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Abstract 

One of the most important tasks in the microscopic simulation of traffic flow, assigned to the car following sub-model, is the 
modelling of the longitudinal movement of vehicles. The calibration of a car-following model is usually done at an aggregated 
level, using macroscopic traffic stream variables (speed, flow, density). There is an interest in calibration procedures based on 
disaggregated data. However, obtaining accurate trajectory data is a real challenge.  
This paper presents a low-cost procedure to calibrate the Gipps car-following model. The trajectory data is collected with a car 
equipped with a datalogger and a LIDAR rangefinder. The datalogger combines GPS and accelerometers data to provide accurate 
speed and acceleration measurements. The LIDAR measures the distances to the leading or following vehicle.  
Two alternative estimation methods were tested: the first follows individual procedures that explicitly account for the physical 
meaning of each parameter; the second formulates the calibration as an optimization problem: the objective function is defined so 
as to minimize the differences between the simulated and real inter-vehicle distances; the problem is solved using an automated 
procedure based on a genetic algorithm.  
The results show that the optimization approach leads to a very accurate representation of the specific modeled situation but 
offers poor transferability; on the other hand, the individual estimation provides a satisfactory fit in a wide range of traffic 
conditions and hence is the recommended method for forecasting purposes. 
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1. Introduction 

Microscopic modelling of traffic flows is based on the description of each individual vehicle composing the 
traffic stream. This implies modeling the actions – acceleration, deceleration and lane changes – of each driver in 
response to the surrounding traffic (Barceló, 2010). One of the most important tasks in the simulation, assigned to 
the car following sub-model, is the modelling of the longitudinal movement of vehicles. According to Treiber and 
Kesting (2013a) a car-following model is complete if it is able to describe all situations including acceleration in 
free flow conditions, following other vehicles in stationary and non-stationary situations, and approaching slow or 
standing vehicles, and red lights. A complete model has complex data requirements and numerous model 
parameters, and, therefore, the calibration and validation tasks are still major requirements and challenges in the use 
of simulation for practical purposes.  

Traditional calibration approaches rely on the use of easily measurable macroscopic traffic data, such as counts 
and speeds at detectors. The most reliable methodological process consists of checking the values of model 
parameters that are better fitted to the fundamental relationships of speed, flow and density (Barceló, 2010). For 
example, Rakha et al. (2007) and Vasconcelos et al. (2014) suggested analytic calibration procedures for the Gipps’ 
car following model (Gipps, 1981), and more specifically for the set of parameters that intervene in the steady-state 
operations. Another approach is to formulate the model calibration as an optimization problem in which a 
combination of parameter values that best satisfies an objective function is searched. The optimization procedure 
requires a large number of simulation runs (Ciuffo et al., 2008) and it is usual to reduce the optimization complexity 
by selecting a sub-set of parameters either by engineering judgment or by more systematic techniques, such as 
sensitivity analyses or analyses of variance (Ciuffo et al., 2013; Punzo and Ciuffo, 2009).  

The optimization approach is useful for most practical applications as it gives satisfactory solutions at 
macroscopic level. However, as it formulates the objective function as a black-box model, without much concern for 
the physical meaning of each parameter, it may yield parameters that result in inaccurate representations of the 
traffic streams at the individual vehicle level. In fact, according to Hollander and Liu (2008), when the calibration 
problem is formulated as an optimization problem, it is unlikely to lead to a global optimum, due to the 
multidimensionality of the solution search space and the tendency of the observed data to exhibit various 
inconsistencies.   

Casas et al. (2010) state that the most exact procedure to calibrate the car-following model is to conduct specific 
experiments in which accurate field data is recorded on the relative distances and speeds between pairs of leader-
follower vehicles, and the simulation model is calibrated against this field data. Trajectory data can be obtained 
using instrumented vehicles (Brackstone et al., 2002; Ranjitkar et al., 2005) or from aerial images, collected either 
from tall buildings  (Punzo et al., 2011) or from helicopters (Ossen and Hoogendoorn, 2005). These types of 
experiments are expensive and seldom can be conducted in the current professional practice.  

This research is focused on the microscopic calibration of the Gipps car-following model. It has three main 
objectives: i)  to test a low-cost method to obtain trajectory data; ii)  to understand how the road environment affects 
the car-following behavior; iii) to compare the effectiveness and applicability of two estimation methods, both based 
on trajectory data – with Method 1 (sequential calibration) each parameter is estimated individually having in mind 
its physical meaning; with Method 2 a set of parameters are automatically and simultaneously estimated using an 
optimization process based on a genetic algorithm.  

The paper is organized as follows. Section 2 offers a review of the Gipps car-following model. Section 3 presents 
the system used to collect the field data. Section 4 describes Method 1 and presents the results of a set of field 
experiments, categorized by road type. Following that, Section 5 describes Method 2, presents the results of another 
set of experiments, and compares the resulting parameter values from the two methods. This paper finishes with an 
outline of the main conclusions in Section 5. 

2. The Gipps car-following model 

The Gipps’ car-following model is the most commonly used model from the collision avoidance class of models. 
Models of this class aim to specify a safe following distance behind the leader vehicle. Gipps’ model is mostly 
known for being the building block of the Aimsun microscopic simulator (Casas et al., 2010). It consists of two 
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components: acceleration and deceleration sub-models, corresponding to the empirical formulations illustrated by 
equations (1) and (2), which output the speed of each vehicle at a given time t in terms of its speed at the previous 
step. 
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where τ is the reaction time, vn (t) and vn-1 (t) are, respectively, the speeds of vehicles n (follower) and n - 1 

(leader) at time t, d
nv  and an are respectively the follower’s desired speed and maximum acceleration, nd  and d’n-1 are 

respectively the most severe braking that the follower wishes to undertake and his estimate of the leader’s most 
severe braking capability (dn > 0 and d’n-1 > 0 ), xn-1 (t) and xn (t) are respectively the leader’s and the follower’s 
longitudinal positions at time t, and Sn-1 is the “leader’s effective length”, that is, the leader’s real length Ln-1 added 
to the follower’s desired inter-vehicle spacing at stop sn-1  (between front and rear bumpers).  

If vehicle n has a large headway the minimum speed is given by Eq. (1) and the vehicle accelerates freely, 
tending asymptotically to the desired speed. In other cases the minimum speed is given by Eq. (2). This speed allows 
the follower to come to a stop, using its maximum desired deceleration dn, without encroaching on the safety 
distance. In this derivation it is assumed that the leader brakes according to d’n-1 and that the follower cannot 
commence braking until a reaction time τ has elapsed. The expression implicitly allows for a safety margin (θ) in the 
reaction time that allows the follower not to brake always at his or her maximum desired rate. Gipps assumed for θ  
to be equal to τ/2, and for this reason it does not appear in the above equation (Ciuffo et al., 2012). The speed of 
vehicle n at time t is given by the minimum of the expressions (1) and (2) above: 
 
 ( ) min ( ), ( )acc dec

n n nv t v t v t
 (3) 

 
Then, the position of the vehicle n inside the current lane is updated taking this speed into the movement 

equation: 
 

 ( ) ( ) ( )n n nx t x t v t  (4) 

3. Data collection technique 

The fundamental assumption to this research is that each of the behavior parameters that describe a given driver-
vehicle unit has a well-defined physical meaning and therefore can be estimated by conducting specific experiments. 
This contrasts with the more conventional estimation methodologies that seek the set of parameters that best mimic 
a given traffic condition, regardless of the values obtained for each parameter.     

To support the research real data was collected using a pair of instrumented vehicles. The leader vehicle is an 8-
year-old Volkswagen Golf 1.9 TDi, the follower is a Renault Clio Sport Tourer Gasoline 90, each one equipped with 
a datalogger device from Race Technology Ltd (DL1 MK3) – Figure 1. The data loggers have a 6g 3-axis 
accelerometer and a 20Hz GPS that allows data to be referenced by time and position on the road. Positional 
accuracy is about 3 m (circular error probability) and the speed accuracy is better than 0.1 km/h.  In addition to 
position, speed and accelerations, the data loggers allow the connection to external sensors. A LIDAR rangefinder 
(ULS, from Laser Technology Inc.) was connected to the follower’s datalogger to provide real time distances to the 
leader vehicle. The data analysis was based on the Race Technology software which, with a maximum frequency of 
20 Hz, allows the extraction of time series for any measured variable. The variables of interest to the calibration 
were the leader’s position, speed and acceleration and the follower’s position and speed. The space headway 
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between the two vehicles was calculated from the GPS positional difference and combined with the LIDAR 
measurements, resulting in expected errors of less than 0.5 m, already accounting for the errors related to the 
handheld operation. Some experiments required a single vehicle and were conducted with the Renault Clio 
(follower). The total cost of this system was approximately 4000€ which makes it affordable to many research units.   

Given the objectives of this work a single person was selected to be the follower driver. He was instructed to 
execute a series of maneuvers, either isolated or following the leading vehicle at his normal safe distance. These 
maneuvers were performed in two types of road environments: suburban arterial roads (70/90 km/h legal speed 
limit, no pedestrians and no on-street parking) and urban distributer roads (50 km/h legal limit, on-street parking, 
high density of crosswalks and, in some cases, informal pedestrian crossing).  
 

 

  

Figure 1 – Data acquisition system: top-left – leader vehicle; bottom-left – leader’s datalogger; right – handheld operation of the 
LIDAR on the follower vehicle, targeting the leader’s license plate 

4. Sequential estimation method 

4.1. Maximum desired acceleration and deceleration (a and d) 

 
As referred in section 2, the Gipps acceleration sub-model gives the speed to which a vehicle will accelerate 

during a time step, assuming free-flow conditions, and depends only on the desired speed vd and on the maximum 
desired acceleration a. To obtain the field data required to estimate these parameters the subject driver was 
instructed to execute a set of elementary acceleration maneuvers: in each of these maneuvers, the driver 
immobilized the vehicle and then accelerated normally to its desired speed. The deceleration sub-model gives the 
speed that the vehicle can reach during the time interval (t, t + τ), according to its own characteristics and the 
limitations imposed by the presence of the lead vehicle.  The simplest situation that can be described by this model 
is the approximation to a stop line (modeled as a stopped vehicle with zero length), starting from the desired speed.  
This way, following the acceleration maneuver, the driver was instructed to have its speed stabilized before 
decelerating normally to a full stop (in some cases due to the presence of pedestrians in crosswalks, in other cases 
merely as a response to the passenger’s request). This acceleration-deceleration process was performed 85 times (44 
on arterial roads, 41 on distributor roads). 

The estimation process consisted of plotting the theoretical time-series of acceleration, speed and distance and 
manually adjusting, for each case, the intervening parameters (a, d) so as to minimize the eye-measured difference 
to the corresponding measured data points in the time-speed and time-distance plots (the fitting to the acceleration 
plot is not viable since the Gipps model doesn’t explicitly account for the gear shifts. Figure 2 shows the fitted speed 
and acceleration plots for one of the observations. The model can accurately reproduce typical acceleration 
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maneuvers only by adjusting vd and a; the deceleration maneuvers require the adjustment of the deceleration 
parameter d. The reaction time τ has also some influence on the deceleration profile but a constant value was 
assumed for all observations since its effect is almost negligible. 

  

  

Figure 2 - Manual estimation of Gipps acceleration (top) and deceleration (bottom) parameters – Arterial road, case 8 of 44. Optimal parameters: 
a = 1.60 m/s2, vd = 18.2 m/s, d = 3.3 m/s2 

An independent-samples t-test was conducted to compare acceleration and deceleration values in arterial and 
distributor roads (Table 1). The results show no statistically difference at the 5% level of confidence for the 
acceleration values and thus this parameter was taken as the mean of the total sample (a = 1.77 m/s2). Regarding the 
deceleration, the comparison of both data sets reveals a statistically significant difference in the means (p < 0.05), 
suggesting a more aggressive driving behavior on arterial roads. The mean values are d = 4.05 m/s2 and d = 3.50 
m/s2 at arterial and distributer roads respectively.    

 

Table 1 – Acceleration and deceleration values in arterial and distributor roads: t-test results 

Variable 
Mean Mean t-value df p Valid N Valid N Std.Dev. Std.Dev. F-ratio p 

Arterial Distributor Arterial Distributor Arterial Distributor 
a 1,811 1,717 1,385 83 0,170 44 41 0,307 0,320 1,084 0,794 
d 4,050 3,505 3,180 83 0,002 44 41 0,790 0,789 1,004 0,993 

 

4.2. Reaction time and minimum spacing 

These parameters’ role in the deceleration sub-model is to return a safe following distance for a given 
combination of follower/leader vehicles’ speeds. The simplest driving situation involving these parameters is the 
stationary car-following process. In fact, Rakha and Wang (2009) show that in steady-state conditions Eq. (2) can be 
simplified to give the space headway:  
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According to this equation, hs is given as a sum of three components: 

 
 S - the length L of the leader vehicle added to the minimum desired space s between vehicles; 
 1.5τv – the distance travelled by the follower vehicle during the perception-reaction time, at constant speed; 
 2 (1/ 1/ ') / 2v d d – the difference in the distances travelled during the deceleration by the two vehicles (as 

estimated by the follower). 
 

Some traffic simulation applications do not require the detailed description of the vehicles’ trajectory and thus the 
simplification d = d’ can be assumed, thus leading to a simplified calibration methodology (Vasconcelos et al., 
2014) 

In order to obtain the field data necessary to estimate these parameters the subject driver was instructed to follow 
a lead vehicle in several arterial and distributer roads. The leader drove at relatively low speeds (below the 
follower’s desired speed), thus assuring forced following conditions. The passenger in the follower vehicle was 
continuously measuring the spacing to the lead vehicle with the LIDAR, allowing a representative hs – v point to be 
taken for each stretch of road traveled with constant speed and spacing. The sample includes 64 measurements on 
arterial roads and 46 on distributor roads, including 11 measurements of the minimum spacing s (with v = 0) at 
traffic signals and priority junctions. 

Figure 3 reveals the data points clustered in function of the road type, suggesting a more aggressive behavior on 
the arterial roads. It is also clear that the space headway increases with the speed in an exponential fashion, meaning 
that the third component of Eq. (5) has a significant value and therefore the abovementioned simplification d = d’ 
cannot be made at this level of detail. The parameters were estimated for each road type by manually fitting the two 
curves from Eq. (5) to the field data. Only three parameters were adjusted (S, τ and d’) as the length of the leader 
vehicle was directly measured (L = 4.2 m) and the deceleration values were assumed to be the ones previously 
estimated. 

 

Figure 3 – Best fit curves for the field hs – v measurements under steady-state conditions 

 
The complete set of parameters for the two road types is listed on Table 2. Regarding the driver’s desired speed, 

although no formal estimation method was followed, it was noticed that the subject driver, under free flow 
conditions, tends to slightly exceed the legal speed limits and therefore these parameters were set equal to 1.10 times 
the legal speed limit of each traveled road. It should be noted that under forced following conditions this parameter 
has a very limited influence in the driver behavior. 
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Table 2 - Parameters at each road type obtained with the sequential estimation method 

Road Type vd 

(m/s) 
a 

(m/s2) 
d 

(m/s2) 
d' 

(m/s2) 
s 

(m) 
τ 

(s) 
Arterial 27.5 

1.77 
4.05 4.92 

5.9 
0.40 

Distributor 15.3 3.51 6.30 0.60 

 

5. Sequential vs simultaneous estimation 

Following the individualized and sequential estimation of the Gipps parameters (hereafter named Method 1), we 
were interested in understanding how useful they are to predict the driver behavior on different roads, taking as 
reference the results of the conventional estimation method based on optimization (Treiber and Kesting, 2013b) - 
Method 2. Five new circuits were selected – two in arterial roads and three in distributer roads. In each circuit, the 
leader performed a sequence of maneuvers that influenced the follower’s behavior, given that it was not possible to 
overtake or use other lanes. The optimization framework was implemented in Matlab using the built-in genetic 
algorithm tool. The objective function was defined so as to minimize the difference between the measured and 
predicted time series of the space headway, given by the average root mean square error (RMSE). The resulting 
optimal parameters, listed on Table 3, are very variable among the different roads, even when comparing values 
within the same road group.  
 

Table 3 – Optimal parameters at each road type obtained with the simultaneous estimation method (genetic algorithm) 

Road Type Road / Street vd (m/s) a (m/s2) d (m/s2) d’ (m/s2) S (m) τ (s) 
Arterial EN 17 26,00 0,82 2,53 2,78 5,20 0,40 
 EN 341 24,47 9,80 8,87 13,03 4,95 0,50 
Distributor Montes Claros 11,50 1,53 5,06 5,08 5,91 0,75 
 Av. Dias Silva 13,05 1,06 2,87 3,06 7,24 0,79 
 R. Brasil 18,03 1,42 2,87 3,69 4,89 0,82 

 
The plots in Figure 4 compare the model predictions with the field measurements and indicate that Method 2 

(Genetic Algorithm) is very effective at replicating the closing-in and shying-away patterns. This is not surprising 
since each run was simulated with its own set of optimal parameters. However, in practical applications it would be 
unrealistic to expect users to calibrate the model for each and every type of traffic situation (and in many cases it 
would even be impossible), as was done in this exercise. The real challenge of any simulation model is to make 
accurate predictions outside its calibration domain. 

This way, in order to investigate the predictive and transferability power of the two alternative calibration 
methods, it was assumed a set of scenarios in which the optimal behavioral parameters of each circuit obtained by 
each method would be used to model the remaining circuits. The results (see Table 4) indicate that this approach has 
very variable results, sometimes resulting in poor fits. The simulation with the parameters from method 1 
(individually estimated), provide a satisfactory fit at each circuit (for example, the simulation of EN 341 using the 
optimal parameters from EN 17 results in a RMSE value of 4.15, vis-à-vis the RMSE value of 3.00 obtained when 
the generic parameters from method 1 are used).  

It can thus be concluded that Method 1, based on the physical meaning of each parameters, is much more robust 
and transferable, being recommended for forecasting purposes. Method 2 is preferable if the main objective is to 
accurately characterize an existing traffic condition (for example for demonstration or visualization purposes).  
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Table 4 – Comparison of the goodness-of-fit at each circuit using different sources of optimal parameters (RMSE values calculated when 
parameters specifically estimated for the road defined in the column are applied to the road specified in the row) 

  Goodness of Fit (RMSE) for the different sets of parameters  
  Method 1 

(parameters from 
Table 2) 

Method 2 (parameters from Table 3) 

Road Type Road / Street EN 17 EN 341 Montes 
Claros 

Av. Dias 
Silva 

R. 
Brasil 

Arterial EN 17 3.48 3.08 3.22 -- -- -- 
 EN 341 3.00 4.15 2.69 -- -- -- 
Distributor Montes Claros 2.97 -- -- 1.35 4.52 2.94 
 Av. Dias Silva 2.61 -- -- 3.76 2.09 2.59 
 R. Brasil 3.16 -- -- 5.14 5.72 3.02 

 

 

  

  

Figure 4 – Time series of the space headway (hs): a) N17, b) N341, c) Montes Claros, d) Av. Dias da Silva, e) R. Brasil. The vertical dashed lines 
in graphs d) and e) indicate a break in the time series corresponding to a direction change. 

6. Conclusions 

One of the most important facets of this research was to test a method to calibrate car-following models that can 
be easily replicated in the future by any research group. This method is adequately accurate, rather inexpensive, and 
simple to follow, requiring only two data loggers and a LIDAR rangefinder 

Regarding the calibration results our sequential estimation method made it possible to realize that, in this set of 
cases, the desired acceleration parameter does not present a statistically significant difference between the two 
different road environments (arterial, distributor). On the other hand, it revealed a statistically significant difference 
in the deceleration parameters, suggesting a more aggressive driving behavior on arterial roads. Furthermore, while 

0

10

20

30

40

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760

Sp
ac

e 
he

ad
w

ay
 h

s (
m

) 

Time t (s) 

Measured Gipps (Gen. Algorithm) Gipps (Individ. Estimation)

0

10

20

30

40

50

0 40 80 120 160 200 240 280 320Sp
ac

e 
he

ad
w

ay
 h

s (
m

) 

Time t (s) 

0
5

10
15
20
25
30

0 40 80 120 160 200

Sp
ac

e 
he

ad
w

ay
 h

s (
m

) 

Time t (s) 

0
5

10
15
20
25
30

0 40 80 120 160 200 240 280 320

Sp
ac

e 
he

ad
w

ay
 h

s (
m

) 

Time t (s) 

0
5

10
15
20
25
30

0 40 80 120 160 200 240 280 320

Sp
ac

e 
he

ad
w

ay
 h

s (
m

) 

Time t (s) 

a)

b) c)

d) e)



960   Luís Vasconcelos et al.  /  Transportation Research Procedia   3  ( 2014 )  952 – 961 

the estimated values for the minimum spacing proved to be the same in both environments, as anticipated, a 
substantial distinction between the reaction time parameters was noted, also suggesting a more aggressive behavior 
on arterial roads. The experiments have also shown that the space headway increases with the speed in an 
exponential fashion; the linear relation, sometimes assumed at the macroscopic level, is not valid for this degree of 
detail. 

This research proves that calibration based on optimization is the most effective at replicating the closing-in and 
shying-away patterns of a specific run. However, simulating with the optimal parameters of a different circuit 
presents inconstant and, sometimes, poor results, whereas individually estimated parameters provide a satisfactory 
fit for every circuit. This way the optimization method is recommended for the accurate modelling of a specific 
traffic situation (for example for public presentations) whereas the sequential estimation method is recommended for 
forecasting purposes. 

Nonetheless, there are some limitations of these estimation methods that justify future research efforts: first, only 
one person was used as a test driver and it is important to understand if the main conclusions continue to hold with 
different drivers; second, it would be interesting to see if the results from Method 2 can be improved by increasing 
the run lengths and by mixing driving environments (e.g. stop-and-go and free-flow conditions); finally, it would be 
important to understand if the subject drivers, being aware that their behaviors are being recorded, have a natural 
driving behavior or, on the contrary, it is necessary to observe unaware drivers.  
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