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Productivity Growth, Technology Progress, and Efficiency Change 
in Chinese Agricultural Production From 1984 to 1993

Abstract

This study applies a Data Envelopment Analysis (DEA) approach to analyze total factor
productivity, technology, and efficiency changes in Chinese agricultural production from 1984 to
1993. Twenty-nine provinces in China were classified into advanced-technology and low-
technology categories.  The Malmquist productivity measures were decomposed into two
components:  technical change index and efficiency change index.  The results showed that total
factor productivity has risen in most provinces for both technology categories.  Technical
progress has been the most important factor to Chinese agricultural productivity growth since
1984 and will remain crucial to productivity growth in low-technology provinces.  Low
efficiency in many important agricultural provinces indicates a great potential for China to
increase productivity through improving technical efficiency.  Continuously expanding market
economy and enhancing rural education may also help farmers to improve technical efficiency
and productivity in agricultural production.

Keywords: Chinese agriculture, Total Factor Productivity (TFP), technology, technical
efficiency, Data Envelopment Analysis (DEA). 
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Abstract

This study applies a Data Envelopment Analysis (DEA) approach to analyze total factor
productivity, technology, and efficiency changes in Chinese agricultural production from 1984 to
1993. Twenty-nine provinces in China were classified into advanced-technology and low-technology
categories.  The Malmquist productivity measures were decomposed into two components:  technical
change index and efficiency change index.  The results showed that total factor productivity has risen
in most provinces for both technology categories.  Technical progress has been the most important
factor to Chinese agricultural productivity growth since 1984 and will remain crucial to productivity
growth in low-technology provinces.  Low efficiency in many important agricultural provinces
indicates a great potential for China to increase productivity through improving technical efficiency.
Continuously expanding market economy and enhancing rural education may also help farmers to
improve technical efficiency and productivity in agricultural production.

Keywords: Chinese agriculture, Total Factor Productivity (TFP), technology, technical efficiency,
Data Envelopment Analysis (DEA). 
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Highlights

Rapid economic growth in China has significantly increased demand for agricultural
commodities over the last decade.  Economic reforms in rural areas were attributed most to Chinese
agricultural production growth in early 1980s, while technological changes only accounted for a
small proportion of this growth.

This study applied a nonparametric programming method to analyze productivity growth in
the Chinese agricultural sector from 1984 to 1993.  The total twenty-nine provinces in China were
classified into advanced-technology and low-technology categories.  With Data Envelopment
Analysis (DEA), the Malmquist productivity measures were decomposed into two mutually
exclusive components: technical change index and efficiency change index.  This decomposition
allowed us to identify the contributions of technical progress and improvement in technical
efficiency to Chinese agricultural productivity growth.

DEA was used to calculate the component distance functions of the Malmquist index and to
construct the best-practice (efficient) frontiers for both agricultural technology categories.  The
technical change and efficiency change indexes were obtained by comparing each province to the
best-practice frontier with the same production technology.  The Malmquist productivity index was
calculated as a product of these two indexes. 

Among the total 29 provinces in China, 26 provinces experienced agricultural productivity
growth during the 1984-93 period, most of which was due to improved technological progress in
agricultural production.  Efficiency changes made little contribution to Chinese agricultural
productivity growth.  Advanced-technology provinces had higher average productivity and
technology growths than had low-technology provinces in agricultural production.  However, the
average decline in technical efficiency in advanced-technology provinces was greater than that in
low-technology provinces.

The results from this study indicates that technical changes were the most important factor
to Chinese agricultural productivity growth in the post institutional reform era.   Enhancing
agricultural research and development and rural education to stimulate technical progress will be
crucial to Chinese agricultural productivity growth, especially for the provinces with low-technology.
Poor performance in technical efficiency in many important agricultural provinces indicate a great
potential for China to increase agricultural productivity through improving technical efficiency.
Continuously expanding market economy and enhancing rural education may also help farmers to
adopt new technology to improve technical efficiency and productivity.
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Introduction

The Chinese economy has rapidly expanded and gradually moved to a market
economy over the last decade.  Economic expansion has doubled China’s per capita income
and  increased Chinese food consumption.  To meet the rapid increase in demand for
agricultural products, the Chinese government has made tremendous efforts to increase its
agricultural output through economic reforms,  increasing government capital investment in
the agricultural sector, increasing inputs in production, adopting new technology, and
introducing improved seed varieties.  

Economic reforms in rural areas stimulated farmers to increase agricultural output
and to improve efficiency of resource allocation in agricultural production.  Many studies
showed that institutional changes accounted for most contributions to the increase in Total
Factor Productivity (TFP) of Chinese agriculture.  The rises in output prices and increases
in the uses of inputs also contributed to the growth in agricultural output.  However,
technical changes contributed little to Chinese agricultural production growth in early 1980s.

In this study, we applied a recently developed technique to analyze productivity
growth in agricultural sectors of 29 provinces in China from 1984 to 1993.  The productivity
increase in Chinese agriculture was decomposed  into technical change and efficiency change
using Data Envelopment Analysis (DEA).  This technique allows us to isolate the
contributions of improving efficiency from the contribution of technology progress. 

The rest of this paper is organized as follows: the next section presents a review of
previous studies on Chinese agricultural productivity and efficiency.  The third section
discusses productivity, economic efficiency, and their measurements.  The fourth section
outlines the Malmquist productivity indexes.  The DEA approach to measuring Chinese
agricultural efficiency and productivity is presented in the fifth section.  The sixth section
describes the data and their sources.  The results and their implications for Chinese
agriculture are discussed in the seventh section.  A summary and conclusions are included
in the last section.

Review of Literature on Chinese Agricultural Productivity and Efficiency 

Since Chinese economic reforms spread out in rural areas in 1984,  the impacts of
these reforms on Chinese agricultural productivity have become of considerable interest to
many economists.  McMillan, Whalley, and Zhu (1989) used a Denison-Solow-type growth-
accounting technique to analyze the impact of China’s economic reforms on agricultural
productivity growth.  They decomposed the growth in TFP into a price component and an
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incentive component.  They argued that price increases and strengthened individual
incentives due to the introduction of the Household-Responsibility System (HRS) for post-
1978 had mainly contributed to the increase in China’s agricultural productivity.  

Fan (1991) used an accounting approach to separate the relative contribution of
institutional change, technological progress, and increases in inputs to the rapid Chinese
agricultural production growth in the early 1980s.  He found that about 63 percent of total
productivity growth was attributed to efficiency improvement (institutional change) and 37
percent to technological change.   Increases in inputs played an important role to Chinese
agricultural growth.  Total input growth accounted for about 57.7 percent of total production
growth.  However, technological change only accounted for 15.7 percent of total production
growth in China, indicating that the potential of production growth can be achieved by
stimulating technological progress in Chinese agriculture.

Lin (1992) used province-level panel data to evaluate the contribution of rural
reforms on China’s agricultural growth in the reform period.  He estimated a Cobb-Douglas
agricultural production function with four conventional inputs: land, labor, capital, and
chemical fertilizers.  In addition, six other variables were incorporated into the model to
assess the impacts of farming institutional change, price adjustments, market reforms, and
technological changes to agricultural productivity.  He found that decollectivization had
improved China’s TFP and accounted for about half of the output growth during the 1978-
1984 period.  The adjustment of state procurement prices was also found to increase
agricultural output.  However, the effect of other market-related reforms on productivity and
output growth was very small. 

Fleisher and Liu (1992) used a Cobb-Douglas production function for agricultural
output with a farm household survey data to test the hypotheses on economies of scale,
diseconomies of multiple plots and multiple crops, and estimated their impacts on total
productivity and the marginal products of labor and other inputs.  They found that plot and
crop consolidation within households could considerably increase China’s agricultural
productivity.

Gaynor and Putterman (1993) employed production team-level data to examine the
effects of land decollectivization during the Chinese economic reforms of the 1980s.  They
found that agricultural output was concave in the proportion of land distributed according
to work force as opposed to household size under a household decision-making model.
Grain output also displayed the expected concave relationship with the land distribution
parameter in a quadratic specification of the model.  

Wen (1993) examined the performance of the successive rural institutions in China
in terms of changes in the Total Factor Productivity Index (TFPI).  He found that the HRS
led to a considerable efficiency improvement and showed a clear advantage over the
commune system in increasing the TFPI.  The results of this study also showed that in more
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than 20 years, the commune system raised land productivity, but lowered labor productivity,
and that HRS raised  both land and labor productivity in Chinese agricultural production.

Travers and Ma (1994) used a variable elasticity model of the aggregate agricultural
production function to analyze agricultural productivity and rural poverty in China.  They
argued that under current technologies and prices, increased agricultural production and
farmer incomes could be achieved through further intensification of machinery and fertilizer
use.  They also argued that further irrigation development under the national poverty
alleviation program could not lead to increased farmer incomes in China’s poorest areas
unless part of the capital costs are covered by government transfers.

Putterman and Chiacu (1994) reviewed factor weighted assumptions used in four
studies of trends in TFP in Chinese agriculture and the factor elasticities estimated in 12
Chinese agricultural production function studies.  They found that estimates of the output
elasticities of land typically exceeded the upper bound weight for land used in the TFP
studies.  They also showed the sensitivity of TFP trends to factor assumptions by indicating
that adopting average elasticities as factor weights leads to a less negative assessment of TFP
performance during the collective period.

Wang, Wailes, and Cramer (1996) developed a shadow-price profit frontier model
to examine production efficiency of Chinese agricultural households.  They found that
farmer’s resource endowment and education are very important factors to influence Chinese
farmers’ allocative efficiency.  Larger farm size (scale) and family size, higher per capita net
income, and education increase profit efficiency.  Both technical and allocative efficiencies
can be improved by reducing market distortions.  They suggested that Chinese agricultural
productivity can be increased by continuously improving efficiency.

Most studies on Chinese agricultural productivity (McMillan et al., Lin, Fleisher and
Liu, Gaynor and Putterman, Travers and Ma) used traditional parametric approaches to
calculate TFP by estimating aggregate production functions.  However, this approach has
been criticized by many economists because of its aggregate assumptions, limitation of
chosen functional forms, and divergent estimates of productivity (Arnade, 1994).  Wen
(1993) calculated the TFPI for the Chinese agricultural sector based on input factor weighted
assumptions.  But Putterman and Chiacu (1994) found that the output elasticities of land
typically exceeded the upper bound weight for the factor used in the Chinese TFP studies.

No study has used a nonparametric approach such as DEA to analyze productivity
growth in the Chinese agricultural sector, especially at the province level.  In this study, we
examined the performances of each province’s agricultural production in terms of
productivity growth, technical efficiency, and technical change from 1984 to 1993.  The
decomposition of productivity index allows us to identify the contributions of improved
efficiency and technical progress to Chinese agricultural productivity growth. 



APi ' Y / xi .

TFP ' Y / X ' Y / j "i xi ,
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(1)          

(2)          

Productivity,  Production Efficiency, and Their Measurements

Productivity is used to measure rate of technical change in production (Chambers,
1988).  Productivity can be conceptualized as two main components: partial factor
productivity and total productivity.  Partial factor productivity, also called average product,
is defined as a ratio of output to a specific input.  Let Y be denoted as output and x  as anyi

individual input factor, then partial productivity of input x  (AP  ) isi i

Partial factor productivity only measures the contribution of one particular input to technical
change, ignoring the effects from other input factors.

TFP is defined as the average product of all input factors.  It is the ratio of output to
an index of inputs.  Let X denote the index of all inputs, then TFP is

where "  is the weight of input x . i i

TFP can be calculated by estimating aggregate production functions or cost functions
with limited functional forms and imposed restrictions on econometric parameters.  TFP  can
also be  measured using indexes, such as Laspeyres, Paasche, Fisher, or Tornqvist-Theil
indexes.  Index approach imposes restrictions on production technology by putting weights
on inputs and output.

Two types of production efficiency were defined by Farrell (1957): technical
efficiency and allocative efficiency.  Technical efficiency evaluates a firm’s ability to obtain
the maximum possible output from a given set of inputs, while allocative efficiency measures
a firm’s ability to maximize its profits by comparing the marginal revenue of product with
the marginal costs of inputs.  Traditionally, the stochastic production frontier approach was
used to measure technical efficiency and allocative efficiency, given the technology and
prices.  However, this econometric approach requires the specification of production
technology.   Recently, a mathematical programming approach such as DEA was developed
to measure technical efficiency by comparing the individual firm’s production to the best-
practice frontier (Seiford and Thrall, 1990).

This study applied the generalized Malmquist index, developed by Färe et al. (1994),
to measure the contributions from the progress in technology and improvement in technical
efficiency to the growth of productivity in Chinese agricultural production.  The Malmquist
index is constructed using the DEA approach. 



St
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0 (x t , y t ) ' inf 2 : (x t , y t / 2 ) 0 S t

' sup 2 : (x t , 2y t ) 0 S t &1 .
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(3)          

(4)          

The Malmquist Productivity Indexes

The Malmquist productivity indexes were proposed by Caves et al. (1982a, b) based
on distance functions developed by Malmquist (1953).  Färe et al. (1994) decomposed
productivity growth into two mutually exclusive components: technical change and
efficiency change over time.  They calculated productivity change as the geometric mean of
two Malmquist productivity indexes using output distance functions. 

Let the production technology S  for each time period t = 1, ..., T denotes the t

transformation of inputs, x  0 R , into outputs, y  0 R , t N t M
+ +

where S  is assumed to satisfy the required axioms to define meaningful output distance t

functions (Färe,1988). 

Following Färe et al. (1994), the output distance function in time period t is defined
as

Distance function is defined as the inverse of the maximal proportional increase of the output
vector y , given inputs x .  It is also equivalent to the reciprocal of Farrell’s (1957) measuret t

of output efficiency, which measures TFP “catching-up” of an observation (a province in this
study) to the best-practice frontier of technology.  In this study, the best-practice frontier is
the highest productivity observed in 29 provinces of China. 

 D  (x , y ) = 1 if and only if  (x , y ) is on the boundary or frontier of technology andt t t t t 
0

production is technically efficient.  If D  (x , y ) <1, production at t is interior to the frontiert t t 
0

of technology at t, and (x , y ) is not technically efficient.  The distance function measurest t 

the degree of technical inefficiency.  The output distance function in time period t +1,
D (x , y ), can be defined as (4) with t replaced by t + 1. t+1 t+1 t+1 

1
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0 (x t , y t )

.
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1 '
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'

D t%1
1 (x t%1, y t%1)

D t
0 (x t , y t )
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1 (x t%1, y t%1)
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(5)      

(6)          

(7)          

(8)          

Define output distance functions with respect to two different time periods as

This is one mixed index that measures the maximal proportional change in outputs y   givent+1

inputs x , under the technology at time period t.  Similarly, we define the mixed distancet+1

function, D (x , y ), which measures the maximal proportional change in output y givent+1 t t t 
1

inputs x , with respect to the technology at time period  t +1.t

Following Caves et al. (1982a), the Malmquist productivity index is defined as 

This ratio index measures the productivity changes originating from changes in technical
efficiency at time period t and time period t + 1 under the technology in time period t.  The
technical efficiency changes from time period t to time period t + 1 can also be measured
under the technology in time period t + 1.  This Malmquist index is defined as 

Färe et al. (1994) specified the output-based Malmquist productivity change index
as the geometric mean of (6) and (7) and decomposed it into two parts:



E(x t%1, y t%1, x t , y t ) '
D t%1

1 (x t%1, y t%1)

D t
0(x t , y t )

,

T(x t%1, y t%1, x t , y t ) '
D t

0(x t%1, y t%1)

D t%1
1 (x t%1, y t%1)

D t
0(x t , y t )

D t%1
1 (x t , y t )

1/2

.
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(9)          

where

E( " ) is the relative efficiency change index under the constant returns to scale which
measures the degree of catching up to the best-practice frontier for each observation between
time period t and time period t + 1, while T( " ) represents the technical change index which
measures the shift in the frontier of technology (or innovation) between two time periods
evaluated at  x  and  x .  t t+1

The decomposition of the Malmquist productivity index allows us to identify the
contributions of catching up in efficiency and innovation in technlogy to the TFP growth.
According to Färe et al. (1994), Malmquist indexes greater than one indicate growth in
productivity.  Malmquist indexes less than one indicate decline in productivity.  In addition,
improvments in any of  the two components of the Malmquist productivity index are also
associated with values greater than one, and declines are associated with values less than one.
   

Data Envelopment Analysis (DEA)

Färe et al. (1994) listed several traditional methods to calculate the Malmquist
productivity index.  But most of them require specification of a function form for technology.
Charnes et al. (1978) proposed the DEA approach to construct a best-practice frontier
without specifying production technology.  Unlike traditional analysis techniques that look
for the average path through the middle points of a series of data, DEA looks directly for a
best-practice frontier within the data.  Using a nonparametric linear programming technique,
DEA takes account of all the inputs and outputs as well as differences in technology,
capacity, competition, and demographics and then compares individuals with the best-
practice (efficiency) frontier. 

Färe et al. (1994) computed the Malmquist productivity indexes for a sample of 17
OECD countries using nonparametric programming  approaches.  They calculated the
component distance functions of the Malmquist indexes through maximization of feasible
outputs for the given inputs.  Arnade (1994) also used the DEA method to calculate the
Malmquist productivity indexes for the agricultural sectors of 77 countries from 1961 to
1987.  Instead of using output distance functions, Arnade constructed the Malmquist indexes
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(10)          

(11)          

using input  distance functions  which minimize the  input requirements for given outputs.

In this study, we used the DEA approach outlined by Färe et al. (1994) to construct
the best-practice frontier at each time period for each technology category.  Comparing each
province to the best-practice frontier gives a measure of its catching up in efficiency to that
frontier and a measure of shift in the frontier (or innovation in technology).  Then, the
Malmquist indexes, which measure the changes in TFP, are calculated as a product of these
two components.

Assume that there are k = 1, ..., K provinces that produce m = 1, ..., M outputs yt
k,m

using n = 1, .., N inputs x  at each time period t = 1, ..., T.  Under DEA, the referencet
k,n

technology with constant returns to scale at each time period t from the data can be defined
as

where z  refers weight on each specific cross-sectional observation.  Following Afriat (1972),t
k

the assumption of constant returns to scale may be relaxed to allow variable returns to scales
by adding the following restriction:

Following Färe et al. (1994), we use an enhanced decomposition of the Malmquist
index to analyze the productivity growth in agricultural production of 29 provinces in China.
We decompose the efficiency-change component calculated relative to the constant-returns-
to-scale technology into a pure efficiency-change component (calculated relative to the
variable-returns-to-scale technology) and a scale-change component which captures changes
in  the  deviation  between the  variable-returns and  constant-returns-to-scale technology.

To construct the Malmquist productivity index of province k’ between t and t + 1, we
use the DEA approach to calculate the following four distance functions: D  (x , y ), D (x ,t t t t+1 t

0 1

y ),  D  (x , y ), and  D (x , y ).  These distance functions are the reciprocals of thet t t+1 t+1 t+1 t+1 t+1 
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(12)          

(13)

(14)

(15)

models used to calculate the output-based Farrell measure of technical efficiency for each
province k’ = 1, ..., K, is expressed as

subject to

The computation of   D (x , y ) is similar to (13), where t + 1 is substituted for t.t+1 t+1 t+1 
1

Construction of the Malmquist index also requires calculation of  two mixed-distance
functions, which is computed by comparing observations in one time period with the best-
practice frontier of another time period.  The inverse of the mixed-distance function for
observation k’ can be obtained from

subject to



M0(x t%1, y t%1, x t , y t ) ' T(x t%1, y t%1, x t , y t )×E(xt%1, y t%1, x t , y t )

' TECHCH×EFFCH

' TECHCH×PEFFCH×SCH ,
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(16)          

To measure changes in scale efficiency, the inverse output distance functions under
the variable-returns-to-scale technology are also calculated by adding (11) into the
constraints in (13) and (15).  Technical change (TECHCH) is calculated relative to the
constant-returns-to-scale technology.  Scale efficiency change (SCH) in each time period is
constructed as the ratio of the distance function satisfying constant returns to scale to the
distance function under variable returns to scale, while the pure efficiency change (PEFFCH)
is defined as the ratio of the own-period distance functions in each period under variable
returns to scale.  With these two distance functions with respect to the variable-returns-to-
scale technology, the decomposition of (8) becomes

in advanced-technology provinces where EFFCH denotes the efficiency change calculated
under constant returns to scale.

Data Sources and Descriptions

The data used in this study were provincial-level agricultural outputs and inputs of 30
provinces in mainland China for 1984-1993.  Because Hainan province was once a part of
Guangdong province and its data were not available until 1987, the data of Hainan province
from 1987 to 1993 were added to those of Guangdong province in this study.

Most previous studies on China’s agricultural productivity used China’s gross value
of agricultural output (GVAO) as the total value of agricultural production.  Instead of using
the gross values of all final products from agricultural production, China’s GVAO is defined
as the sum of the total value of production from farming, forestry, animal husbandry, fishing,
and sideline activities.  The values of all inputs in agricultural production are also included
in the GVAO.  Instead of the GVAO, the net or added value of agricultural output (NVAO)
is used to measure the total value of China’s aggregate agricultural output in this study.  The
data on the total net value of agricultural output from farming, forestry, animal husbandry,
fishery, and sideline production for 29 provinces and regions were taken from the China
Statistical Yearbook and the China Rural Statistical Yearbook.  The time series of provincial
NVAO from 1984 to 1993 were adjusted by China’s GDP deflator (1990=100), which was
obtained from the International Financial Statistics CD-ROM.  

 Land, labor, machinery, fertilizers, and draft animals are considered the five main
inputs in Chinese agricultural production.  Land refers to the total cultivated areas at the end
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of each year.  The data on provincial cultivated land before 1990 were taken from the
Agricultural Statistics of the People’s Republic of China, 1949-1990, and data for 1991-1993
were obtained from the China Statistical Yearbook.

Our measure of labor was the total rural labor force in farming, forestry, animal
husbandry, fishery, and sideline production.  The labor force in rural industry, construction,
transportation, commerce, and miscellaneous occupations was excluded.  The data on rural
labor were taken from the China Agriculture Yearbook and the China Statistical Yearbook.

Machinery and draft animals refer to the capital inputs in China’s agricultural
production in this study.  Machinery is measured by the Total Power of Farm Machinery
(TPFM).  The TPFM includes the total mechanical power of machinery used in farming,
forestry, animal husbandry, fishery, and sideline production as such plowing, irrigating,
draining, harvesting, farm product processing, agricultural transport, plant protection, and
stock breeding.  

Draft animals are defined as animals used for field preparation and hauling.  The
provincial data on the numbers of draft animals for 1984-1990 were taken from the
Agricultural Statistics of the People’s Republic of China, 1949-1990, and the data for the rest
of years were obtained from the China Statistical Yearbook.

 Chemical fertilizers refer to the sum of pure or effective weight of nitrogen, phosphate,
potash, and complex fertilizers.  The data on total chemical fertilizers consumed by each
province for 1987-1993 were obtained from the China Statistical Yearbook, and data for the
years before 1987 were derived from the Agricultural Statistics of the People’s Republic of
China, 1949-1990.

Arnade (1994) used the number of tractors per agricultural employee, land/labor ratios,
and tractor/labor ratios as ranking criteria to classify the agricultural technology category
among 77 countries.  But all of these rankings are not adequate to reflect the differences of
geographical conditions and resource endowments in agricultural production of 29 provinces.
In this study, we used GDP per capita as ranking to classify the agricultural production in 29
provinces into two categories of agricultural technology:  advanced technology and low
technology.  The advanced-technology category includes 14 provinces, while 15 provinces
were placed in the low-technology category.

The average agricultural outputs and inputs of 29 provinces from 1984 to 1993 are
presented in Table 1.  Shandong is the largest agricultural province in China, followed
closely by Sichuan and Guangdong.  Jiangsu, Henan, Hunan, and Hubei are also important
for Chinese agriculture.  Tibet has the smallest agricultural production in China, followed
by Ningxia and Qinghai.
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    Table 1.  Average Agricultural Output and Inputs by Province, 1984-93

   Province (100 million RMB) (1,000 ha) (10,000) (10,000 kw) (10,000 ton) (10,000 hd)
Net Output Cultivated Land Rural Labor Machinery Fertilizers Draft Animals

Advanced-Technology Province

   Beijing 35.63 414.77 73.58 383.11 11.76 13.38

   Tianjing 25.90 436.80 80.70 405.20 6.04 23.30

   Hebei 196.78 6571.41 1556.92 2558.64 137.89 375.39

   Liaoning 150.22 3499.08 537.82 960.55 78.39 220.59

   Jilin 103.88 3960.56 448.95 557.33 72.29 195.77

   Helongjiang 131.62 8872.80 401.68 1090.83 65.81 196.48

   Shanghai 29.74 326.41 72.51 243.62 17.63 1.16

   Jiangsu 322.64 4565.19 1504.32 1946.45 202.04 65.27

   Zhejiang 209.81 1733.95 1161.81 1090.25 86.34 48.25

   Fujian 136.99 1243.33 682.85 535.93 70.32 91.53

   Shandong 397.90 6909.63 2230.42 3230.57 234.88 488.24

   Hubei 244.99 3502.56 1263.18 1059.04 131.04 256.06

   Guangdong 373.85 2958.11 1550.17 1302.85 152.85 408.48*

   Xinjiang 80.94 3095.21 238.76 481.36 33.79 206.13

Low-Technology Province

   Shanxi 65.84 3720.35 543.48 979.40 50.47 207.97

   Inner 92.42 4968.85 427.60 667.54 29.61 250.68

   Anhui 216.69 4378.77 1675.16 1168.00 133.67 369.36

   Jiangxi 147.38 2354.41 979.28 605.57 74.48 235.07

   Henan 282.88 6959.57 2462.54 2054.14 189.50 751.89

   Hunan 249.15 3319.77 1925.32 1130.99 118.66 290.86

   Guangxi 151.25 2583.97 1388.76 695.06 75.39 462.44

   Sichuan 375.90 6317.52 3681.53 1172.79 171.03 440.48

   Guizhou 83.44 1854.40 1227.62 276.05 41.44 438.23

   Yunnan 125.55 2818.71 1315.14 594.15 54.03 485.97

   Tibet 12.47 223.00 76.93 43.23 1.27 117.45

   Shaanxi 98.71 3555.79 872.88 656.62 60.13 194.48

   Gansu 56.02 3484.94 583.16 536.67 30.59 341.17

   Qinghai 15.17 572.30 104.71 116.04 4.62 63.88

   Ningxia 14.60 797.56 108.47 169.30 9.77 55.91

* Hainan Province is included in Guangdong Province.
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To see the changes in Chinese agricultural production during the 1984-93 period, we
summarize the average annual growth rates of output and inputs in agricultural production
for each province in Table 2.  Among the advanced-technology provinces,  Liaoning and
Fujian had the highest average annual growth rates in output (10 percent), followed by
Guangdong (8.7 percent).  Shanghai had the lowest growth rate (1.8 percent) and followed
Hubei (4 percent).  Guangxi had the highest agricultural production growth (8.8 percent)
among low-technology provinces, followed by Shanxxi (7.8 percent) and Yunnan (6.8
percent).  While Tibet experienced the lowest agricultural production growth among the low-
technology provinces, advanced-technology provinces had higher average agricultural
production growth than low-technology provinces over the sample period.

Among the input factors, the use of chemical fertilizers in agricultural production had
the highest growth rates for both technology categories, followed by the uses of machinery
and draft animals.  Advanced-technology provinces had smaller growth rates in use of these
inputs than low-technology provinces in agricultural production.  Six  advanced-technology
provinces, which are the most developed areas in China,  had negative growth rates of  labor
force  used in agricultural production.  Despite migration of the rural labor force to the urban
areas since Chinese economic reforms, the average growth rate of labor force used in
agricultural production was still close to 1.7 percent for low-technology provinces and 0.03
percent for advanced-technology provinces during the 1984-93 period.  Rapid economic
growth and industrialization in China reduced its cultivated land by 0.5 percent for advanced-
technology provinces, which is higher than 0.1 percent of negative growth rate for low-
technology provinces.  Shanghai and Guangdong, the two most prosperous regions in China,
had the highest decreasing rates of cultivated land.  Only six provinces in the remote area
(Inner Mongolia, Guangxi, Yunnan, Tibet, Ningxia, and Xinjiang) increased their cultivated
land use in agricultural production during these years .  For Shanghai, chemical fertilizers is
the only one input which had a positive growth rate, while the use of the other four factors
declined at the highest rates in the country.  This may be the reason why Shanghai had the
lowest growth rate in agricultural production in China.  Lower output growth rate and higher
input growth rates for low-technology provinces may imply poorer performance in
agricultural production with a lower agricultural productivity.

Results and Implications for Chinese Agriculture 

As indicated by Färe et al. (1994), the distance function is equivalent to the inverse
of Farrell’s measure of output efficiency.  We use this index, which is defined as the
reciprocal of (4),  to measure the technical efficiency in agricultural sector for each province
of China during the 1984-93 period. We constructed the best-practice frontiers in
agricultural production from both technology categories for each year and then compared the
individual provinces to the best frontier with the same technology.  If one province’s index
value is equal to one, the agricultural production of this province is on the best-practice
frontier or technically efficient.  If the index value is greater than one, its production is below
the best-practice frontier or technically inefficient.  
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Table 2.  Average Annual Growth Rates of Agricultural Output and Inputs by Province, 1984-93

  Province Net Output Cultivated Land Rural Labor Machinery Fertilizer Draft Animals

Advanced-Technology Province

  Beijing 0.07587 -0.00445 -0.02554 0.04320 0.08057 0.08622

  Tianjing 0.06380 -0.00517 -0.01170 0.04245 0.08947 0.03337

  Hebei 0.04575 -0.00128 0.01493 0.05810 0.07395 0.02484

  Liaoning 0.10005 -0.00555 0.00156 0.02104 0.03848 0.00469

  Jilin 0.07139 -0.00193 0.04278 0.02927 0.06888 0.00374

  Helongjiang 0.06845 -0.00023 0.01358 0.02582 0.11570 0.02255

  Shanghai 0.01823 -0.01454 -0.06776 -0.02533 0.07446 -0.11279

  Jiangsu 0.04842 -0.00298 -0.00551 0.02647 0.05934 -0.00050

  Zhejiang 0.04695 -0.00836 -0.00177 0.06952 0.02559 -0.04245

  Fujian 0.10036 -0.00420 0.01954 0.07842 0.08345 0.00762

  Shandong 0.04693 -0.00504 0.01194 0.12212 0.08657 0.09208

  Hubei 0.03997 -0.00686 0.00909 0.02318 0.09083 0.00906

  Guangdong 0.08455 -0.01046 -0.00828 0.07853 0.06516 0.00857 *

  Xinjiang 0.06009 0.00154 0.01067 0.05651 0.12428 0.01037

  Average 0.06220 -0.00497 0.00025 0.04638 0.07691 0.01053

Low-Technology Province

  Shanxi 0.04134 -0.00308 0.01580 0.04718 0.06905 0.01446

  Inner Mongolia 0.06430 0.00605 0.00986 0.07196 0.11083 -0.00287 

  Anhui 0.04785 -0.00299 0.01525 0.07846 0.05864 0.00894

  Jiangxi 0.05538 -0.00227 0.00784 0.02863 0.07305 0.04596

  Henan 0.04156 -0.00292 0.01607 0.06390 0.09468 0.03056

  Hunan 0.04816 -0.00259 0.01097 0.05422 0.06579 0.01989

  Guangxi 0.08741 0.00210 0.01039 0.08748 0.09284 0.03840

  Sichuan 0.04603 -0.00269 0.01073 0.05254 0.06270 0.01624

  Guizhou 0.05090 -0.00188 0.03394 0.08242 0.10062 0.03495

  Yunnan 0.06796 0.00348 0.02709 0.07330 0.09012 0.02147

  Tibet 0.03317 0.00004 0.00433 0.07214 0.18425 0.09852

  Shaanxi 0.07835 -0.00592 0.02246 0.03157 0.10339 0.01158

  Gansu 0.06248 -0.00037 0.02219 0.05063 0.10097 0.02551

  Qinghai 0.04713 0.00358 0.02165 0.07070 0.09432 0.01040

  Ningxia 0.04392 0.00125 0.02667 0.07069 0.11300 -0.00046

  Average 0.05440 -0.00055 0.01702 0.06239 0.09428 0.02490

* Hainan Province is included in Guangdong Province.
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The technical efficiency indexes under the constant returns to scale of 29 provinces
from 1984 to 1993 are presented in Table 3.  Among the advanced-technology provinces,
five of them (Beijing, Tianjing, Shanghai, Zhejiang, and Guangdong) were consistently
efficient and lie on the best-practice frontier during this period.  Shandong was the most
technically inefficient province in agricultural production within the advanced-technology
category, followed by Jilin and Helongjiang.  Fujian was efficient for most years, except two
years in the mid 1980s.  Xinjiang was also efficient in the 1980s, but became inefficient in
the last two years of the sample.

 Only five provinces with low agricultural technology (Inner Mongolia, Jiangxi,
Hunan, Sichuan, and Tibet) consistently lie on the best-practice frontier during  the 1984-93
period.  Guizhou and Qinghai were also efficient in most years, except 1993.  Shanxi was
the most inefficient province in agricultural production among the low-technology provinces,
followed closely by Ningxia and Ningxia.

In this study, we decomposed the Malmquist productivity index into the technical
change indexes (TECHCH) and efficiency change (EFFCH) index.  In order to identify
change in scale  efficiency, EFFCH was further decomposed into PEEFCH  and SCH.   To
obtain the Malmquist productivity indexes and other indexes for each province and each pair
of years, we used the DEA approach to calculate the output distance functions by solving
1,566 nonparametric linear programming problems.  But due to limited space in this paper,
we only present the average annual changes of the Malmquist productivity indexes and their
components for each province during the 1984-93 period in Table 4.  Any improvement in
productivity implies that the value of Malmquist index is greater than 1.  

The results showed that the average productivity growth (MALM) in agricultural
production averaged at 3.7 and 2.1 percent for provinces with advanced technology and low
technology, respectively.  Higher productivity growth for advanced-technology provinces
reflects their higher growth rates in output and lower growth rates in the uses of all five
inputs.  On average, the technical change index (TECHCH) also rose 4.7 percent for
advanced-technology provinces and 2.7 percent for low-technology provinces.   Meanwhile,
the efficiency change index (EFFCH) declined 0.8 and 0.4 percent for advanced-technology
provinces and low-technology provinces, respectively.  Growth in  technical change and
decline in technical efficiency suggest that increased TFP in Chinese agricultural production
arose from the innovation in technology rather than the improvement in technical efficiency.
The decrease in technical efficiency was partially due to the decline in scale efficiency and
as well as the fall in pure efficiency.  
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   Table 3.  Technical Efficiency Indexes Under Constant Returns to Scale by Province, 1984-93

                                                                      Year                                                              Average

Province    1984    1985 1986 1987 1988 1989 1990 1991 1992 19931984-93

Advanced-Technology Province

     Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Tianjing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Hebei 1.0557 1.1632 1.2182 1.2108 1.3100 1.0696 1.2239 1.2319 1.2371 1.24351.1964

     Liaoning 1.0000 1.2238 1.0886 1.0983 1.0973 1.3481 1.1217 1.1521 1.1161 1.02521.1271

     Jilin 1.0000 1.0223 1.0750 1.0069 1.2206 1.5720 1.1838 1.3048 1.3457 1.37291.2104

     Helongjiang 1.0000 1.0000 1.0000 1.1555 1.4269 1.5636 1.0756 1.2510 1.1444 1.21531.1832

     Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Jiangsu 1.0000 1.0214 1.0000 1.0317 1.0000 1.0762 1.0000 1.0883 1.0000 1.00731.0225

     Zhejiang 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Fujian 1.0000 1.0000 1.0954 1.0590 1.0004 1.0000 1.0000 1.0000 1.0000 1.00001.0155

     Shandong 1.0591 1.2418 1.2754 1.3360 1.9482 1.5988 1.4913 1.3745 1.5094 1.82581.4660

     Hubei 1.0000 1.0333 1.0400 1.0975 1.2209 1.2121 1.0683 1.1966 1.1699 1.19641.1235

     Guangdong 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000* 1.0000

     Xinjiang 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0306 1.14581.0176

     Average 1.0082 1.0504 1.0566 1.0711 1.1589 1.1743 1.0832 1.1142 1.1109 1.1452 1.0973

Low-Technology Province

     Shanxi 1.0558 1.2515 1.5367 1.6952 1.6920 1.3292 1.3960 1.7634 1.5767 1.58461.4881

     Inner Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Anhui 1.0490 1.0256 1.0000 1.0132 1.0000 1.0003 1.1718 1.5710 1.3015 1.12261.1255

     Jiangxi 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Henan 1.1464 1.2810 1.3601 1.1286 1.3344 1.1597 1.3796 1.4262 1.5185 1.52321.3258

     Hunan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Guangxi 1.2692 1.2965 1.2416 1.2456 1.2417 1.0748 1.1284 1.1235 1.0283 1.05931.1709

     Sichuan 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Guizhou 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.07241.0072

     Yunnan 1.2134 1.3815 1.3134 1.2466 1.3457 1.1524 1.0000 1.1428 1.1451 1.27391.2215

     Tibet 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000

     Shaanxi 1.2464 1.3919 1.3630 1.0000 1.2898 1.2424 1.3774 1.3341 1.3664 1.29641.2908

     Gansu 1.7241 1.8301 1.6594 1.5277 1.7721 1.6822 1.7583 1.8249 1.6863 1.69601.7161

     Qinghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.08771.0088

     Ningxia 1.2207 1.3398 1.1587 1.3242 1.3776 1.2546 1.4540 1.4341 1.5495 1.62031.3734

     Average 1.1283 1.1865 1.1755 1.1454 1.2036 1.1264 1.1777 1.2413 1.2115 1.2224 1.1819

* Hainan Province is included in Guangdong Province.
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Table 4.  Average Annual Changes of Malmquist Indexes by Province and Technology, 1984-93

   Malmquist Technical Efficiency Pure Efficiency Change Scale Change

    Province Rank (MALM) (TECHCH) (EFFCH)
Index Change Change (PEFFCH) (SCH)

Advanced-Technology Province

    Beijing 1 1.0790 1.0790 1.0000 1.0000 1.0000

    Tianjing 10 1.0215 1.0215 1.0000 1.0000 1.0000

    Hebei 9 1.0271 1.0466 0.9862 0.9916 0.9945

    Liaoning 4 1.0621 1.0564 1.0049 1.0033 0.9986

    Jilin 13 1.0094 1.0347 0.9759 0.9821 0.9938

    Helongjiang 11 1.0178 1.0274 0.9929 0.9990 0.9879

    Shanghai 2 1.0744 1.0744 1.0000 1.0000 1.0000

    Jiangsu 7 1.0370 1.0361 1.0008 1.0000 1.0008

    Zhejiang 6 1.0389 1.0389 1.0000 1.0000 1.0000

    Fujian 5 1.0476 1.0462 1.0007 1.0000 1.0007

    Shandong 14 0.9890 1.0494 0.9533 0.9936 0.9594

    Hubei 8 1.0303 1.0507 0.9826 0.9858 0.9972

    Guangdong 3 1.0641 1.0641 1.0000 1.0000 1.0000*

    Xinjiang 12 1.0142 1.0287 0.9855 0.9887 0.9969

    Average 1.0366 1.0467 0.9916 0.9960 0.9950

Low-Technology Province

    Shanxi 11 1.0170 1.0553 0.9663 0.9674 0.9988

    Inner Mongolia 8 1.0237 1.0237 1.0000 1.0000 1.0000

    Anhui 4 1.0362 1.0356 1.0016 1.0016 1.0000

    Jiangxi 3 1.0366 1.0366 1.0000 1.0000 1.0000

    Henan 9 1.0209 1.0511 0.9758 0.9908 0.9827

    Hunan 7 1.0248 1.0248 1.0000 1.0000 1.0000

    Guangxi 1 1.0448 1.0242 1.0220 1.0200 1.0028

    Sichuan 13 1.0022 1.0022 1.0000 1.0000 1.0000

    Guizhou 15 0.9811 0.9882 0.9925 0.9952 0.9972

    Yunnan 12 1.0068 1.0116 1.0002 0.9990 1.0004

    Tibet 5 1.0352 1.0352 1.0000 1.0000 1.0000

    Shaanxi 2 1.0408 1.0340 1.0064 1.0079 0.9970

    Gansu 10 1.0182 1.0204 1.0048 1.0102 0.9960

    Qinghai 14 0.9940 1.0032 0.9910 1.0000 0.9910

    Ningxia 6 1.0265 1.0612 0.9734 1.0000 0.9734

    Average 1.0206 1.0271 0.9956 0.9995 0.9960

* Hainan Province is included in Guangdong Province.
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Among the total 29 provinces, three provinces, Shandong and Qinghai with advanced-
technology and Guizhou with low-technology, had negative average growth rates in total
productivity from 1984 to 1993.  Shandong had the greatest decline in total productivity
among advanced-technology provinces because of its poorest performance in technical
efficiency.  Guizhou was the only province with negative growth in technical change, as well
as in the other four indexes, while Guangxi is the only province that had improvement in all
five indexes.  Only three advanced-technology provinces, Liaoning, Jiangsu, and Fujian, and
four low-technology provinces, Anhui, Guangxi, Yunnan, and Gansu, had improvements in
both technology and technical efficiency, indicating that Chinese agricultural productivity
growth was attributed mostly to technology progress, rather than to improvement of technical
efficiency.  

For comparison, the results calculated from all 29 provinces based on the assumption
of uniform agricultural technology across provinces are presented in Table 5.  Beijing
experienced the highest growth in both total productivity and technical change, followed by
Shanghai and Guangdong.  Liaoning had the largest improvement in technical efficiency
(EEFCH).  Qinghai showed the greatest improvement in pure efficiency over the 1984-1993
period, but it also showed a large decline in scale efficiency.  Ningxia had the most gain in
scale efficiency, while its pure efficiency suffered the greatest decline in the country.
Shandong, the largest agricultural province in China, experienced the largest falls in both
technical efficiency and scale efficiency.  

Since the Malmquist productivity index and its components are multiplicative, we can
calculate the cumulated Malmquist productivity index and its components such as the
cumulated technical change index and the cumulated efficiency change index for each
province as the sequential multiplicative sum of the annual indexes.  Table 6 presents the
cumulated Malmquist productivity index and its components under the constant returns to
scale from 1984 to 1993.  The cumulated indexes measure the total changes in TFP, technical
efficiency, and technology over the 1984-93 time period.  We also can plot the cumulated
productivity indexes against time to see the patterns of the changes in these indexes.  

In this study, we only illustrated the cumulated indexes under constant returns to scale
for four provinces from each agricultural technology category:  Beijing, Liaoning, Jilin, and
Shandong (advanced-technology); Henan, Guangxi, Sichuan, and Guizhou (low-technology).
Among advanced-technology provinces, Beijing had the highest growths in productivity and
technology and was consistently on the best-practice frontier over the 1984-93 period (Figure
1).  Liaoning had improvement in total productivity, technology, and efficiency and showed
increasing trends in all these three indexes (Figure 2).  Jilin had a decline in efficiency, but
its consistent technical progress still increased in its total  factor productivity (Figure 3).
Shandong had the largest decline in efficiency in China during this period.  The poorest
efficiency in production caused a decrease in its productivity, even though its growth in
technical change was among the best in the country (Figure 4). 
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Table 5.  Average Annual Changes of Malmquist Indexes Under Homogenous Technology  by Province, 1984-93

    Malmquist Technical Efficiency Pure Efficiency Change Scale Change

    Province Rank (MALM) (TECHCH) (EFFCH)
Index Change Change (PEFFCH) (SCH)

    Beijing 1 1.0794 1.0794 1.0000 1.0000 1.0000

    Tianjing 10 1.0229 1.0229 1.0000 1.0000 1.0000

    Hebei 25 0.9860 1.0327 0.9623 0.9591 1.0020

    Shanxi 28 0.9755 1.0270 0.9565 0.9530 1.0010

    Inner Mongolia 23 0.9909 1.0125 0.9795 0.9843 0.9965

    Liaoning 4 1.0621 1.0564 1.0049 1.0033 0.9986

    Jilin 14 1.0094 1.0347 0.9759 0.9788 0.9970

    Helongjiang 12 1.0177 1.0273 0.9929 0.9990 0.9879

    Shanghai 2 1.0744 1.0744 1.0000 1.0000 1.0000

    Jiangsu 7 1.0370 1.0361 1.0008 1.0000 1.0008

    Zhejiang 6 1.0391 1.0391 1.0000 1.0000 1.0000

    Anhui 21 0.9928 1.0293 0.9641 0.9614 1.0017

    Fujian 5 1.0498 1.0485 1.0007 1.0000 1.0007

    Jiangxi 13 1.0107 1.0143 1.0005 1.0009 0.9999

    Shandong 24 0.9895 1.0498 0.9531 0.9936 0.9593

    Henan 29 0.9736 1.0261 0.9561 0.9801 0.9723

    Hubei 9 1.0304 1.0514 0.9819 0.9839 0.9984

    Hunan 22 0.9916 1.0175 0.9775 0.9751 1.0025

    Guangdong 3 1.0678 1.0662 1.0014 1.0000 1.0014*

    Guangxi 15 1.0027 1.0067 1.0031 0.9953 1.0064

    Sichuan 19 0.9988 0.9989 1.0000 1.0000 1.0000

    Guizhou 27 0.9771 0.9843 0.9925 0.9952 0.9972

    Yunnan 20 0.9986 1.0196 0.9878 0.9759 1.0125

    Tibet 8 1.0333 1.0333 1.0000 1.0000 1.0000

    Shaanxi 18 0.9991 1.0105 0.9958 0.9937 1.0003

    Gansu 17 1.0010 1.0258 0.9844 0.9888 0.9981

    Qinghai 16 1.0010 1.0246 0.9910 1.0078 0.9880

    Ningxia 26 0.9785 1.0310 0.9504 0.9433 1.0264

    Xinjiang 11 1.0211 1.0310 0.9901 0.9919 0.9982

    Average 1.0142 1.0314 0.9863 0.9884 0.9982

* Hainan Province is included in Guangdong Province.
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Table 6.  Cumulated Malmquist Indexes Under Constant Returns to Scale by Province, 1984-93

    Malmquist Technical Efficiency Pure Efficiency Change Scale Change

    Province Rank (MALM) (TECHCH) (EFFCH)
Index Change Change (PEFFCH) (SCH)

Advanced-Technology Province
    Beijing 1 1.8418 1.8418 1.0000 1.0000 1.0000

    Tianjing 10 1.1339 1.1339 1.0000 1.0000 1.0000

    Hebei 9 1.2562 1.4799 0.8489 0.9021 0.9413

    Liaoning 4 1.5810 1.6210 0.9755 0.9999 0.9754

    Jilin 12 0.9604 1.3186 0.7284 0.7708 0.9450

    Helongjiang 11 1.0093 1.2264 0.8228 0.9604 0.8567

    Shanghai 2 1.8167 1.8167 1.0000 1.0000 1.0000

    Jiangsu 7 1.3597 1.3698 0.9928 1.0000 0.9928

    Zhejiang 6 1.3920 1.3920 1.0000 1.0000 1.0000

    Fujian 5 1.4940 1.4940 1.0000 1.0000 1.0000

    Shandong 14 0.8708 1.5011 0.5800 0.9363 0.6194

    Hubei 8 1.2899 1.5434 0.8359 0.8580 0.9742

    Guangdong 3 1.7171 1.7171 1.0000 1.0000 1.0000*

    Xinjiang 10 1.1151 1.2776 0.8728 0.8982 0.9717

    Average 1.3456 1.4809 0.9041 0.9518 0.9483

Low-Technology Province
    Shanxi 11 1.0487 1.5738 0.6662 0.6739 0.9889

    Inner Mongolia 7 1.1696 1.1696 1.0000 1.0000 1.0000

    Anhui 4 1.2587 1.3472 0.9345 0.9447 0.9892

    Jiangxi 2 1.3573 1.3573 1.0000 1.0000 1.0000

    Henan 8 1.1540 1.5334 0.7526 0.9054 0.8311

    Hunan 6 1.2372 1.2372 1.0000 1.0000 1.0000

    Guangxi 1 1.4681 1.2253 1.1980 1.1736 1.0211

    Sichuan 12 1.0090 1.0090 1.0000 1.0000 1.0000

    Guizhou 15 0.8278 0.8877 0.9325 0.9566 0.9748

    Yunnan 13 1.0011 1.0513 0.9524 0.9814 0.9706

    Tibet 10 1.1007 1.1007 1.0000 1.0000 1.0000

    Shaanxi 3 1.2797 1.3308 0.9614 0.9883 0.9728

    Gansu 9 1.1509 1.1319 1.0166 1.0742 0.9464

    Qinghai 14 0.9223 1.0033 0.9193 1.0000 0.9193

    Ningxia 5 1.2394 1.6451 0.7533 1.0000 0.7533

    Average 1.1645 1.2572 0.9405 0.9784 0.9606

* Hainan Province is included in Guangdong Province.
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Figure 1.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Beijing (Advanced-Technology)

Figure 2.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Liaoning (Advanced-Technology)
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Figure 3.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Jilin (Advanced-Technology)

Figure 4.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Shandong (Advanced-Technology)
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Among low-technology provinces, Henan had similar patterns to Jilin with growths
in productivity and technical change and decline in efficiency (Figure 5).  Guangxi
experienced the greatest improvement in technical efficiency and was the only province with
a productivity index line (LOW-MALM8) above the other two index lines (LOW-TECH8
and LOW-EFFCH8) for the most sample years (Figure 6).  Sichuan, the largest agricultural
province within the low-technology category, consistently lays on the best-practice frontier
in agricultural production.  However, it also had negative growths in technical change for the
most years.  The slow technical progress resulted in very little improvement in its agricultural
productivity (Figure 7).  Guizhou was the only one province with declines in all three indexes
because of its technical degrees in agricultural production (Figure 8).  

Arnade (1994) found that a decline in total factor agricultural productivity is
associated with a significant increase in single-factor productivity in many developing
countries.  It is also interesting to look at the single-factor productivity indexes in agricultural
production of all provinces.  The land and labor productivity indexes of  all 29 provinces
over the 1984-93 period are reported in Tables 7 and 8, respectively.  These indexes were
calculated by dividing total agricultural output by the appropriate input.  All provinces
showed increases in land and labor productivity over the this period.  Beijing and Shanghai
had the highest average labor productivity, while Guizhou’s labor productivity was the
lowest.  Guangdong and Zhejiang had the highest land productivity, while Gansu had the
lowest.  Comparing the single-factor productivity indexes between two agricultural
technology categories, advanced-technology provinces had much higher productivity in both
land and labor productivity indexes than did the low-technology provinces.

Comparing the single-factor productivity indexes with the Malmquist TFPI in Table
4, 11 provinces showed increases in land and labor productivity, but declines in TFP because
of declines in technical efficiency.  This result is similar to those in many developing
countries.  Arnade (1994) argued that increased technical change associated with decline in
efficiency may arise from the unfamiliarity with new technology. 
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Figure 5.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Henan (Low-Technology)  

Figure 6.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Guangxi (Low-Technology)
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Figure 7.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Sichuan (Low-Technology)

Figure 8.  Cumulated Malmquist Indexes Under Constant
Returns to Scale, Guizhou (Low-Technology)
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    Table 7.  Single-factor Productivity by Province:  Land Productivity, 1984-93

                                                                         Year                                                                 Average

   Province 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993  1983-94 

Advanced-Technology Province

   Beijing 0.0536 0.0590 0.0607 0.0737 0.1017 0.0972 0.1039 0.1061 0.1017 0.10350.0861

   Tianjing 0.0380 0.0395 0.0521 0.0572 0.0669 0.0719 0.0705 0.0684 0.0658 0.06470.0595

   Hebei 0.0255 0.0254 0.0249 0.0265 0.0267 0.0316 0.0340 0.0336 0.0352 0.03620.0300

   Liaoning 0.0332 0.0282 0.0346 0.0403 0.0467 0.0382 0.0481 0.0494 0.0524 0.05960.0431

   Jilin 0.0231 0.0199 0.0216 0.0262 0.0268 0.0220 0.0318 0.0292 0.0303 0.03160.0263

   Helongjiang 0.0149 0.0119 0.0138 0.0127 0.0123 0.0115 0.0181 0.0168 0.0183 0.01790.0148

   Shanghai 0.0763 0.0778 0.0757 0.0877 0.0958 0.1010 0.1052 0.0979 0.0973 0.09920.0914

   Jiangsu 0.0573 0.0584 0.0638 0.0677 0.0775 0.0724 0.0759 0.0702 0.0786 0.08550.0707

   Zhejiang 0.0880 0.0980 0.1040 0.1169 0.1278 0.1268 0.1283 0.1378 0.1366 0.15000.1214

   Fujian 0.0676 0.0761 0.0779 0.0931 0.1110 0.1176 0.1208 0.1300 0.1446 0.16690.1105

   Shandong 0.0473 0.0468 0.0481 0.0528 0.0551 0.0551 0.0616 0.0719 0.0693 0.06920.0577

   Hubei 0.0529 0.0563 0.0618 0.0676 0.0718 0.0724 0.0824 0.0763 0.0796 0.08020.0701

   Guangdong 0.0684 0.0869 0.0955 0.1115 0.1343 0.1406 0.1440 0.1489 0.1629 0.1792* 0.1272

   Xinjiang 0.0174 0.0195 0.0204 0.0238 0.0273 0.0272 0.0305 0.0331 0.0323 0.02990.0261

   Average 0.0474 0.0503 0.0539 0.0613 0.0701 0.0704 0.0754 0.0764 0.0789 0.0838 0.0668

Low-Technology Province

   Shanxi 0.0181 0.0162 0.0135 0.0132 0.0161 0.0192 0.0222 0.0175 0.0204 0.02080.0177

   Inner Mongolia 0.0133 0.0150 0.0147 0.0160 0.0209 0.0187 0.0219 0.0213 0.0215 0.02240.0186

   Anhui 0.0394 0.0441 0.0467 0.0508 0.0543 0.0534 0.0549 0.0405 0.0507 0.06040.0495

   Jiangxi 0.0461 0.0495 0.0515 0.0574 0.0585 0.0601 0.0748 0.0748 0.0777 0.07600.0627

   Henan 0.0333 0.0343 0.0328 0.0411 0.0376 0.0436 0.0461 0.0454 0.0458 0.04680.0407

   Hunan 0.0578 0.0621 0.0666 0.0721 0.0718 0.0736 0.0828 0.0842 0.0884 0.09190.0751

   Guangxi 0.0388 0.0421 0.0444 0.0489 0.0522 0.0602 0.0675 0.0699 0.0801 0.08020.0584

   Sichuan 0.0481 0.0495 0.0492 0.0547 0.0579 0.0580 0.0668 0.0697 0.0702 0.07170.0596

   Guizhou 0.0376 0.0380 0.0408 0.0453 0.0517 0.0511 0.0518 0.0572 0.0574 0.05670.0487

   Yunnan 0.0319 0.0336 0.0346 0.0376 0.0418 0.0429 0.0572 0.0547 0.0575 0.05260.0444

   Tibet 0.0397 0.0541 0.0470 0.0433 0.0541 0.0513 0.0619 0.0705 0.0719 0.06550.0559

   Shaanxi 0.0211 0.0203 0.0213 0.0323 0.0268 0.0276 0.0299 0.0313 0.0327 0.03520.0278

   Gansu 0.0114 0.0123 0.0136 0.0151 0.0171 0.0160 0.0184 0.0181 0.0192 0.01970.0161

   Qinghai 0.0195 0.0210 0.0241 0.0251 0.0285 0.0285 0.0299 0.0292 0.0300 0.02910.0265

   Ningxia 0.0141 0.0149 0.0171 0.0163 0.0192 0.0196 0.0206 0.0208 0.0202 0.02030.0183

   Average 0.0311 0.0334 0.0343 0.0378 0.0386 0.0418 0.0470 0.0471 0.0495 0.0500 0.0413

      * Hainan Province is included in Guangdong Province.
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      Table 8.  Single-factor Productivity by Province:  Labor Productivity, 1984-93

                                                                         Year                                                                Average

   Province 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1983-94

Advanced-Technology Province

   Beijing 0.1751 0.2754 0.2956 0.3618 0.5230 0.4835 0.5197 0.5435 0.5574 0.57530.4310

   Tianjing 0.1258 0.1853 0.2512 0.2791 0.3338 0.3483 0.3398 0.3283 0.3200 0.32070.2832

   Hebei 0.0984 0.1022 0.1000 0.1073 0.1066 0.1216 0.1253 0.1196 0.1243 0.12830.1134

   Liaoning 0.1891 0.1718 0.2056 0.2405 0.2803 0.2235 0.2753 0.2732 0.2957 0.34340.2499

   Jilin 0.2480 0.1990 0.2001 0.2335 0.2158 0.1676 0.2317 0.2107 0.2104 0.22340.2140

   Helongjiang 0.3108 0.2508 0.2877 0.2688 0.2614 0.2276 0.3452 0.3082 0.3501 0.33800.2949

   Shanghai 0.1393 0.2379 0.2596 0.3317 0.3934 0.4293 0.4533 0.4523 0.4679 0.47540.3640

   Jiangsu 0.1349 0.1579 0.1780 0.1915 0.2185 0.1962 0.2017 0.1834 0.2102 0.23650.1909

   Zhejiang 0.1118 0.1379 0.1443 0.1619 0.1760 0.1678 0.1654 0.1752 0.1725 0.20110.1614

   Fujian 0.1213 0.1385 0.1380 0.1598 0.1862 0.1945 0.1935 0.1970 0.2158 0.25190.1797

   Shandong 0.1360 0.1391 0.1424 0.1545 0.1584 0.1549 0.1683 0.1857 0.1792 0.18010.1599

   Hubei 0.1350 0.1522 0.1639 0.1754 0.1818 0.1778 0.1971 0.1776 0.1877 0.19130.1740

   Guangdong 0.1143 0.1513 0.1655 0.1932 0.2306 0.2379 0.2418 0.2500 0.2746 0.3069* 0.2166

   Xinjiang 0.2103 0.2345 0.2427 0.2820 0.3222 0.3178 0.3501 0.3774 0.3719 0.33490.3044

   Average 0.1607 0.1810 0.1982 0.1982 0.2563 0.2467 0.2720 0.2702 0.2813 0.2934 0.2358

Low-Technology Province

   Shanxi 0.1109 0.1081 0.0882 0.0855 0.1020 0.1181 0.1314 0.1003 0.1175 0.11970.1082

   Inner Mongolia 0.1429 0.1601 0.1565 0.1689 0.2218 0.1981 0.2278 0.2128 0.2206 0.23200.1942

   Anhui 0.0990 0.1130 0.1169 0.1266 0.1318 0.1253 0.1247 0.0895 0.1103 0.13410.1171

   Jiangxi 0.1030 0.1177 0.1201 0.1277 0.1280 0.1254 0.1525 0.1501 0.1599 0.16760.1352

   Henan 0.0920 0.0943 0.0897 0.1110 0.0993 0.1118 0.1133 0.1079 0.1069 0.11090.1037

   Hunan 0.0963 0.1040 0.1139 0.1170 0.1133 0.1105 0.1215 0.1221 0.1300 0.13870.1167

   Guangxi 0.0696 0.0745 0.0771 0.0834 0.0880 0.1002 0.1102 0.1128 0.1306 0.13290.0979

   Sichuan 0.0806 0.0828 0.0804 0.0878 0.0910 0.0880 0.0994 0.1010 0.1019 0.10810.0921

   Guizhou 0.0692 0.0677 0.0729 0.0760 0.0822 0.0776 0.0747 0.0801 0.0785 0.07630.0755

   Yunnan 0.0689 0.0718 0.0719 0.0761 0.0822 0.0825 0.1084 0.1006 0.1039 0.09360.0860

   Tibet 0.1061 0.1445 0.1235 0.1133 0.1426 0.1315 0.1602 0.1825 0.1855 0.16900.1459

   Shaanxi 0.0838 0.0831 0.0862 0.1284 0.1012 0.1017 0.1054 0.1054 0.1077 0.11540.1018

   Gansu 0.0688 0.0752 0.0820 0.0850 0.0910 0.0839 0.0934 0.0910 0.0961 0.10100.0867

   Qinghai 0.1015 0.1109 0.1277 0.1299 0.1449 0.1398 0.1441 0.1376 0.1372 0.13340.1307

   Ningxia 0.1044 0.1088 0.1222 0.1143 0.1324 0.1315 0.1320 0.1286 0.1231 0.12190.1219

   Average 0.1037 0.1130 0.1150 0.1150 0.1282 0.1340 0.1470 0.1439 0.1493 0.1506 0.1307

       * Hainan Province is included in Guangdong Province.



Under the assumption of homogenous agricultural technology for all 29 provinces1

in China, 17 provinces  experienced decline in technical efficiency  during  the 1984-1993
period (Table 5), indicating the poor efficiency in Chinese agricultural production.
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The results obtained from this study have important implications for Chinese
agriculture.  First, several important agricultural provinces such as Shandong, Hubei, Jilin,
Helongjiang, Hebei, and Henan,  experienced decline in technical efficiency during the 1984-1

93 period.  This result indicates that China has great potential to increase its agricultural
output through improving technical efficiency.  Second, agriculture in several low-
technology provinces, such as Sichuan, Guangxi, Yunnan, Guizhou, and Tibet, were
technically efficient or very close to the efficient.  However, these provinces experienced
very small growth in agricultural technology during the 1984-93 period.   This result implies
that technological progress is still very important to agricultural productivity growth for low-
technology provinces.  Third, if we assume the homogenous agricultural technology for all
29 provinces in China, the results in Table 5 show that only 17 provinces had productivity
growth in agricultural production.  Most of them are located in the coastal areas where the
market economy expanded most rapidly during the 1984-1993 period.  Rapid economic
growth and less market distortions enhanced farmers’ accessibility in these provinces to new
technology and seed varieties, market information, and education, which benefits farmers in
these provinces by improving their production efficiency.  With the continuously expanding
market economy and less market distortions, technical efficiency and productivity in
agriculture are expected to improve in inland provinces.  Fourth, considerable differences
between advanced-technology provinces and low-technology provinces in TFP growth as
well as in labor productivity growth may suggest an important role of rural education in
creating the differences in productivity across provinces.  Most provinces with advanced-
technology have better education.  The rural laborers in these provinces may be willing to
learn new skills and to adopt new technology in agricultural production. However, we could
not measure the impacts of rural education on TFP because of the lack of provincial data on
education. 

Summary and Conclusions

This paper applied the DEA approach to measure TFP, technical change, and technical
efficiency in the Chinese agricultural sector from 1984 to 1993.  According to the ranking
of per capita GDP of each province, agricultural production of 29 provinces in China was
classified into advanced-technology and low-technology categories.  The Malmquist
productivity index was used to measure productivity growth.  With the DEA approach,
productivity growth can be decomposed into two components:  technical change and
efficiency  change.   This  decomposition  allowed us  to identify the contributions  of
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technical progress and improvement in technical efficiency to productivity growth in Chinese
agricultural production.

The DEA approach was used to calculate the component distance functions of the
Malmquist index and constructed the best-practice (efficient) frontiers for both agricultural
technology categories.  The technical change index and the efficiency change index were
obtained by comparing each province to the best-practice frontier with the same production
technology.  The Malmquist productivity index was then calculated as a product of these two
indexes. 

Among the total 29 provinces in China, 26 provinces experienced agricultural
productivity growth during the 1984-1993 period, most of which was due to the improved
technological progress in agricultural production.  For each technology category, only five
provinces were consistently technically efficient in agricultural production.  Efficiency
changes had little contribution to Chinese agricultural productivity growth.  Advanced-
technology provinces had higher average productivity and technology growths than low-
technology provinces in agricultural production.  However, the average decline in technical
efficiency in advanced-technology provinces was greater than that in low-technology
provinces.

Institutional changes under economic reforms in rural areas were mostly attributed to
the productivity growth in Chinese agriculture from 1978 to 1984.  This study indicated that
technical changes were the most important factor to Chinese agricultural productivity growth
in the post-institutional reform era. Enhancing agricultural research and development and
rural education to stimulate technical progress will be crucial to Chinese agricultural
productivity growth, especially for the provinces with low technology.  Poor performance in
technical efficiency in many important agricultural provinces indicated a great potential for
China to increase agricultural productivity through improved technical efficiency.
Furthermore, continuously expanding market economy and enhancing rural education may
also help farmers to adopt new technology to improve technical efficiency and productivity.
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