurance contracts could be used to insure against yield losses for 

some crops. Vedenov and Barnett (2004) investigated the feasibility of using weather 

index insurance to protect against shortfalls in corn and soybean yields in Iowa and 

Illinois and cotton yields in Mississippi and Georgia. Their findings were mixed causing 

them to caution against “blanket assessments” of the feasibility of weather index 

insurance in agricultural applications. Cao (2004) proposed a predicted yield index 

insurance product, where the predicted yield index was a linear function of realized 

monthly cumulative cooling degree days (CDD) over specified months, for southern 

Georgia corn farmers.  Her findings indicated that the effectiveness of risk protection 

provided by the predicted yield index was very limited. 

An effective weather-yield model is critical to constructing satisfactory weather 

index insurance products.  Bringing agronomic knowledge into a weather-yield model 

has the potential to improve the effectiveness of weather index insurance products.  The 

Decision Support System for Agrotechnology Transfer (DSSAT) is a software package 
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combining crop, soil, and weather databases and programs to manage them, with crop 

models and application programs. It has been used for more than 15 years by researchers 

in over 100 countries to predict yield by integrating the effects of soil, crop phenotype, 

weather, and management options. The DSSAT package incorporates models of 27 

different crops with tools that facilitate the creation and management of experimental, 

soil, and weather data files (ICASA). 

To generate a predicted yield index via DSSAT, weather realizations are imported 

into the model while all other choice variables are held constant. Basis risk is still present 

with a DSSAT predicted yield index insurance since the predicted yields are not perfectly 

correlated with realized farm-level yields.  It is hypothesized, however, that index 

insurance based on DSSAT predicted yields will have lower basis risk than index 

insurance based on a single weather variable, such as CDD, since DSSAT utilizes several 

weather variables and attempts to model interactions between the weather variables and 

other variables that affect realized yields. 

Empirical Analysis 

Data 

Farm-level yield 

Farm-level corn yield data were obtained from the USDA’s Risk Management 

Agency (RMA).  These data are the 4 to 10 year yield histories from 1991 to 2000 that 

were used to establish APH yields for 2001 MPCI purchasers.  The data were aggregated 

to the level of an enterprise unit meaning that for a given year, the yield reflects all 

production in the county that is associated with a specific taxpayer identification number.  
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To be included in the analysis, each farm had to have yield data for at least the last 4 

consecutive years of the period (i.e., 1997-2000).   

County-level yield 

Historical county-level yield data were collected from the National Agricultural 

Statistics Service (NASS).  These data were collected from 1971 to 2004. All counties 

included in the study have less than 30% of the planted acreage under irrigation (see table 

1).4 These counties also have weather stations located within the county and daily 

weather data (with relatively few missing observations) available for the time period 

1971-2004.   

Regression analyses revealed statistically significant time trend in all county 

yields.  To account for the temporal component, a simple detrending procedure was 

implemented by estimating a simple linear trend model:     

(1)                              jtjjjt ty εαα ++= 10
~  

where j is the county, t is the year with t = 1971, 1972 , . . . 2004, jty~  is the yield in 

county j and year t.  Detrended county yields were then calculated as:  

(2)     2000ˆ
ˆ

~
j

jt

jtdet
jt y

y
y

y =  

where jtŷ  is the predicted county yield estimated from (1).  The detrended county yields 

were then used to construct an area yield index insurance product. 

Cumulative CDD Predicted Yield 

Cao (2004) documented a linear relationship between detrended county-level corn 

yields and monthly cumulative CDD for six different counties in southern Georgia, 

including five counties selected for this study.  Specifically, she found:  
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county model Pr>F R2 Adj. R2 

Appling 
)0037.0()0773.0()1535.0(

3081.01790.01915.0647.272ˆ SeptemberJulyAprily −−−=
 0.0015 0.4181 0.3557 

Bulloch  
)0142.0()0262.0()0106.0(

1696.01450.02855.0410.234ˆ SeptemberJulyAprily −−−=
 0.0004 0.4144 0.3627 

Coffee 
)0713.0()0094.0()3255.0(

1317.02728.00746.0304.297ˆ SeptemberJulyJuney −−−=
 <0.0001 0.5137 0.4651 

Colquitt 
)0608.0()3633.0()1452.0(

1644.00839.01282.0458.231ˆ SeptemberJulyJuney −−−=
 0.0085 0.2950 0.2310 

Pierce 
)0276.0()1617.0()1422.0(

2062.02035.01473.0565.320ˆ SeptemberJulyJuney −−−=
 0.0016 0.4393 0.3746 

 

The left-hand side of the model is the predicted detrended county-level yield and each 

variable in the right-hand-side is the cumulative cooling degree days (CDD) for the 

indicated month in a give year.  The numbers in parentheses are standard errors. 

Following Cao, we created a series of predicted yields for each county that were 

linear functions of the cumulative CDD variables. The predicted yields were then used to 

construct a CDD yield index insurance product. 

DSSAT Predicted Yields 

Cao’s predicted yield indexes were based on very simple linear regression models 

that empirically estimated relationships between county yields and monthly CDD 

measures.  More sophisticated models that account for other relevant explanatory 

variables could also be used to construct predicted yield indexes.  Presumably, these 

indexes would have lower basis risk and thus provide more risk protection relative to the 

indexes generated with Cao’s simpler models. 

DSSAT is a software program package composed of parameterized deterministic 

plant growth models that simulate yield under specific weather conditions conditioned on 

a number of choice variables such as soil type, crop phenotype, planting date, level and 
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timing of fertilizer applications, irrigation, and etc.  For this study, these choice variables 

were selected based on recommendations from crop scientists in the region.  In each 

county, a specific corn cultivar PIO 31G985 was used to run the DSSAT CSM-CERES-

Maize model under three planting dates, three soil types, irrigated and rainfed conditions, 

and two technology levels. 6  Thus, in each county, 36 scenarios associated with all 

possible combinations of the choice variable conditions were used to simulate the 

DSSAT yields. Under each scenario, the DSSAT simulated yield was based on variations 

in daily minimum and maximum temperatures, rainfall, and solar radiation throughout 

the growing season, with all choice variables held constant. Then a unique yield in each 

county was obtained as a weighted average across the 36 different scenarios.  The 

simulated DSSAT yields from 1971 to 2004 were used to construct a DSSAT yield index 

insurance product. 

Nonparametric Distribution 

 The 4 to 10 years of available farm yield data provide only limited information 

about the true underlying yield distribution for each farm.  Low-frequency, high-

magnitude yield losses may be underrepresented (or overrepresented) in the small sample 

of available farm yield data.  To adequately assess the performance of various insurance 

instruments it is necessary to estimate farm-level yield distributions.  To do this, farm 

yield is assumed to be multiplicatively conditioned on the geometric average of the three 

yield indexes for each of the 4 to 10 years s for which both farm and yield index data are 

available: 

(3a)   2000...,1992,1991~~ 3 =∀×= ∏ sandjiyy is
x

x
jsis ε  

then, 
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(3b)     
3 ~

~

∏
=

x

x
js

is
is

y

y
ε  

For each farm i in county j, there are 4 to 10 observations of isε  which can be thought of 

as farm-level idiosyncratic shocks relative to the yield indexes, x, which represent area 

yield index, CCD yield index, and DSSAT yield index, respectively.  A large number of 

pseudo farm-level yields can then be calculated as all possible combinations of the 

available yield indexes and the 4 to 10 farm-level idiosyncratic shocks.  Specifically,  

(4)     '3 εyy ×= ∏
x

x
j

pseudo
i  

where ∏
x

x
jy  is a t × 1 column vector of the element-wise product of three yield indexes in 

county j, iε′  is a 1 × s row vector of idiosyncratic shocks for farm i located in county j, 

and pseudo
iy  is a t × s matrix of pseudo farm-level yields for farm i.  Designate z as a 

counter variable for the pseudo farm-level yields with z = 1, 2, . . . Z and Z = t × s.  Then, 

each farm has pseudo farm-level yields record between 136 ≤ Z ≤ 340.  Considering the 

very limited number of farms in each county, all pseudo farm-level yields within a given 

county were then combined to form a representative farm for the county. Thus, the 

representative farm-level yields can be denoted as a vector of pseudo
fy with jf ∀ and size 

of  R = Z × N, where N is number of qualified farms in county j (table 1).   

Several studies have described procedures for estimating yield distributions from 

empirical data (Just and Weninger 1999; Sherrick et al. 2004). Some have fit parametric 

distributions with known attributes, such as the beta distribution or the log-normal 

distribution (Nelson and Preckel 1989; Tirupattur, Hauser, and Chaherli 1996). Others 

use non-parametric approaches (Ker and Goodwin 2000).  For this analysis the 
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representative farm-level yield and yield indexes distributions were estimated non-

parametrically using a kernel-smoothing approach.  This approach was preferred to 

parametric estimation because it better preserves the information contained in the 

empirical data that could be lost if a parametric structure were imposed. Formally, if 

fry~ with Rr ...,,1= , is used to designate each element of the matrix pseudo
fy  and each yield 

index x
jy~ is repeated for the corresponding element of pseudo

fy  so that the size of the yield 

index is also R, then the joint kernel density function of the representative farm f farm-

level yield and a particular yield index is calculated as:  

(5a)                 ( )
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and the marginal density function of farm-level yield is calculated as: 
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and the marginal density function of a particular yield index is calculated as: 

(5c)                ( ) fx
j

x
jrj

f

frfR

rx
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f
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j yd
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where )(⋅K  is a joint kernel function and x
jf ∆∆ ,  are degrees of smoothness or 

bandwidths (Härdle 1992; SAS OnlineDoc 9.1.3) for the representative farm-level yield 

and yield index, respectively.   

The estimated joint farm-level yield and yield index distributions were used to 

assess the performance of each insurance contract.  The joint distributions are plotted in 

graph 1 and the descriptive statistics calculated from the estimated joint distributions are 

presented in table 2. 
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Premium Rating  
 
In real APH yield insurance MPCI contracts, the APH yield is calculated as a rolling 

average of the realized yields over the most recent 4-10 years subject to no more than a 

10% annual reduction. More complex calculation may be used under certain 

circumstances. The APH yield, an estimator based on a small sample size, can easily 

over/under estimate the central tendency of the underlying true but unknown farm-level 

yield distribution. In this study, evaluating the APH estimator is not our primary 

objective. We only use MPCI contract as a baseline to assess the relative risk protection 

offered by various index insurance products. Thus, for simplicity, we use the expectation 

of ( )fyh ~ as the APH yield for the representative farm. By doing this, we implicitly 

assume that the APH yield is a perfect estimator of the central tendency of the true but 

unknown farm-level yield distribution. This implies that our method may somewhat 

overstate the risk protection provided by the MPCI contract.  

Three yield indexes contracts are considered in this analysis with MPCI with a 

75% coverage level used as a baseline for purposes of comparison. The premium rates for 

all insurance products are assumed actuarially fair, which means that the premium is 

simply the expected indemnity. No additional cost is loaded on the premium.  

MPCI indemnities are calculated as:   

(6)                                         ( ) ( )0,~maxcoverage|~~
ffcf

MPCI
f yyyn −=  

where MPCI
fn~  is the MPCI indemnity per acre for the representative farm, fy~ is the 

realization of the stochastic yield, and coverage×= ffcy µ .7  For MPCI, fµ  is the APH 
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yield, here calculated as the expectation of ( )fyh ~ .  The actuarially fair premium MPCI
fπ  is 

the expectation of (6) 

(7)           ( )( ) ( ) ( ) ffffcf
MPCI
f

MPCI
f ydyhyyynE ~~0,~maxcoverage|~~ ×−== ∫π  

where ( )fyh ~  is the marginal kernel density for yield on the representative farm f from 

(5b). The integral under the kernel density was calculated using numerical methods.  

Since the liability (i.e., the maximum possible indemnity) is fcy , the actuarially fair 

premium rate MPCI
fρ  is 

(8)     
fc

MPCI
fMPCI

f y
π

ρ = . 

Premium rates of yield indexes were calculated in a way similar to those used for 

the actual GRP program as described by Skees, Black, and Barnett (1997).8  Indemnities 

for a particular yield index are calculated as:  

(9)                           ( ) scaleyfcast
y

yy
yn x

jc

x
j

x
jcx

j
x
f ××













 −
= 0,

)~(
maxscalecoverage,|~~   

Where yfcast is calculated as the expectation of ( )x
jyh ~  and coverage×= yfcastyx

jc
. 

Coverage and scale are bounded as the actual GRP with 70% ≤ coverage ≤ 90% and 90% 

≤ scale ≤ 150%. The actuarially fair premium is the expectation of (9) 

(10)      ( )( ) ( )∫ ×××
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== x
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y

yy
ynE ~~0,

)~(
maxscalecoverage,|~~π  

where ( )x
jyh ~  is the marginal kernel density for a particular yield index in the county j 

where the representative farm f is located.  Similar as MPCI
fπ  , the integral under the 
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kernel density was calculated using numerical methods.  The actuarially fair premium 

rate x
fρ  is 

(11)                                                       
scaleyfcast

x
fx

f ×
=

π
ρ  

Decision Criterion 

Premium rates for all yield indexes products and the baseline 75% MPCI, were by 

construction, actuarially fair in-sample. Thus, the insurance products could be compared 

by simply considering the resulting variance of net yield (net of insurance premiums and 

indemnities). However, a simple comparison of variance reduction ignores the higher 

moments of the yield distribution and thus may affect the rankings of the various 

insurance products.   

For this reason, we compare the various insurance products based on certainty 

equivalents. For any realization of fy~  and insurance scenario k, the yield net of insurance 

premiums and indemnities is 

(12)     k
f

k
ff

k
f nynety ~~~ +−= π  

where k is either MPCI, one of the three yield index insurance products, or no insurance 

purchasing, k
fπ  is premium, and k

fn~ is indemnity. In the case of no insurance purchasing 

f
k
f ynety ~~ = .  Revenue is calculated as 

(13)     k
f

k
f netypR ~×=  

where k
fR  is revenue for the representative farm f at insurance scenario k and p is a 

constant price for corn in bushel. 9 Certainty-equivalent revenues (CER) were calculated 

from the constant relative risk aversion (CRRA) utility function 
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(14)      ( )
γ

γ

−
=

−

1
)( 1k

fk
f

R
RU  

where k
iR is as defined in (13) and γ  is the measure of relative risk aversion.  Myers 

(1989) estimated that for a representative U.S. crop farmer 1 ≤ γ  ≤ 3.  Based on that 

finding, and also following Wang et al. (1998), γ  is here set equal to 2.  Then the CER 

was calculated as 

(15)    ( ) ( )[ ] 1~~ −
∫= ff

k
f

k
f ydyhRUCER     

where ( )k
iRU  is from (14) and ( )fyh ~  is the marginal kernel yield density for the 

representative farm f. 

For each of the index insurance products, coverage and scale were optimized 

within the constraints 70% ≤ coverage ≤ 90% and 90% ≤ scale ≤ 150% to maximize the 

differences between the CER with yield index insurance and the CER with no insurance.  

The optimal scale and coverage were found simultaneously using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (Greene 2000; Miranda and Fackler 2002). 

Results 

Table 2 presents descriptive statistics calculated from the estimated joint kernel density 

functions for the representative farm yield and area yield index, the representative farm 

yield and DSSAT yield index, and the representative farm yield and cumulative CDD 

yield index. The coefficients of variation for both the CDD and DSSAT yield indexes are 

consistently relatively smaller since they do not account for other stochastic factors that 

can affect yield realizations.  

Table 3 presents the Pearson pair-wise correlations among the simulated 

representative farm yield, the area yield index, the DSSAT yield index, and the 
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cumulative CDD yield index.  All correlations are statistically significant. In every 

county, the correlation between the simulated representative farm yield and each yield 

index is always small (less than 0.3), which likely indicates that none of the proposed 

yield indexes can provide effective farm-level risk protection. 

Table 4 presents the optimal coverage and scale levels of the three proposed yield 

index insurance contracts when these choice variables are restricted as in the existing 

GRP policy. Out of the 15 cases of county/index insurance combinations, there are 6 

cases when the optimal coverage is at the upper limit of 90%, another 6 cases when it is 

at the lower limit of 70%, and 3 cases in between. In most cases the optimal scale is at 

the lower limit of 90%.  In only 3 cases does it exceed 90%. 

Actuarially fair premium rates are also shown in table 4.  The actuarially fair 

premium rates for 75% MPCI are also presented for comparison. In every case, the yield 

index insurance products have lower premium rates than the 75% MPCI insurance 

product.  

Table 5 presents changes in certainty equivalent revenues (CER) for various index 

insurance contracts per acre. The table shows CER without insurance and then the change 

in CER with restricted optimal index insurance contracts. CER corresponding to MPCI at 

75% coverage is presented for comparison purpose. Positive (negative) changes imply 

that producers are better (worse) off as a result of purchasing the specific insurance 

contract. 

In general, the three yield index insurance products do not provide risk protection 

that is comparable to that provided by the actuarially fair MPCI policy at 75% coverage.  

For Appling County, none of the index insurance products provided effective risk 
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protection for the representative farm. In fact, purchasing any of the yield indexes 

actually made the farm worse off. For Bulloch County, both the area yield index and the 

DSSAT yield index provided some risk protection but the CDD yield index did not.  For 

the other counties, all three index insurance products provided some degree of risk 

protection. Considering only the four counties where at least one of the index insurance 

products provided some risk protection, the area yield index and the DSSAT yield index 

each provided the most risk protection for two counties. While The CDD yield index 

provided some risk protection in three counties, at least one of the other two index 

insurance products always provided more risk protection.  

Conclusion 

This study evaluated the risk reduction performance of three proposed index 

insurance products for corn in South Georgia.  The regions considered are characterized 

by heterogeneity in production factors such as soil quality and drainage and thus, in 

principal, should not be well suited to simple index insurance products based on area 

yields or weather events.  This analysis tested whether a more sophisticated index 

insurance product based on the DSSAT crop production model would provide more risk 

reduction than simple products based on area yields or weather variables.  The study also 

compared the performance of the various index insurance products to that of an 

actuarially fair MPCI policy at 75% coverage.   

None of the index insurance products provided risk protection comparable to the 

MPCI policy.  Among the index insurance products, area yield index and DSSAT yield 

index products generally performed better than the CDD yield index insurance product. 
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A limitation of this analysis is that it cannot account for losses due to prevented 

planting, replanting, or poor quality.  These losses are covered to some extent by MPCI 

but are not studied in this analysis.  Data limitation required that  long-term farm-level 

yields be simulated based on short-term (4 to 10 years) common data between farm-level 

yields and the yield indexes. It is unclear how robust the findings would be across 

alternative data sources or alternative procedures for simulating farm-level yields. 

Analyses based on additional crops, longer series of farm-level yields, and other regions 

are required to test the consistency and robustness of these results.  
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Endnotes 

* More details about the calculation of APH yields can be found at 

http://www.rma.usda.gov/FTP/Publications/directives/18000/pdf/05_18010.pdf. 

2 APH-based revenue insurance products are generally offered only for crops with 

exchange-traded futures contracts.  Indemnities are triggered by realizations of the 

product of farm-level yield losses and a price index based on futures market prices. 

3 Description of the MPCI-like insurance product is provided in the section of Empirical 

Analysis. 

4 The irrigation percentage of the harvested cropland is based on data obtained from the 

2002 census of agriculture. 

5 PIO 31G98 is very common in Georgia, characterized as a high yield, short- to mid-

season hybrid.   

6 Details about the choices of the three planting dates, three soil types and the acreage 

percentages, irrigation acreage percentages, two technology levels for irrigation and 

rainfed applications will be provided upon request.  

7 Without loss of generality, assume that insurance indemnities and premiums are paid in 

units of production per acre. In practice, a price, that is established when the contract is 

initiated, is used to convert units of production per acre into monetary units per acre. The 

price is a constant that acts as a simple scaling factor. 

8 Unlike actual GRP premium rating procedures no geographic smoothing of premium 

rates was imposed. 

9 The Price used for corn was the 2004 Chicago Board of Trade June daily average price 

on the July contract. 
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Table 1: Selected Counties in the Study 
 

Counties Selected Number of Farms 
Included 

2002 % of Harvested Cropland that 
was Irrigated* 

Appling 7 14.1 
Bulloch 25 23.3 
Coffee 12 22.0 

Colquitt 10 29.0 
Pierce 18 21.6 

 
* Source: USDA 2002 Census of Agriculture 
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Table 2: Descriptive Statistics for the Representative Farm-level Yield and Three Yield 
Indexes Calculated from the Estimated Joint Kernel Density Functions 
  

Yield Mean 
(bu/acre)

Standard 
Deviation 

Coefficient of 
Variation (%) 

 
Appling 

 
Farm-level Yield 57.06 31.43 55.08 
Area Yield Index 62.22 23.68 38.06 

DSSAT Yield Index 62.10 17.76 28.60 
CDD Yield Index 96.83 22.82 23.57 

 
Bulloch 

 
Farm-level Yield 69.44 36.51 52.58 
Area Yield Index 78.22 22.89 29.26 

DSSAT Yield Index 49.54 14.58 29.43 
CDD Yield Index 69.00 16.48 23.88 

 
Coffee 

 
Farm-level Yield 91.49 34.88 38.12 
Area Yield Index 103.81 26.84 25.85 

DSSAT Yield Index 73.10 18.24 24.95 
CDD Yield Index 70.34 17.99 25.58 

 
Colquitt 

 
Farm-level Yield 93.61 26.94 28.78 
Area Yield Index 102.47 22.46 21.92 

DSSAT Yield Index 71.25 13.61 19.10 
CDD Yield Index 67.44 13.18 19.54 

 
Pierce 

 
Farm-level Yield 119.94 51.60 43.02 
Area Yield Index 107.29 29.01 27.04 

DSSAT Yield Index 55.32 15.14 27.37 
CDD Yield Index 67.90 21.75 32.03 
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Table 3: Pearson Pair-wise Correlations among Simulated Farm-level Yield and Three 
Realized Yield Indexes  
 

  fy_rep cytrend dyield y_cdd 
fy_rep 1.00    
cytrend 0.23 1.00   
dyield 0.19 0.53 1.00  

Appling 
 

y_cdd 0.17 0.44 0.31 1.00 
      
  fy_rep cytrend dyield y_cdd 

fy_rep 1.00    
cytrend 0.29 1.00   
dyield 0.27 0.66 1.00  

Bulloch 
 

y_cdd 0.23 0.48 0.28 1.00 
      
  fy_rep cytrend dyield y_cdd 

fy_rep 1.00    
cytrend 0.26 1.00   
dyield 0.20 0.31 1.00  

Coffee 
 

y_cdd 0.26 0.55 0.31 1.00 
      
  fy_rep cytrend dyield y_cdd 

fy_rep 1.00    
cytrend 0.27 1.00   
dyield 0.17 0.02 1.00  Colquitt 

y_cdd 0.27 0.54 0.01 1.00 
      
  fy_rep cytrend dyield y_cdd 

fy_rep 1.00    
cytrend 0.28 1.00   
dyield 0.28 0.37 1.00  Pierce 

y_cdd 0.32 0.39 0.42 1.00 
 
Note: fy_rep represents the simulated farm-level yield 
          cytrend represents the realized detrended county-level yield 
          dyield represents the predicted yield from DSSAT CSM-CERES-Maize model  
          y_cdd represents the predicted yield from cumulative CDD-yield model 
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Table 4. Restricted Optimal Coverage and Scale levels, and The Actuarially Fair 
Premium Rates of Three Yield Index Insurance Contracts  

 

County Coverage 
(70% - 90%) 

Scale 
(90% - 150%) 

Premium 
Rates (%) 

75% MPCI 
Premium Rates (%) 

Area Yield Index Insurance  

Appling 70 90 4.2 11.54 
Bulloch 70 90 1.16 9.95 
Coffee 90 90 4.36 5.31 
Colquitt 90 90 3.07 5.43 
Pierce 70 90 2.88 7.97 

Dssat Yield Index Insurance  

Appling 70 90 0.36 11.54 
Bulloch 80 90 2.43 9.95 
Coffee 90 100 2.57 5.31 
Colquitt 90 121 1.43 5.43 
Pierce 90 104 3.09 7.97 

CDD Yield Index Insurance  

Appling 70 90 0.81 11.54 
Bulloch 70 90 1.08 9.95 
Coffee 86 90 3.45 5.31 
Colquitt 90 138 2.17 5.43 
Pierce 87 90 6.17 

 

7.97 
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Table 5: Changes in Certainty Equivalent Revenues (CER) with Different Insurance 
Contracts  

 
 
 
 
 
 
 
 
 
 

 
 
Note:  Brackets imply negative values.  Certainty equivalent revenues are denoted in 
Dollar/Acre and are based on a constant relative risk aversion utility function with a risk 
aversion coefficient of 2.

CER Change in CER with Insurance 
County Without 

Contract 
 Area Yield 

Index 
Dssat Yield 

Index 
CDD Yield 

Index 
MPCI 
75% 

  
Appling 136.91  (2.30) (3.29) (7.28) 50.11 
Bulloch 172.47  3.23 1.49 (3.22) 44.57 
Coffee 259.80  4.45 7.30 6.14 19.61 

Colquitt 292.80  4.38 2.69 4.08 17.44 
Pierce 314.76  2.69 16.99 8.36 51.92 



 27

Graph 1: Estimated Joint Kernel Density Functions of Farm-Level Yield and Yield Indexes 
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